Опасная норма радиации. Радиация: общие сведения, единицы измерения, влияние на человека

Радиация представляет собой ионизирующее излучение микроскопических частиц и физических полей. К радиационному излучению не относятся ультрафиолетовые лучи и диапазон видимого света. Способностью ионизировать встречное вещество не обладают радиоволны и микроволны, это не радиация. Смертельная доза для человека не создается искусственно при помощи химических процессов, радиация относится к физическому действию.

Мощность и доза

Мощностью радиационного излучения называется количество ионизации за определенный временной промежуток. Для мощности существует единица измерения - микрорентген в час.

Полученная доза измеряется суммарной дозой, определяемой мощностью излучения, умноженной на время действия микрочастиц, таким образом, высчитывается смертельная доза радиация для человека, которая приводит к летальному исходу. Для измерения эквивалентной дозы используется зиверт (Зв), мощность для расчета определяется в зивертах в час (Зв/ч).

Для расчета эквивалентной дозы от воздействия лучей различных типов принимают во внимание интенсивность искомого излучения по отношению к зиверту. Например, при определении суммарной дозы от действия гамма-лучей приравнивают 100 рентген к 1 Зв. Мелкие дозы, меньше 1 Зв высчитывают в отношении:

  • 1 мЗв (миллизиверт) равен 1/1000 зиверта;
  • 1 мкЗв (микрозиверт) равен 1/1000 миллизиверта или 1/1000000 зиверта.

Прибор для измерения излучения

Стандартным распространенным устройством для определения мощности дозы или мощности, направленной на прибор и на оператора прибора, является дозиметр. Дозиметрия проводится за время подверженности радиации, например, рабочая смена или время выполнения спасательных работ.

Смертельная доза радиации для человека в рентгенах зависит от интенсивности излучения в месте нахождения работника, если суммарный показатель насчитывает более 600 единиц, то такое облучение опасно для жизни. Обследуются перевозимые грузы, предметы, измеряется фон от построек и зданий. Каждый человек, посещающий места с опасностью радиационного загрязнения, приобретает дозиметр в постоянное личное пользование.

Собираясь в незнакомую местность, например, горы, озера, отправляясь в поход или за ягодами и грибами, берут прибор для обследования местности перед длительным нахождением. Определяется интенсивность излучения участка перед строительством или при покупке земли. не понижается и не удаляется со стен зданий и предметов, поэтому предварительно выявляется опасность с помощью дозиметра.

Понятие радиоактивности

Некоторые атомы содержат неустойчивые ядра, способные превращаться или распадаться. Этот процесс способствует освобождению свободных ионов. Возникает энергетически мощное, способное воздействовать на окружающее вещество и провоцировать появление новых ионов отрицательного и положительного заряда. Смертельная доза радиации в рад возникает при облучении человека 600 рад, при этом 100 рад (внесистемная единица) = 100 рентгенам.

Причины радиоактивного заражения

Действие различных факторов и обстоятельств вызывает повышенный радиационный фон:

  • выпадение вещества радиоактивного характера из ядерного облака при взрыве;
  • при возникновении наведенной радиации, полученной образованием изотопов радиоактивного вида при мгновенном действии гамма-лучей и нейтронов, высвободившихся при ядерном взрыве;
  • действием внешнего излучения гамма и бета-лучей;
  • смертельная проявляется при внутреннем облучении после попадания радиоактивных изотопов внутрь человеческого организма из воздуха или с продуктами питания;
  • провоцируется в мирное время техногенными катастрофами на атомных объектах, неправильной транспортировкой и утилизацией ядерных отходов.

Разновидность излучения

Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:

  • тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
  • бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
  • гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
  • жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
  • нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.

Разновидности доз

Эквивалентная фиксированная эффективная доза представляет собой определение доз радиации на организм в результате поступления некоторого количества вредного вещества. Этот показатель учитывает чувствительность внутренних органов и время нахождения радиоактивного вещества в теле (иногда в течение всей жизни). В некоторых случаях смертельная доза радиации в рентгенах измеряется для одного выбранного органа.

Амбидентный эквивалент дозы определяется величиной, которую мог бы получить человек, если бы присутствовал на территории, где делается дозиметрия, показатель измеряется в зивертах.

Воздействие радиационного загрязнения на организм человека

Любое излучение, приводящее к образованию в окружающей среде электрических частиц с различными знаками, считается ионизирующим. Рассеянный радиационный фон постоянно сопровождает человека, его создает космическое излучение, влияние солнца, природные источники радионуклидов, другие составляющие биосферы.

Для работы в опасных условиях персонал защищают специальными костюмами, соблюдают нормы безопасности. Облучение организм получает на рабочем месте при физических и химических опытах, проведении дефектоскопии, медицинских исследованиях, геологических изысканиях и др.

Мутация от облучения

Смертельная доза радиации для человека в рад составляет свыше 600 единиц и приводит к летальному исходу. Облучение в дозе от 400 до 600 рад способствует появлению лучевой болезни и может вызвать мутацию генов. Действие ионизированного преображения организма мало изучено, мутации проявляют себя через поколения. Разброс времени дает право сомневаться, появилась мутация от радиоактивного влияния или вызвана другими причинами.

Мутации по виду делят на доминантные, появляющиеся в короткий период после действия облучения и рецессивными. Второй вид проявляет себя, если мать и ребенок имеют один мутантный ген. Мутация не просыпается несколько поколений или не беспокоит человека совсем. Перерождение плода трудно определяется в случае преждевременных родов, если мутация не дает возможности зародышу достичь родового возраста.

Лучевая болезнь. Лейкоз

В постановке болезни большое влияние оказывает радиация. Смертельная доза облучения приводит к летальному исходу, но не менее опасны уровни облучения от 200 до 600 р, вызывающие лучевую болезнь. Радиация поражает человека после однократного мощного воздействия или при постоянном проникновении радиационного излучения небольшой мощности. Примером служит работа рентгенологов, не выдерживающих постоянного облучения и заболевающих характерными заболеваниями.

Наиболее опасным является действие радиации на неокрепший организм до 15 лет. О размере дозы единого мнения нет, исследователи приводят разные дозы допуска в 50, 100 и 200 р. Патогенез изучается в исследовательских институтах, лучевой лейкоз становится более доступным для лечения.

Онкологические заболевания

Изучение действия радиации на человека затруднено тем, что для появления обобщенных данных исследуются большие группы людей, что невозможно без специального эксперимента. Какая смертельная доза радиации является летальной, а какие уровни вызывают онкологические опухоли человека нельзя судить по эксперименту над животными.

В смысле выделения опасной дозы, вызывающей раковые опухоли, нет определенных данных. Любая доза полученной радиации дает толчок организму для начала деления агрессивных клеток. По частоте проявления болезни подразделяют следующим образом:

  • наиболее частым является проявление лейкоза;
  • из 1000 женщин, попавших в группу риска, раком молочной железы заболевают 10 пациенток;
  • такая же статистика заболевания раком щитовидки.

Степени тяжести лучевой болезни

Являются постоянная головная боль, нарушение движения, координации жестов, тошнота, рвота, головокружение, расстройства желудка и кишечника. Какая доза радиации смертельна для человека:

  • первая степень проявляется после латентного периода в две недели, заболевание вызывается облучением от 100 до 200 рентген;
  • для проявления второй степени после облучения дозой от 200 до 400 рентген, смерть наступает у четвертой части подвергшихся облучению;
  • третья стадия лучевой болезни - это смертность в 50% случаев, для возникновения достаточно дозы облучения от 400 до 600 рентгенов;
  • четвертую, самую опасную стадию, также вызывает радиация. Смертельная доза составляет более 600 рентген, летальный исход наступает в 100% случаев.

Способы индивидуальной защиты в случае радиационного загрязнения местности

Определены стандартные действия для населения, если на территории радиация. Смертельная доза облучения опасна для жизни, поэтому для уменьшения летальных исходов организовывается эвакуация людей в сооружения, которые по степени защиты делят на капитальные бомбоубежища, подвалы, деревянные строения и автомобили. Лучше всего защищает первый тип строения, остальные рассматриваются как экстренные временные пристанища.

К эффективным мерам относят защиту органов дыхания, воды и продовольственных припасов. Укрытие предметов первой необходимости делают заранее, если существует опасность выброса или взрыва. Употребляют противорадиационные медикаменты, не применяют для питания молоко в свежем виде.

Производится регулярная и обеззараживание местности, при любом удобном случае люди эвакуируются за пределы зараженного района. Уменьшение внутреннего облучения за счет исключения захвата пыли обеспечивается респираторами, эффективными в 80% случаев. Меньший показатель дает марлевая повязка из четырех слоев, но используют все имеющиеся под рукой средства защиты. В качестве накидки применяют в крайнем случае, полиэтиленовую пленку.

В заключение следует упомянуть, что радиационная загрязненность местности не уменьшается, опасность заражения человека сводится к минимуму применением индивидуальных средств защиты и контролем полученной дозы облучения с помощью дозиметров.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 миллирентген в час [мР/ч] = 1000 микрорентген в час [мкР/ч]

Исходная величина

Преобразованная величина

грей в секунду эксагрей в секунду петагрей в секунду терагрей в секунду гигагрей в секунду мегагрей в секунду килогрей в секунду гектогрей в секунду декагрей в секунду децигрей в секунду сантигрей в секунду миллигрей в секунду микрогрей в секунду наногрей в секунду пикогрей в секунду фемтогрей в секунду аттогрей в секунду рад в секунду джоуль на килограмм в секунду ватт на килограмм зиверт в секунду миллизиверты в год миллизиверты в час микрозиверты в час бэр в секунду рентген в час миллирентген в час микрорентген в час

Подробнее о мощности поглощенной дозы и суммарной мощности дозы ионизирующего излучения

Общие сведения

Излучение - природное явление, которое проявляется в том, что электромагнитные волны или элементарные частицы с высокой кинетической энергией движутся внутри среды. В этом случае среда может быть либо материей, либо вакуумом. Излучение - вокруг нас, и наша жизнь без него немыслима, так как выживание человека и других животных без излучения невозможно. Без излучения на Земле не будет таких необходимых для жизни природных явлений как света и тепла. В этой статье мы обсудим особый тип излучения, ионизирующее излучение или радиацию, которая окружает нас везде. В дальнейшем в этой статье под излучением мы подразумеваем именно ионизирующее излучение.

Источники излучения и его использование

Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, а также излучение некоторых радиоактивных материалов, таких как уран. Такое радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил.

Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья, и даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло - пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флюоресцентным зеленым светом благодаря тому, что в него добавлен оксид урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло на данный момент считают безопасным для здоровья. Из него даже изготавливают стаканы, тарелки, и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света.

У радиации множество применений - от производства электроэнергии до лечения больных раком. В этой статье мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей.

Определения

Вначале рассмотрим некоторые определения. Существует множество способов измерять радиацию, в зависимости от того, что именно мы хотим узнать. Например, можно измерить общее количество радиации в среде; можно найти количество радиации, которое нарушает работу биологических тканей и клеток; или количество радиации, поглощенной телом или организмом, и так далее. Здесь мы рассмотрим два способа измерения радиации.

Общее количество радиации в среде, измеряемое на единицу времени, называют суммарной мощностью дозы ионизирующего излучения . Количество радиации, поглощенное организмом за единицу времени, называют мощностью поглощенной дозы . Суммарную мощность дозы ионизирующего излучения легко найти с помощью широко распространенных измерительных приборов, таких как дозиметры , основной частью которых обычно являются счетчики Гейгера . Работа этих приборов более подробно описана в статье об экспозиционной дозе радиации . Мощность поглощенной дозы находят, используя информацию о суммарной мощности дозы и о параметрах предмета, организма, или части тела, которая подвергается излучению. Эти параметры включают массу, плотность и объем.

Радиация и биологические материалы

У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует частицы биологического материала, включая атомы и молекулы. В результате электроны отделяются от этих частиц, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей.

Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. В процессе нормальной работы клеток нередко случаются подобные нарушения и клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановить клетки до их рабочего состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения.

При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов - что, в свою очередь, увеличивает вероятность заболевания раком.

Условия, которые усугубляют влияние радиации на организм

Стоит отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х - 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для тестирования ядерного оружия, например на полигоне в Неваде, США, на ядерном полигоне на Новой Земле на нынешней территории России, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Дезерт Рок в штате Невада, США.

Радиоактивные выбросы во время этих экспериментов принесли вред здоровью военных, а также мирных жителей и животных в окрестных районах, так как меры по защите от облучения были недостаточны или полностью отсутствовали. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов.

С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. В некоторых случаях такие эксперименты проводили даже над беременными женщинами и детьми. Чаще всего радиоактивное вещество вводили в организм больного во время приема пищи или через укол. В основном главной целью этих экспериментов было проследить, как радиация влияет на жизнедеятельность и на процессы, происходящие в организме. В некоторых случаях исследовали органы (например, мозг) умерших больных, которые при жизни получили дозу облучения. Такие исследования проводили без согласия родных этих больных. Чаще всего больные, над которыми проводили эти эксперименты, были заключенными, смертельно больными пациентами, инвалидами, или людьми из низших социальных классов.

Доза радиации

Нам известно, что большая доза радиации, называемая дозой острого облучения , вызывает угрозу для здоровья, и чем выше эта доза - тем выше риск для здоровья. Нам также известно, что радиация влияет на разные клетки в организме по-разному. Наиболее сильно страдают от радиации клетки, которые подвергаются частому делению, а также те, что не специализированы. Так, например, клетки в зародыше, кровяные клетки, и клетки репродуктивной системы больше всего подвержены отрицательному влиянию радиации. Кожа, кости, и мышечные ткани менее подвержены воздействию, а самое малое влияние радиации - на нервные клетки. Поэтому в некоторых случаях общее разрушительное воздействие радиации на клетки, менее подверженные влиянию радиации меньше, даже если на них действует большее количество радиации, чем на клетки, более подверженные влиянию радиации.

Согласно теории радиационного гормезиса малые дозы радиации, наоборот, стимулируют защитные механизмы в организме, и в результате организм становится крепче, и менее подвержен заболеваниям. Необходимо заметить, что эти исследования на данный момент на начальной стадии, и пока неизвестно, удастся ли получить такие результаты за пределами лаборатории. Сейчас эти эксперименты проводят на животных и неизвестно, происходят ли эти процессы в организме человека. Из этических соображений трудно получить разрешение на такие исследования с участием людей, так как эти эксперименты могут быть опасны для здоровья.

Мощность дозы излучения

Многие ученые считают, что общее количество радиации, которому подвергся организм - не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения - также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте - при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.

Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.

В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации .

Опасность для здоровья, вызванная радиацией

.
Мощность дозы излучения, мкЗв/ч Опасно для здоровья
>10 000 000 Смертельно опасно: недостаточность органов и смерть в течение нескольких часов
1 000 000 Очень опасно для здоровья: рвота
100 000 Очень опасно для здоровья: радиоактивное отравление
1 000 Очень опасно: немедленно покиньте зараженную зону!
100 Очень опасно: повышенный риск для здоровья!
20 Очень опасно: опасность лучевой болезни!
10 Опасно: немедленно покиньте эту зону!
5 Опасно: как можно быстрее покиньте эту зону!
2 Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах

Слово «радиация» у большинства населения ассоциируется с техногенными катастрофами, такими как или атомными бомбардировками городов Хиросима и Нагасаки. Если коротко передать ощущения, которые возникают у большинства людей, получается, что радиация - это зло. Хотя на самом деле она существовала на нашей планете задолго до зарождения жизни и продолжит своё существование даже после гибели планеты.

Норма радиации для человека в мкР/ч постоянно отслеживается специальными службами в разных сферах его жизнедеятельности. И это та угроза, с которой сложно бороться, а в случае превышения радиационного фона последствия могут быть самыми плачевными. Чем грозит и какова норма радиации в мкР/ч для человека?

Сама природа - естественный источник радиации

В создании естественного участвует много факторов: это и солнечные лучи, и радионуклиды. Она присутствует буквально во всем, что окружает человека. Это и вода, пища и воздух. Просто его уровень имеет разные величины: большую или меньшую. Но самая большая опасность, которую таит в себе радиация, - это то, что она незаметно воздействует на организм.

Человеческие органы чувств не дают практически никаких сигналов об опасности. Она просто тихо делает своё дело, вызывая патологию функционирования организма, и даже доводит до летального исхода.

Чем и как ведётся измерение радиации

Величин измерения множество, и они будут интересны, скорее, узким специалистам, поэтому необходимо упростить задачу и назвать только самые основные для бытового применения.

Излучение, воздействующее на любой живой организм, называют Рассчитать её довольно просто: поглощённая организмом доза в пересчёте на вес тела умножается на коэффициент повреждения. Полученное число - единица измерения в зивертах, или сокращённо Зв. Естественный фон в 0,7 мЗв в час соответствует приблизительно 70 рентгенам в час, или сокращённо 70 мкР/ч. Зная эту величину, легко определить, является ли она опасной для человека.

Нормой радиации для человека мкР/ч являются показатели 20-50. Следовательно, такой радиационный фон является завышенным. Но необходимо осветить ещё один момент для понимания - влияние времени. То есть если сразу уйти из такой неблагоприятной зоны, а не находиться там сутками, то облучение не превысит допустимые нормы радиации для человека.

Производится специальными приборами - дозиметрами. Их принято различать на профессиональные и бытовые. Вся разница в величине погрешности, которую они могут допускать. У профессиональных она должна составлять не более 7%, а у бытовых она может быть свыше 25%.

Места обязательного мониторинга

Если опустить необходимость замеров на военных объектах, атомных станциях и самолётах, то получается - замеры происходят во многих сферах жизнедеятельности человека. И это разумно, особенно с учётом появления новых источников радиационного излучения. Замеры проводятся в лесах, горных районах, жилых домах и промышленных объектах. Не будет лишним провести такую операцию и при приобретении какой-нибудь недвижимости. Начиная застройку и при сдаче объекта в эксплуатацию также проводят такие процедуры.

Про детские сады, больницы, школы и говорить не стоит. Подводя итог, можно говорить о том, что практически во всех сферах жизни проводится контроль нормы радиации и излучения для человека (мкР/ч).

Чудовищная сила ионизации

Электроны могут присоединяться к оболочке атома или, наоборот, отрываться. Этот процесс называется ионизацией и интересен тем, что может до неузнаваемости изменить структуру атома. Измененный, он, в свою очередь, меняет молекулу. Примерно так вкратце и происходит влияние радиации на клетки живого организма. Это приводит к патологиям или попросту к болезням.

Когда источники ионизирующего излучения превышают норму, такую территорию принято считать заражённой. Организация Объединённых Наций даёт оценку о норме радиации для человека (в мкР/ч или зивертах), и она составляет 0,22 мкЗв, или 20 микрорентген в час.

У людей может возникнуть вопрос: а передаётся ли лучевая болезнь, например, через рукопожатие. Сразу следует всех успокоить. Общаться с облучёнными людьми можно, и для этого совсем не обязательно надевать противогаз. Опасность скрыта в предметах, излучающих радиацию, - вот их как раз трогать нельзя.

Можно ли получить дозу радиации в собственной квартире?

Принято считать свой дом самым безопасным местом на земле. Отчасти это так, но существуют угрожающие факторы и там. Необходимо вкратце коснуться вопроса о норме радиации для человека и дозах, которые он может получить, даже находясь в квартире в кругу семьи.

Принято считать, что современная техника - это источник опасности, но в большинстве своём люди ошибаются. Опасность может притаиться не там, где её ожидают. Как пример можно взять старинные дорогие вещи. Часы могут значительно сократить жизнь. Особенно если в них в качестве светомассы используются соли радия-226.

Это касается и наручных часов со светящимся циферблатом. Если их создали в 50-е годы и они армейские, то можно гарантированно считать их радиоактивными. При контакте с телом они не представляют опасности, но иногда пытливые умы могут разобрать их, и вот тут их поджидает неприятный сюрприз.

Любителям стеклянной посуды стоит знать, что иногда в краске присутствует диоксид урана. Современная посуда с таким покрытием менее опасна. Любители старинных вещей могут притянуть в свою коллекцию много «интересных» предметов с использованием светомассы постоянного действия, поэтому необходимо поостеречься.

Оценка допустимой нормы в мирное и военное время

Норма радиации для человека в мкР/ч и дозы безопасного облучения рассчитаны с условиями политической жизни государства во время мира или войны. У разных государств - свои цифры.

Верхнее допустимое значение безопасного радиоактивного фона в Бразилии вообще составляет 100 мкР/ч, а в России эта цифра колеблется в районе 50-60 мкР/ч. Определяются нормы загрязнения радиоактивными веществами. Норма не должна превышать 30 мкР/ч.

В условиях ведения боевых действий загрязнённой считается территория с показаниями 0,5 рентген в час. Какая норма радиации для человека в мкр/ч в условиях войны прописана Министерством Обороны? Солдат остаётся в строю, если в расчёте на первые сутки облучение не превысило 50 рад, а за год 300 рад.

Опасны облучения в малых и больших дозах радиации. В первом случае может дойти до онкологии и генетических болезней, особое коварство которых проявится через несколько лет. Во втором случае - человек получает сразу острую лучевую болезнь. Она имеет 4 степени в зависимости от полученной в ходе нахождения в неблагоприятной зоне.

Крайне тяжёлая степень 600-1000 рад. У людей с ярко выраженными признаками присутствует апатия, вялость, от еды они отказываются. Могут наблюдаться кровотечения, и любая инфекция переносится крайне тяжело по причине ослабления иммунитета.

Влияние деятельности человека на радиационный фон планеты Земля

В древние времена деятельность человека не могла повлиять на радиационный фон Земли. При сжигании угля выделяются калий, уран-238 и торий. Благодаря этому археологи и находят древние поселения людей.

Но с развитием промышленности, человек перестал быть безобидным и незаметным для планеты. Он стал угрозой для её существования. Ядерное оружие способно вызвать непоправимые последствия в виде изменения климата. Погибнет всё живое, если человечество не остановится.

Исследование степени заражённости территории возле нефтепромыслов показало, что она возрастает. История знает крупные техногенные катастрофы (Фукусима, Чернобыль), которые нанесли непоправимый урон окружающей среде. И это только начало. Весь ужас трагедии, связанный со стронцием, ещё проявит себя. А на данный момент йод-131 и стронций-90, попадая в организм с едой, вызывают внутреннее облучение.

Эти печально знаменитые аварии коснулись всех - хоть и незаметно, но в этом и есть особое коварство радиации. Какая допустимая норма для человека в мкр/ч, в разных странах трактуется по-разному, в силу множества различных факторов. Но эти показатели могут очень легко измениться. За примерами далеко ходить не надо. Достаточно посмотреть на опыт Республики Беларусь.

Продукты, снижающие уровень радиации в организме

Сама природа позаботилась о том, чтобы человек естественным путем через пищу мог уменьшить воздействие радиации, это такие овощи, как лук, чеснок, морковь, все то, чем богаты огороды. Главное, чтобы они были «натуральными», а не ускоренного выращивания. Морская капуста, грецкие орехи компенсируют нехватку йода в организме человека. Хрен и горчица также не будут лишними продуктами на столе.

Существует ошибочное мнение, что крепкие спиртные напитки выводят радиацию из организма - это не так. Водка, красное вино практически не влияют на ее количество. Единственной оговоркой можно уточнить, что красное вино в небольших количествах можно применять в качестве профилактики, но не более того.

Заключение

Излучение было, есть и будет. Норма радиации для человека в мкР/ч прописана и подтверждена многими исследованиями. К сожалению, в последнее время человечество все чаще сталкивается с проблемами, связанными с радиоактивным загрязнением. Поэтому именно от людей зависит, какие последствия это все будет иметь в будущем.

Рентгенологическим видам обследования в медицине по-прежнему отводится ведущая роль. Иногда без данных невозможно подтвердить или поставить правильный диагноз. С каждым годом методики и рентгенотехника совершенствуются, усложняются, становятся более безопасными но, тем не менее, вред от излучения остается. Минимизация негативного влияния диагностического облучения – приоритетная задача рентгенологии.

Наша задача – на доступном любому человеку уровне разобраться в существующих цифрах доз излучения, единицах их измерения и точности. Также, коснемся темы реальности возможных проблем со здоровьем, которые может вызвать этот вид медицинской диагностики.

Рекомендуем прочитать:

Что такое рентгеновское излучение

Рентгеновское излучение представляет собой поток электромагнитных волн с длиной, находящейся в диапазоне между ультрафиолетовым и гамма-излучением. Каждый вид волн имеет свое специфическое влияние на организм человека.

По своей сути рентгеновское излучение является ионизирующим. Оно обладает высокой проникающей способностью. Энергия его представляет опасность для человека. Вредность излучения тем выше, чем больше получаемая доза.

О вреде воздействия рентгеновского излучения на организм человека

Проходя через ткани тела человека, рентгеновские лучи ионизирует их, изменяя структуру молекул, атомов, простым языком – «заряжая» их. Последствия полученного облучения могут проявиться в виде заболеваний у самого человека (соматические осложнения), или у его потомства (генетические болезни).

Каждый орган и ткань по-разному подвержены влиянию излучения. Поэтому созданы коэффициенты радиационного риска, ознакомиться с которыми можно на картинке. Чем больше значение коэффициента, тем выше восприимчивость ткани к действию радиации, а значит и опасность получения осложнения.

Наиболее подвержены воздействию радиации кроветворные органы – красный костный мозг.

Самое частое осложнение, появляющееся в ответ на облучение, – патологии крови.

У человека возникают:

  • обратимые изменения состава крови после незначительных величин облучения;
  • лейкемия – уменьшение количества лейкоцитов и изменение их структуры, приводящая к сбоям деятельности организма, его уязвимости, снижению иммунитета;
  • тромбоцитопения – уменьшение содержания тромбоцитов, клеток крови, отвечающих за свертываемость. Этот патологический процесс может вызывать кровотечения. Состояние усугубляется повреждением стенок сосудов;
  • гемолитические необратимые изменения в составе крови (распад эритроцитов и гемоглобина), в результате воздействия мощных доз радиации;
  • эритроцитопения – снижение содержания эритроцитов (красных кровяных клеток), вызывающее процесс гипоксии (кислородного голодания) в тканях.

Друг ие патологи и :

  • развитие злокачественных заболеваний;
  • преждевременное старение;
  • повреждение хрусталика глаза с развитием катаракты.

Важно : Опасным рентгеновское излучение становится в случае интенсивности и длительности воздействия. Медицинская аппаратура применяет низкоэнергетическое облучение малой длительности, поэтому при применении считается относительно безвредной, даже если обследование приходится повторять многократно.

Однократное облучение, которое получает пациент при обычной рентгенографии, повышает риск развития злокачественного процесса в будущем примерно на 0,001%.

Обратите внимание : в отличие от воздействия радиоактивных веществ, вредоносное действие лучей прекращается сразу же, после выключения аппарата.

Лучи не могут накапливаться и образовывать радиоактивные вещества, которые затем будут являться самостоятельными источниками излучения. Поэтому после рентгена не следует принимать никаких мер для «вывода» радиации из организма.

В каких единицах измеряются дозы полученной радиации

Человеку, далекому от медицины и рентгенологии, тяжело разобраться в обилии специфической терминологии, цифрах доз и единицах, в которых они измеряются. Попробуем привести информацию к понятному минимуму.

Итак, в чем же измеряется доза рентгеновского излучения? Единиц измерения радиации много. Мы не будет подробно разбирать все. Беккерель, кюри, рад, грэй, бэр – вот список основных величин радиации. Применяются они в разных системах измерения и областях радиологии. Остановимся только на практически значимых в рентгендиагностике.

Нас больше будут интересовать рентген и зиверт.

Характеристика уровня проникающей радиации, излучаемой рентгеновским аппаратом, измеряется в единице под названием «рентген» (Р).

Чтобы оценить действие радиации на человека, введено понятие эквивалентной поглощенной дозы (ЭПД). Помимо ЭПД существуют и другие виды доз – все они представлены в таблице.

Эквивалентная поглощенная доза (на картинке – Эффективная эквивалентная доза) представляет собой количественную величину энергии, которую поглощает организм, но при этом учитывается биологическая реакция тканей тела на излучение. Измеряется она в зивертах (Зв).

Зиверт приблизительно сопоставим с величиной 100 рентген.

Естественный фон облучения и дозы, выдаваемые медицинской рентгенаппаратурой, намного ниже этих значений, поэтому для их измерения используются величины тысячной доли (милли) или одной миллионной доли (микро) Зиверта и Рентгена.

В цифрах это выглядит так:

  • 1 зиверт (Зв) = 1000 миллизиверт (мЗв) = 1000000 микрозиверт (мкЗв)
  • 1 рентген (Р) = 1000 миллирентген (мР) = 1000000 миллирентген (мкР)

Чтобы оценить количественную часть излучения, получаемого за единицу времени (час, минуту, секунду) используют понятие – мощность дозы, измеряемую в Зв/ч (зиверт-час), мкзв/ч (микрозиверт-ч), Р/ч (рентген-час), мкр/ч (микрорентген-час). Аналогично – в минутах и секундах.

Можно еще проще:

  • общее излучение измеряется в рентгенах;
  • доза, получаемая человеком – в зивертах.

Дозы облучения, полученные в зивертах, накапливаются в течение всей жизни. Теперь попробуем выяснить, сколько же получает человек этих самых зивертов.

Естественный радиационный фон

Уровень естественной радиации везде свой, зависит он от следующих факторов:

  • высоты над уровнем моря (чем выше, тем жестче фон);
  • геологической структуры местности (почва, вода, горные породы);
  • внешних причин – материала здания, наличия рядом предприятий, дающих дополнительную лучевую нагрузку.

Обратите внимание: наиболее приемлемым считается фон, при котором уровень радиации не превышает 0,2 мкЗв/ч (микрозиверт-час), или 20 мкР/ч (микрорентген-час)

Верхней границей нормы считается величина до 0,5 мкЗв/ч = 50 мкР/ч.

В течение нескольких часов облучения допускается доза до 10 мкЗв/ч = 1мР/ч.

Все виды рентгенологических исследований вписываются в безопасные нормативы лучевых нагрузок, измеряемых в мЗв (миллизивертах).

Допустимые дозы облучения для человека, накопленные за жизнь не должны выходить за пределы 100-700 мЗв. Фактические значения облучения людей, проживающих в высокогорье, могут быть выше.

В среднем за год человек получает дозу равную 2-3 мЗв.

Она суммируется из следующих составляющих:

  • радиация солнца и космических излучений: 0,3 мЗв – 0,9 мЗв;
  • почвенно-ландшафтный фон: 0,25 – 0,6 мЗв;
  • излучение жилищных материалов и строений: 0,3 мЗв и выше;
  • воздух: 0,2 – 2 мЗв;
  • пища: от 0,02 мЗв;
  • вода: от 0,01 – 0,1 мЗв:

Помимо внешней получаемой дозы радиации, в организме человека накапливаются и собственные отложения радионуклидных соединений. Они также представляют источник ионизирующих излучений. К примеру, в костях этот уровень может достигать значений от 0,1 до 0,5 мЗв.


Кроме того, происходит облучение калием-40, скапливающимся в организме. И это значение достигает 0,1 – 0,2 мЗв.

Обратите внимание : для измерения радиационного фона можно пользоваться обычным дозиметром, например РАДЭКС РД1706, который дает показания в зивертах.

Вынужденные диагностические дозы рентген облучения

Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.

Важно : современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека.

Но все же попытаемся привести усредненные цифры доз, которые может получать пациент. Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:

  • цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
  • плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
  • рентгенография органов грудной полости: 0,15-0,4 мЗв.;
  • дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.

Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.

Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.

Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.

Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.

Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.

Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.

Процедура Эффективная доза облучения Сопоставимо с природным облучением, полученным за указанный промежуток времени
Рентгенография грудной клетки 0,1 мЗв 10 дней
Флюорография грудной клетки 0,3 мЗв 30 дней
Компьютерная томография органов брюшной полости и таза 10 мЗв 3 года
Компьютерная томография всего тела 10 мЗв 3 года
Внутривенная пиелография 3 мЗв 1 год
Рентгенография желудка и тонкого кишечника 8 мЗв 3 года
Рентгенография толстого кишечника 6 мЗв 2 года
Рентгенография позвоночника 1,5 мЗв 6 месяцев
Рентгенография костей рук или ног 0,001 мЗв менее 1 дня
Компьютерная томография – голова 2 мЗв 8 месяцев
Компьютерная томография – позвоночник 6 мЗв 2 года
Миелография 4 мЗв 16 месяцев
Компьютерная томография – органы грудной клетки 7 мЗв 2 года
Микционная цистоуретрография 5-10лет: 1,6 мЗв
Грудной ребенок: 0,8 мЗв
6 месяцев
3 месяца
Компьютерная томография – череп и околоносовые пазухи 0,6 мЗв 2 месяца
Денситометрия костей (определение плотности) 0,001 мЗв менее 1 дня
Галактография 0,7 мЗв 3 месяца
Гистеросальпингография 1 мЗв 4 месяца
Маммография 0,7 мЗв 3 месяца

Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности. Некоторые люди ошибочно причисляют этот метод к рентгеновским.

Поделиться: