Система уравнений Максвелла для электромагнитного поля: смысл, способы решения. Уравнения максвелла и волновое уравнение для электромагнитной волны в вакууме

Уравнения Максвелла и волновое уравнение

Электромагнитные волны

В процессе распространения механической волны в упругой среде в колебательное движение вовлекаются частицы среды. Причиной этого процесса является наличие взаимодействия между молекулами.

Помимо упругих волн в природе существует волновой процесс иной природы. Речь идет об электромагнитных волнах, представляющих собой процесс распространения колебаний электромагнитного поля. По существу мы живем в мире ЭМВ. Их диапазон невероятно широк – это радиоволны, инфракрасное излучение, ультрафиолетовое, рентгеновское излучения, γ – лучи. Особое место в этом многообразии занимает видимая часть диапазона – свет. Именно с помощью этих волн мы получаем подавляющее количество информации об окружающем мире.

Что такое электромагнитная волна? Какова ее природа, механизм распространения, свойства? Существуют ли общие закономерности, характерные как для упругих, так и для электромагнитных волн?

Уравнения Максвелла и волновое уравнение

Электромагнитные волны интересны тем, что первоначально они были «открыты» Максвеллом на бумаге. Основываясь на предложенной им системе уравнений, Максвелл показал, что электрическое и магнитное поля могут существовать в отсутствие зарядов и токов, распространяясь в виде волны со скоростью 3∙10 8 м/с. Спустя почти 40 лет предсказанный Максвеллом материальный объект – ЭМВ – был обнаружен Герцем экспериментально.

Уравнения Максвелла являются постулатами электродинамики, сформулированными на основе анализа опытных фактов. Уравнения устанавливают связь между зарядами, токами и полями – электрическим и магнитным. Обратимся к двум уравнениям.

1. Циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру l пропорциональна скорости изменения магнитного потока через поверхность, натянутую на контур (это закон электромагнитной индукции Фарадея):

(1)

Физический смысл этого уравнения – меняющееся магнитное поле порождает электрическое поле .

2. Циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру l пропорциональна скорости изменения потока вектора электрической индукции через поверхность, натянутую на контур:

Физический смысл этого уравнения – магнитное поле порождаетcя токами и меняющимся электрическим полем .

Даже без каких-либо математических преобразований этих уравнений понятно: если в какой-то точке меняется электрическое поле, то в соответствии с (2) возникает магнитное поле. Это магнитное поле, изменяясь, порождает в соответствие с (1) электрическое поле. Поля взаимно индуцируют друг друга, они уже не связаны с зарядами и токами!

Более того, процесс взаимного индуцирования полей будет распространяться в пространстве с конечной скоростью, то есть возникает электромагнитная волна. Для того, чтобы доказать факт существования в системе волнового процесса, в котором колеблется величина S, необходимо получить волновое уравнение

Рассмотрим однородный диэлектрик с диэлектрической проницаемостью ε и магнитной проницаемостью μ. Пусть в этой среде существуют магнитное поле . Для простоты будем полагать, что вектор напряженности магнитного поля располагается вдоль оси ОY и зависит только от координаты z и времени t: .

Записываем уравнения (1) и (2) с учетом связи между характеристиками полей в однородной изотропной среде: и :

Найдем поток вектора через прямоугольную площадку KLMN и циркуляцию вектора по прямоугольному контуру KLPQ (KL = dz, LP= KQ = b , LM = KN = a )

Очевидно, что поток вектора через площадку KLMN и циркуляция по контуру KLPQ отличны от нуля. Тогда циркуляция вектора по контуру KLMN и поток вектора через поверхность KLPQ тоже отличны от нуля. Такое возможно только при условии, что при изменении магнитного поля возникло электрическое поле , направленное вдоль оси ОX.

Вывод 1: При изменении магнитного поля возникает электрическое поле, напряженность которого перпендикулярна индукции магнитного поля .

С учетом сказанного система уравнений перепишется

После преобразований получаем:

В электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм .

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Современный вид первого уравнения Максвелла таков:

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро » – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса .

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса , только уже не для электрического поля, но для магнитного.

Оно имеет вид:

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея . Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения .

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис . Подробное объяснение любого задания и отличная оценка гарантированы.

Теперь стоило бы заняться немного математикой; мы запишем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.

Начнем с - простейшего из уравнений. Мы знаем, что оно подразумевает, что - есть ротор чего-то. Поэтому, если вы записали

то считайте, что уже решили одно из уравнений Максвелла. (Между прочим, заметьте, что оно остается верно для другого вектора , если , где - любое скалярное поле, потому что ротор - нуль и - по-прежнему то же самое. Мы говорили об этом раньше.)

Теперь разберем закон Фарадея , потому что он не содержит никаких токов или зарядов. Если мы запишем как и продифференцируем по , то сможем переписать закон Фарадея в форме

.

Поскольку мы можем дифференцировать сначала либо по времени, либо по координатам, то можно написать это уравнение также в виде

. (18.17)

Мы видим, что - это вектор, ротор которого равен нулю. Поэтому такой вектор есть градиент чего-то. Когда мы занимались электростатикой, у нас было , и мы тогда решили, что - само градиент чего-то. Пусть это градиент от (минус для технических удобств). То же самое сделаем и для ; мы полагаем

. (18.18)

Мы используем то же обозначение , так что в электростатическом случае, когда ничто не меняется со временем и исчезает, будет нашим старым . Итак, закон Фарадея можно представить в форме

. (18.19)

Мы уже решили два из уравнений Максвелла и нашли, что для описания электромагнитных полей и нужны четыре потенциальные функции: скалярный потенциал и векторный потенциал , который, разумеется, представляет три функции.

Итак, определяет часть , так же как и . Что же произойдет, когда мы заменим на ? В общем, должно было бы измениться, если не принять особых мер. Мы можем, однако, допустить, что изменяется так, чтобы не влиять на поля и (т. е. не меняя физики), если будем всегда изменять и вместе по правилам

. (18.20)

Тогда ни , ни , полученные из уравнения (18.19), не меняются.

Раньше мы выбирали , чтобы как-то упростить уравнения статики. Теперь мы не собираемся так поступать; мы хотим сделать другой выбор. Но подождите немного, прежде чем мы скажем, какой это выбор, потому что позднее станет ясно, почему вообще делается выбор.

Сейчас мы вернемся к двум оставшимся уравнениям Максвелла, которые свяжут потенциалы и источники и . Раз мы можем определить и из токов и зарядов, то можно всегда получить и из уравнений (18.16) и (18.19) и мы будем иметь другую форму уравнений Максвелла.

Начнем с подстановки уравнения (18.19) в ; получаем

;

это можно записать еще в виде

. (18.21)

Таково первое уравнение, связывающее и с источниками.

Наше последнее уравнение будет самым трудным. Мы начнем с того, что перепишем четвертое уравнение Максвелла:

,

а затем выразим и через потенциалы, используя уравнения (18.16) и (18.19):

.

Первый член можно переписать, используя алгебраическое тождество ; мы получаем

. (18.22)

Не очень-то оно простое!

К счастью, теперь мы можем использовать нашу свободу в произвольном выборе дивергенции . Сейчас мы собираемся сделать такой выбор, чтобы уравнения для и для разделились, но имели одну и ту же форму. Мы можем сделать это, выбирая

. (18.23)

Когда мы поступаем так, то второе и третье слагаемые в уравнении (18.22) погашаются, и оно становится много проще:

. (18.24)

И наше уравнение (18.21) для принимает такую же форму:

. (18.25)

Какие красивые уравнения! Они великолепны прежде всего потому, что хорошо разделились - с плотностью заряда стоит , а с током стоит . Далее, хотя левая сторона выглядит немного нелепо - лапласиан вместе с , когда мы раскроем ее, то обнаружим

. (18.26)

Это уравнение имеет приятную симметрию по , , , ; здесь нужно, конечно, потому, что время и координаты различаются; у них разные единицы.

Уравнения Максвелла привели нас к нового типа уравнению для потенциалов и , но с одной и той же математической формой для всех четырех функций , , и . Раз мы научились решать эти уравнения, то можем получить и из и . Мы приходим к другой форме электромагнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще. и

В технике СВЧ интерес представляет в основном поля, изменяющиеся во времени по гармоническому закону (т.е. носят синусоидальный характер).

Пользуясь комплексным методом, запишем векторы электрического и магнитного полей:

,
, (33)

где – круговая частота
.

Подставим эти выражения в I и II – е уравнения Максвелла

,
.

После дифференцирования имеем:

, (34)

. (35)

Уравнение (34) можно преобразовать к виду:

,

где
– комплексная относительная диэлектрическая проницаемость с учётом потерь в среде.

Отношение мнимой части комплексной относительной диэлектрической проницаемости к действительной представляет тангенс угла диэлектрических потерь
. Таким образом уравнения Максвелла для гармонических колебаний при отсутствии свободных зарядов
имеют вид:

,(36)

, (37)

, (38)

. (39)

В таком виде уравнения Максвелла неудобны и их преобразуют.

Уравнения Максвелла легко сводятся к волновым уравнениям, в которые входит только один из векторов поля. Определяя
из (37) и подставляя его в (36), получаем:

раскроем левую часть используя формулу III:

Введём обозначения
,тогда с учётом
, получим:

. (40)

Такое же уравнение можно получить относительно

. (41)

Уравнения (40) – (41) получили название уранений Гельмгольца. Они описывают распространение волн в пространстве и являются доказательством того, что изменение во времени электрического и магнитного полей приводит к распространению электромагнитных волн в пространстве.

Эти уравнения справедливы для любой системы координат. При использовании прямоугольной системы координат будем иметь:

, (42)

, (43)

где
– едичничные векторы

Если подставить соотношение (42) и (43) в уравнения (40) и (41), то последние распадаются на шесть независимых уравнений:

,
,

, (44)
, (45)

,
,

где
.

В общем случае в прямоугольной ситеме координат для нахождения составляющих поля необходимо решить одно линейное дифференциальное уравнение второго порядка

,

где – одна из составляющих поля, т.е.
. Общее решение этого уравнения имеет вид

, (46)

где
– функция распределения поля в плоскости фронта волны не зависящая от.

Энергетические соотношения в электромагнитном поле. Теорема Умова-Пойнтинга

Одной из важнейших характеристик электромагнитного поля является его энергия. Впервые вопрос об энергии электромагнитного поля был рассмотрен Максвеллом, который показал, что полная энергия поля, заключённого внутри объёма , складывается из энергии электрического поля:

, (47)

и энергии магнитного поля:

. (48)

Таким образом, полная энергия электромагнитного поля равна:

. (49)

В 1874г. проф. Н. А. Умов ввел понятие о потоке энергии, а в 1880г. это понятие было применено Пойнтингом к исследованию электромагнитных волн. Процесс излучения в электродинамике принято характеризовать, определяя в каждой точке пространства вектор Умова-Пойнтинга.

Физически правильные результаты, согласующиеся как с законом сохранения энергии, так и с уравнениями Максвелла, получается в том случае, если выразить вектор Умова-Пойнтинга через мгновенные значения
и
следующим образом:

.

Возьмём первое и второе уравнения Максвелла и умножим первое на , а второе на
и сложим:

,

где .

Таким образом, уравнение (50) можно записать в виде

,

интегрируя по объему и меняя знаки, имеем:

Перейдем от интеграла по объему к интегралу по поверхности

,

или с учетом
получим:

, то
,
,

. (51)

Полученное уравнение выражает закон сохранения энергии в электромагнитном поле (теорему Умова-Пойнтинга.). Левая часть уравнения представляет собой скорость изменения во времени полного запаса энергии электромагнитного поля в рассмотренном объеме
. Первый член правой части есть количество тепла, выделяющегося в проводящих частях объёмаза единицу времени. Второе слагаемое представляет поток вектора Умова-Пойнтинга через поверхность, ограничивающую объем.Вектор
есть плотность потока энергии электромагнитного поля.
Т.к.
, то направление вектора
можно определить по правилу векторного произведения /правилу буравчика/ (рис. 9). В системеСИ вектор
имеет размерность
.

Рисунок 9 – К определению вектора Умова-Пойнтинга

Группой дифференциальных уравнений. Дифференциальные уравнения, которым должен удовлетворять каждый из векторов поля отдельно, можно получить исключением остальных векторов. Для области поля, которая не содержит свободных зарядов и токов ($\overrightarrow{j}=0,\ \rho =0$) уравнения для векторов $\overrightarrow{B}$ и $\overrightarrow{E}$ имеют вид:

Уравнения (1) и (2) - это обычные уравнения волнового движения, которые обозначают, что световые волны распространяются в среде со скоростью ($v$) равной:

Примечание 1

Надо заметить, что понятие скорости электромагнитной волны имеет определенный смысл лишь в связи с волнами простого вида, например плоскими. Скорость $v$ не является скоростью распространения волны в случае произвольного решения уравнений (1) и (2), так как эти уравнения допускают решения в виде стоячих волн.

В любой волновой теории света элементарным процессом считают гармоническую волну в пространстве и времени. Если частота этой волны лежит в интервале $4\cdot {10}^{-14}\frac{1}{c}\le \nu \le 7,5\cdot {10}^{-14}\frac{1}{c}$, такая волна вызывает у человека физиологическое ощущение определенного цвета.

Для прозрачных веществ диэлектрическая проницаемость $\varepsilon $ обычно больше единицы, магнитная проницаемость среды $\mu $ почти равна единице, получается, в соответствии с уравнением (3) скорость $v$ меньше скорости света в вакууме. Что было впервые экспериментально показано для случая распространения света в воде учеными Фуко и Физо .

Обычно определяют не саму величину скорости ($v$), а отношение $\frac{v}{c}$, для чего пользуются законом преломления . В соответствии с данным законом при падении плоской электромагнитной волны на плоскую границу, которая разделяет две однородные среды, отношение синуса угла ${\theta }_1$ падения к синусу угла преломления ${\theta }_2$ (рис.1) постоянно и равно отношению скоростей распространения волн в двух средах ($v_1\ и{\ v}_2$):

Значение постоянного отношения выражения (4) обычно обозначают как $n_{12}$. Говорят, что $n_{12}$ -- относительный показатель преломления второго вещества по отношению к первому, который испытывает волновой фронт (волна) при прохождении из первой среды во вторую.

Рисунок 1.

Определение 1

Абсолютным показателем преломления (просто показателем преломления) среды $n$ называют показатель преломления вещества по отношению к вакууму:

Вещество, имеющее больший показатель преломления является оптически более плотным. Относительный показатель преломления двух веществ ($n_{12}$) связан с их абсолютными показателями ($n_1,n_2$) как:

Формула Максвелла

Определение 2

Максвелл получил, что показатель преломления среды зависит от ее диэлектрических и магнитных свойств. Если в формулу(5) подставить выражение для скорости распространения света из уравнения (3), то мы получим:

\ \

Выражение (7) называется формулой Максвелла . Для большинства немагнитных прозрачных веществ, которые рассматриваются в оптике магнитная проницаемость вещества приблизительно можно считать равной единице, поэтому часто равенство (7) применяют в виде:

Часто предполагается, что $\varepsilon $ является постоянной величиной. Однако нам хорошо известны опыты Ньютона с призмой по разложению света, в результате этих экспериментов становится очевидным, что показатель преломления зависит от частоты света. Следовательно, если считать, что формула Максвелла справедлива, то следует признать, что диэлектрическая проницаемость вещества зависит от частоты поля. Связь $\varepsilon $ с частотой поля можно объяснить только в том случае, если принять во внимание атомное строение вещества.

Однако надо сказать, что формула Максвелла с постоянной диэлектрической проницаемостью вещества, в некоторых случаях может быть использована как хорошее приближение. Примером могут служить газы с простой химической структурой, в которых нет существенной дисперсии света, что означает, слабую зависимость оптических свойств от цвета. Формула (8), также хорошо работает для жидких углеводородов. С другой стороны, у большинства твердых тел, например у стекол, и большой части жидкостей наблюдается сильное отклонение от формулы (8), если считать $\varepsilon $ постоянной.

Пример 1

Задание: Какова концентрация свободных электронов в ионосфере, если известно, что для радиоволн с частотой $\nu$ показатель ее преломления равен $n$.

Решение:

За основу решения задачи возьмем формулу Максвелла:

\[\varepsilon =1+\varkappa =1+\frac{P}{{\varepsilon }_0E}\left(1.2\right),\]

где $\varkappa $ -- диэлектрическая восприимчивость, P - мгновенное значение поляризованности. Из (1.1) и (1.2) следует, что:

В том случае, если концентрация атомов в ионосфере равна $n_0,$ то мгновенное значение поляризованности равно:

Из выражений (1.3) и (1.4) имеем:

где $\omega $ -- циклическая частота. Уравнение вынужденных колебаний электрона без учета силы сопротивления можно записать как:

\[\ddot{x}+{{\omega }_0}^2x=\frac{q_eE_0}{m_e}cos\omega t\left(1.7\right),\]

где $m_e$ -- масса электрона, $q_e$ -- заряд электрона. Решением уравнения (1.7) служит выражение:

\ \

Нам известна частота радиоволн, следовательно, можно найти циклическую частоту:

\[\omega =2\pi \nu \left(1.10\right).\]

Подставим в (1.5) правую часть выражения (1.9) вместо $x_{max}$ и используем (1.10), получим:

Ответ: $n_0=\frac{E_0m_e4\pi ^2\nu ^2}{{q_e}^2}\left(1-n^2\right).$

Пример 2

Задание: Объясните, почему формула Максвелла противоречит некоторым экспериментальным данным.

Решение:

Из классической электромагнитной теории Максвелла следует, что показатель преломления среды можно выразить как:

где в оптической области спектра для большинства веществ можно считать, что $\mu \approx 1$. Получается, что показатель преломления для вещества должен быть постоянной величиной, так как $\varepsilon $ -- диэлектрическая проницаемость среды постоянна. Тогда как эксперимент показывает, что показатель преломления зависит от частоты. Трудности, которые возникли перед теорией Максвелла в данном вопросе, устраняет электронная теория Лоренца. Лоренц рассматривал дисперсию света как результат взаимодействия электромагнитных волн с заряженными частицами, которые входят в состав вещества и совершают вынужденные колебания в переменном электромагнитном поле волны света. Используя свою гипотезу, Лоренц получил формулу, связывающую показатель преломления с частотой электромагнитной волны (см. пример 1).

Ответ: Проблема теории Максвелла в том, что она является макроскопической и не рассматривает структуру вещества.

Поделиться: