Валентность химических элементов определяется числом связей. Постоянная и переменная валентность

Элемента;
> прогнозировать возможные значения валентности элемента, исходя из его размещения в периодической системе;
> определять значения валентности элементов в бинарных соединениях по их формулам;
> составлять формулы бинарных соединений, исходя из значений валентности элементов.


Значение валентности элемента при необходимости указывают в химической формуле римской цифрой над его символом: В математических расчетах и тексте для этого используют арабские цифры.

Определите валентность элементов в молекулах аммиака NH 3 и метана CH 4 .

Сведения о валентности элементов в веществе можно представить другим способом. Сначала записывают на определенном расстоянии друг от друга символы каждого атома, находящегося в молекуле. Затем одновалентный атом соединяют с другим одной черточкой, от двухвалентного атома проводят две черточки и т. д.:

Такие формулы называют графическими. Они показывают порядок соединения атомов в молекулах.

Молекула простого вещества водорода имеет графическую формулу H-H. Аналогичными являются графические формулы молекул фтора, хлора, брома, иода. Графическая формула молекулы кислорода 0=0, а молекулы азота .

Составляя такие формулы для молекул сложных веществ, следует иметь в виду, что атомы одного элемента, как правило, не соединены между собой.

Изобразите графические формулы молекул аммиака и метана.

Из графической формулы молекулы легко определить валентность каждого атома. Значение валентности равно количеству черточек, которые исходят от атома.

Для соединений ионного и атомного строения графические формулы не используют.

Валентность элемента и его размещение в периодической системе.

Некоторые элементы имеют постоянную валентность.

Это интересно

В начале XIX в. во взглядах на состав химических соединений господствовал
принцип «наибольшей простоты». Так, формулу воды записывали HO, а не H 2 O.

Гидроген и Флуор всегда одновалентны, а Оксиген - двухвалентен. Другие элементы с постоянной валентностью находятся в I-III группах периодической системы, причем значение валентности каждого элемента совпадает с номером группы. Так, элемент I группы Литий одновалентен, элемент II группы Магний двухвалентен, а элемент III группы Бор трехвалентен. Исключениями являются элементы I группы Купрум (значения валентности - I и 2) и Аурум (I и 3).

Большинство элементов имеют переменную валентность. Приводим ее значения для некоторых из них:

Плюмбум (IV группа) - 2,4;
Фосфор (V группа) - 3,5;
Хром (VI группа) - 2, 3, 6;
Сульфур (VI группа) - 2, 4, 6;
Манган (VII группа) - 2, 4, 6, 7;
Хлор (VII группа) - I, 3, 5, 7.

Из этих сведений вытекает важное правило: максимальное значение валентности элемента совпадает с номером группы, в которой он находится1. Поскольку в периодической системе восемь групп, то значения валентности элементов могут быть от I до 8.

Существует еще одно правило: значение валентности неметаллического элемента в соединении с Гидрогеном или с металлическим элементом равно 8 минус номер группы, в которой размещен элемент. Подтвердим его примерами соединений элементов с Гидрогеном. Элемент VII группы Иод в иодоводороде HI одновалентен (8-7=1), элемент VI группы Оксиген в воде H 2 O двухвалентен (8 - 6 = 2), элемент V группы Нитроген в аммиаке
NH3 трехвалентен (8 - 5 = 3).

Определение валентности элементов в бинарном соединении по его формуле.

Бинарным 2 называют соединение, образованное двумя элементами.

1 Существует несколько исключений.
2 Термин происходит от латинского слова binarius - двойной; состоящий из двух частей.

Это интересно

Формулы соединений, образованных тремя и более элементами, составляют иначе.

Выяснить значение валентности элемента в соединении нужно тогда, когда элемент имеет переменную валентность. Как выполняют такое задание , покажем на примере.

Найдем значение валентности Иода в его соединении с Оксигеном, которое имеет формулу I 2 O 5 .

Вы знаете, что Оксиген - двухвалентный элемент. Запишем значение его валентности над символом этого элемента в химической формуле соединения: . На 5 атомов Оксигена приходится 2 * 5 = 10 единиц валентности. Их нужно «распределить» между двумя атомами Иода (10: 2 = 5). Из этого следует, что Иод в соединении пятивалентен.

Формула соединения с обозначением валентности элементов -

Определите валентность элементов в соединениях с формулами CO 2 и Cl 2 O 7 .

Составление химических формул соединений по валентности элементов.

Выполним задание, противоположное предыдущему, - составим химическую формулу соединения Сульфура с Оксигеном, в котором Сульфур шестивалентен.

Сначала запишем символы элементов, образующих соединение, и укажем над ними значения валентности: . Затем находим наименьшее число, которое делится без остатка на оба значения валентности. Это число 6. Делим его на значение валентности каждого элемента и получаем соответствующие индексы в химической формуле соединения: .

Для проверки химической формулы используют правило: произведения значений валентности каждого элемента на количество его атомов в формуле одинаковы. Эти произведения для только что выведенной химической формулы: 6 -1 = 2-3.

Запомните, что в формулах соединений, в том числе бинарных, сначала записывают символы металлических элементов, а потом - неметаллических. Если соединение образовано только неметаллическими элементами и среди них есть Оксиген или Флуор, то эти элементы записывают последними.

Это интересно

Порядок записи элементов в формуле соединения Оксигена с Флуором такой: OF 2 .

Составьте химические формулы соединений Бора с Флуором и Оксигеном.

Причины соединения атомов друг с другом и объяснение значений валентности элементов связаны со строением атомов. Этот материал будет рассмотрен в 8 классе.

Выводы

Валентность - это способность атома соединяться с определенным количеством таких же или других атомов.

Существуют элементы с постоянной и переменной валентностью. Гидроген и Флуор всегда одновалентны, Оксиген - двухвалентен.

Значения валентности элементов отражают в графических формулах молекул соответствующим количеством черточек возле атомов.

Произведения значений валентности каждого элемента на количество его атомов в формуле бинарного соединения одинаковы.

?
75. Что такое валентность? Назовите максимальное и минимальное значения валентности химических элементов.

76. Укажите символы элементов, имеющих постоянную валентность: К, Ca, Cu, Cl, Zn, F, Н.

77. Определите валентность всех элементов в соединениях, которые имеют такие формулы:

78. Определите валентность элементов в соединениях с такими формулами:
a) BaH 2 , V 2 O 5 , MoS 3 , SiF 4 , Li 3 P; б) CuS, TiCI 4 , Ca 3 N 2 , P 2 O 3 , Mn 2 O 7 .

79. Составьте формулы соединений, образованных элементами с постоян­ной валентностью: Na...H..., Ba...F..., Al...О..., AI...F....

80. Составьте формулы соединений, используя указанные валентности некоторых элементов:

81. Напишите формулы соединений с Оксигеном таких элементов: а) Лития; б) Магния; в) Осмия (проявляет валентность 4 и 8).

82. Изобразите графические формулы молекул CI 2 O, PH 3 , SO 3 .

83. Определите валентность элементов по графическим формулам молекул:

На досуге

«Конструируем» молекулы


Рис. 45. Модель молекулы метана CH 4

По графическим формулам можно изготовлять модели молекул (рис. 45). Самым удобным материалом для этого является пластилин. Из него делают шарикиатомы (для атомов различных элементов используют пластилин разного цвета). Шарики соединяют с помощью спичек; каждая спичка заменяет одну черточку в графической формуле молекулы.

Изготовьте модели молекул H 2 , O 2 , H 2 O (имеет угловую форму), NH3 (имеет форму пирамиды), CO 2 (имеет линейную форму).

Часто люди слышат слово «валентность», не до конца понимая, что это такое. Так что такое валентность? Валентность - один из терминов, которые употребляются в химическом строении. Валентность, по сути, определяет возможность атома образовывать химические связи. Количественно валентность - это число связей, в которых участвует атом.

Что такое валентность элемента

Валентность - это показатель способности атома присоединить другие атомы, образовав с ними, внутри молекулы, химические связи. Число связей атома равно числу его неспаренных электронов. Эти связи называют ковалентными.

Неспаренный электрон - это свободный электрон на внешней оболочке атома, который соединяется в пары с внешним электроном иного атома. Каждая пара таких электронов называется «электронной», а каждый из электронов - валентным. Так определение слова «валентность» - это количество электронных пар, с помощью которых один атом связан с другим атомом.

Валентность схематично можно изобразить в структурных химических формулах. Когда это не нужно, используют простые формулы, где валентность не указана.

Максимальная валентность химических элементов из одной группы периодической системы Менделеева равна порядковому номеру этой группы. Атомы одного и того же элемента могут иметь разную валентность в разных химических соединениях. Полярность ковалентных связей, которые образуются, при этом не учитывается. Вот почему валентность не имеет знака. Также валентность не может быть отрицательной величиной и равняться нулю.

Иногда понятие «валентность» приравнивают к понятию «степень окисления», но это не так, хотя иногда эти показатели действительно совпадают. Степень окисления - это формальный термин, который обозначает возможный заряд, который бы атом получил, если его электронные пары перешли бы к более электрически отрицательным атомам. Тут степень окисления может иметь какой то знак и выражена в единицах заряда. Этот термин распространен в неорганической химии, ведь в неорганических соединениях тяжело судить о валентности. И, наоборот, в органической химии используют валентность, потому что молекулярное строение имеет большая часть органических соединений.

Теперь Вы знаете, что такое валентность химических элементов!

При рассмотрении химических элементов можно заметить, что количество атомов у одного и того же элемента в разных веществах разнится. Каким же образом правильно записать формулу и не ошибиться в индексе химического элемента? Это легко сделать, если иметь представление, что такое валентность.

Для чего нужна валентность?

Валентность химических элементов – это способность атомов элемента образовывать химические связи, то есть присоединять к себе другие атомы. Количественной мерой валентности является число связей, которые образует данный атом с другими атомами или атомными группами.

В настоящее время валентность представляет собой число ковалентных связей (в том числе возникших и по донорно-акцепторному механизму), которыми данный атом соединен с другими. При этом не учитывается полярность связей, а значит, валентность не имеет знака и не может быть равной нулю.

Ковалентная химическая связь – это связь, осуществляемая за счет образования общих (связывающих) электронных пар. Если между двумя атомами имеется одна общая электронная пара, то такая связь называется одинарной, если две – двойной, если три – тройной.

Как находить валентность?

Первый вопрос, который волнует учеников 8 класса, начавших изучать химию – как определить валентность химических элементов? Валентность химического элемента можно посмотреть в специальной таблице валентности химических элементов

Рис. 1. Таблица валентности химических элементов

Валентность водорода принята за единицу, так как атом водорода может образовывать с другими атомами одну связь. Валентность других элементов выражаем числом, которое показывает, сколько атомов водорода может присоединить к себе атом данного элемента. Например, валентность хлора в молекуле хлористого водорода равна единице. Следовательно формула хлористого водорода будет выглядеть так: HCl. Так как и у хлора и у водорода валентность равна единице, никакой индекс не используется. И хлор и водород являются одновалентными, так как одному атому водорода соответствует один атом хлора.

Рассмотрим другой пример: валентность углерода в метане равна четырем, валентность водорода – всегда единица. Следовательно, рядом с водородом следует поставить индекс 4. Таким образом формула метана выглядит так: CH 4 .

Очень многие элементы образуют соединения с кислородом. Кислород всегда является двухвалентным. Поэтому в формуле воды H 2 O, где встречаются всегда одновалентный водород и двухвалентный кислород, рядом с водородом ставится индекс 2. Это значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода.

Рис. 2. Графическая формула воды

Не все химические элементы имеют постоянную валентность, у некоторых она может изменяться в зависимости от соединений, где используется данный элемент. К элементам с постоянной валентностью относятся водород и кислород, к элементам с переменной валентностью относятся, например, железо, сера, углерод.

Как определить валентность по формуле?

Если у вас перед глазами нет таблицы валентности, но есть формула химического соединения, то возможно определение валентности по формуле. Возьмем для примера формулу оксид марганца – Mn 2 O 7

Рис. 3. Оксид марганца

Как известно, кислород является двухвалентным. Чтобы выяснить, какой валентностью обладает марганец, необходимо валентность кислорода умножить на число атомов газа в этом соединении:

Получившееся число делим на количество атомов марганца в соединении. Получается:

Средняя оценка: 4.5 . Всего получено оценок: 923.

Значения валентности по водороду и кислороду различаются. Например, сера в соединении H2S двухвалентна, а в формуле SO3 - шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO2. В первом соединении валентность C равна II, а во втором - IV. Такое же значение в метане CH4.- Читайте подробнее на FB.ru:

Большинство элементов проявляет не постоянную, а переменную валентность , например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.

Постоянная валентность. Эволюция понятия "валентность". Последовательность действий при определении валентности атомов элементов в соединениях, составление формулы. Из этих сведений вытекает важное правило: максимальное значение валентности элемента совпадает с номером группы, в которой он находится1. Поскольку в периодической системе восемь групп, то значения валентности элементов могут быть от I до 8.

Согласно той теории валентности, которую выдвигал Кекуле, для углерода принималась одна постоянная валентность , тогда как поведение многих других элементов, как, впрочем, и самого углерода, очевидным образом противоречило понятию о постоянной валентности. Например, электроотрицательные элементы, такие, как хлор и сера, соединяются с кислородом в различных пропорциях элементы электроположительные, такие, как железо, дают несколько окислов. Логика требовали принять, что один и тот же элемент, смотря по обстоятельствам, может проявлять различные степени валентности. Как следствие из наблюдавшихся фактов и еще более из закона кратных отношений возникает понятие о многовалентности или переменной валентности. Все н<е, как заметил Эрлен-мейер следует полагать, что каждый элемент обладает максимальной валентностью , ему свойственной и. для него характерной, но которую он не всегда может проявить. Хотя на первый взгляд это предположение вполне приемлемо, не обошлось без серьезных возражений в самом деле, поскольку максимальная валентность есть характеристическое свойство атома, то соединения, в которых реализуется этот максимум, должны бы быть более устойчивыми. Максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома. Понятие валентности тесно связано с Периодическим законом Менделеева. Если внимательно посмотреть на таблицу Менделеева, можно заметить: положение элемента в периодической системе и его валентность нерарывно связаны.


Валентность - II (минимальная ) Валентность – IV (высшая) Высшая (максимальная ) валентность в большинстве своем совпадает с номером группы химического элемента.

Схема образования химической связи: перекрывание внешних атомных орбиталей взаимодействующих атомов. Порядок связи. Простые и кратные связи. Би и пи- связи – разновидности неполярных и полярных химических связей.

Основные положения метода валентных связей. 1.Ковалентную химическую связь образуют два электрона с противоположными спинами, принадлежащие двум атомам. Например, при сближении двух атомов водорода происходит частичное перекрывание их электронных орбиталей и образуется общая пара электронов H× + × H = H: H

Ковалентная связь может быть образована и по донорно-акцепторному механизму. Механизм образования ковалентной связи за счёт электронной пары одного атома (донора) и другого атома (акцептора), предоставляющего для этой пары свободную орбиталь, называется донорно-акцепторным.

В качестве примера возьмём механизм образования иона аммония NH4+. В молекуле NH3 три поделённые электронные пары образуют три связи N- H, четвёртая пара внешних электронов является не поделённой, она может дать связь с ионом водорода, в результате получается ион аммония NH4+ . Ион NH4+ имеет четыре ковалентных связи, причем все четыре связи N-H равноценны, то есть электронная плотность равномерно распределена между ними.

2. При образовании ковалентной химической связи происходит перекрывание волновых функций электронов (электронных орбиталей), при этом связь будет тем прочнее, чем больше это перекрывание.

3. Ковалентная химическая связь располагается в том направлении, в котором возможность перекрывания волновых функций электронов, образующих связь будет наибольшей.

4. Валентность атома в нормальном (невозбужденном) состоянии определяется:

Числом неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов;

Наличием донорной способности (за счёт одной неподелённой электронной пары).

В возбужденном состоянии валентность атома определяется:

Числом неспаренных электронов;

Числом вакантных орбиталей, способных акцептировать электронные пары доноров.

Таким образом, валентность выражается небольшими целыми числами и не имеет знака. Мерой валентности является число химических связей, которыми данный атом соединён с другими.

К валентным относятся прежде всего электроны внешних уровней, но для элементов побочных подгрупп к ним относятся и электроны предпоследних (предвнешних) уровней.

», «препарат ». Использование в рамках современного определения зафиксировано в 1884 году (нем. Valenz ). В 1789 году Уильям Хиггинс опубликовал работу, в которой высказал предположение о существовании связей между мельчайшими частицами вещества.

Однако точное и позже полностью подтверждённое понимание феномена валентности было предложено в 1852 году химиком Эдуардом Франклендом в работе, в которой он собрал и переосмыслил все существовавшие на тот момент теории и предположения на этот счёт. . Наблюдая способность к насыщению разных металлов и сравнивая состав органических производных металлов с составом неорганических соединений, Франкленд ввёл понятие о «соединительной силе », положив этим основание учению о валентности. Хотя Франкленд и установил некоторые частные закономерности, его идеи не получили развития.

Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле . В 1857 г. он показал, что углерод является четырёхосновным (четырёхатомным) элементом, и его простейшим соединением является метан СН 4 . Уверенный в истинности своих представлений о валентности атомов, Кекуле ввёл их в свой учебник органической химии: основность, по мнению автора - фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и атомный вес . В 1858 г. взгляды, почти совпадающие с идеями Кекуле, высказал в статье «О новой химической теории » Арчибальд Скотт Купер .

Уже три года спустя, в сентябре 1861 г. А. М. Бутлеров внёс в теорию валентности важнейшие дополнения. Он провёл чёткое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму ». Бутлеров ввёл представление о полноте использования сил сродства и о «напряжении сродства », то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы в зависимости от их структурного окружения приобретают различное «химическое значение ». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.

Огромным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х гг. появились первые молекулярные модели. Уже в 1864 г. А. Браун предложил использовать структурные формулы в виде окружностей с помещёнными в них символами элементов, соединённых линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 г. А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары. В 1866 г. в учебнике Кекуле появились рисунки стереохимических моделей , в которых атом углерода имел тетраэдрическую конфигурацию.

Современные представления о валентности

С момента возникновения теории химической связи понятие «валентность» претерпело существенную эволюцию. В настоящее время оно не имеет строгого научного толкования, поэтому практически полностью вытеснено из научной лексики и используется, преимущественно, в методических целях.

В основном, под валентностью химических элементов понимается способность свободных его атомов к образованию определённого числа ковалентных связей . В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся двухэлектронных двухцентровых связей. Именно такой подход принят в теории локализованных валентных связей , предложенной в 1927 году В. Гайтлером и Ф. Лондоном в 1927 г. Очевидно, что если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами . При оценке максимальной валентности следует исходить из электронной конфигурации гипотетического, т. н. «возбуждённого» (валентного) состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 - и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, с валентностью отождествляются такие характеристики молекулярной системы как степень окисления элемента, эффективный заряд на атоме, координационное число атома и т. д. Эти характеристики могут быть близки и даже совпадать количественно, но ни коим образом не тождественны друг другу . Например, в изоэлектронных молекулах азота N 2 , монооксида углерода CO и цианид-ионе CN - реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления элементов равна, соответственно, 0, +2, −2, +2 и −3. В молекуле этана (см. рис.) углерод четырёхвалентен, как и в большинстве органических соединений, тогда как степень окисления формально равна −3.

Особенно это справедливо для молекул с делокализованными химическими связями, например в азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4. Известное из многих школьных учебников правило - «Максимальная валентность элемента численно равна номеру группы в Периодической таблице» - относится исключительно к степени окисления. Понятия «постоянной валентности» и «переменной валентности» также преимущественно относятся к степени окисления.

См. также

Примечания

Ссылки

  • Угай Я. А. Валентность, химическая связь и степень окисления - важнейшие понятия химии // Соросовский образовательный журнал . - 1997. - № 3. - С. 53-57.
  • / Левченков С. И. Краткий очерк истории химии

Литература

  • Л. Паулинг Природа химической связи. М., Л.: Гос. НТИ хим. литературы, 1947.
  • Картмелл, Фоулс. Валентность и строение молекул. М.: Химия, 1979. 360 с.]
  • Коулсон Ч. Валентность. М.: Мир, 1965.
  • Маррел Дж., Кеттл С., Теддер Дж. Теория валентности. Пер. с англ. М.: Мир. 1968.
  • Развитие учения о валентности. Под ред. Кузнецова В. И. М.: Химия, 1977. 248с.
  • Валентность атомов в молекулах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - С. 126.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Валентность" в других словарях:

    ВАЛЕНТНОСТЬ, мера «соединительной способности» химического элемента, равная числу индивидуальных ХИМИЧЕСКИХ СВЯЗЕЙ, которые может образовать один АТОМ. Валентность атома определяется числом ЭЛЕКТРОНОВ на самом верхнем (валентном) уровне (внешней… … Научно-технический энциклопедический словарь

    ВАЛЕНТНОСТЬ - (от лат. valere иметь значение), или атомность, число атомов водорода или эквивалентных ему атомов или радикалов, к рое может присоединить данный атом или радикал. В. является одной из основ распределения элементов в периодической системе Д. И.… … Большая медицинская энциклопедия

    Валентность - * валентнасць * valence термин происходит от лат. имеющий силу. 1. В химии это способность атомов химических элементов образовывать определенное число химических связей с атомами др. элементов. В свете строения атома В. это способность атомов… … Генетика. Энциклопедический словарь

    - (от лат. valentia сила) в физике число, показывающее, со сколькими атомами водорода может соединяться данный атом или замещать их. В психологии валентность есть идущее из Англии обозначение для побуждающей способности. Философский… … Философская энциклопедия

    Атомность Словарь русских синонимов. валентность сущ., кол во синонимов: 1 атомность (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    ВАЛЕНТНОСТЬ - (от лат. valentia – крепкий, прочный, влиятельный). Способность слова к грамматическому сочетанию с другими словами в предложении (например, у глаголов валентность определяет способность сочетаться с подлежащим, прямым или косвенным дополнением) … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    - (от латинского valentia сила), способность атома химического элемента присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи … Современная энциклопедия

    - (от лат. valentia сила) способность атома химического элемента (или атомной группы) образовывать определенное число химических связей с другими атомами (или атомными группами). Вместо валентности часто пользуются более узкими понятиями, напр.… … Большой Энциклопедический словарь

Поделиться: