Структура и функции белков. Каталитическая функция белков: примеры

Белки представляют собой природные органические соединения, которые обладают высокомолекулярным строением. Молекула данных веществ является неразветвляющимся полимером. Белки построены из Именно они представляют структурную минимальную единицу молекулы - мономер. Все составляющие белка соединены между собой полипептидной, по-другому - карбамидной, связью в достаточно длинные цепи. При этом молекулярная масса может составлять от нескольких тысяч и до миллионов атомных частиц.

Каким может быть белок

Чтобы определить основные функции белка, стоит разобраться в строении подобных веществ. На данный момент существует две разновидности этого важного для человека компонента: фибриллярные и глобулярные. Различают их в основном благодаря разнице в молекулы.

Глобулярное вещество прекрасно растворяется не только в воде, но и в солевых растворах. При этом молекула такого белка обладает шарообразной формой. Такую хорошую растворимость можно легко объяснить расположением заряженных остатков аминокислот, которые окружены гидратной оболочкой, на поверхности глобулы. Именно это и обеспечивает такие хорошие контакты с различными растворителями. Стоит отметить, что в группу глобулярных компонентов входят все ферменты, а также практически все биологически активные белки.

Что касается фибриллярных веществ, то их молекулы обладают волокнистой структурой. Каталитическая функция белков очень важна. Поэтому сложно представить ее выполнение без вспомогательных веществ. Фибриллярные белки не растворяются ни в солевых растворах, ни в обычной воде. Их молекулы располагаются параллельно в полипептидных цепях. Такие вещества участвуют в процессах образования некоторых структурных элементов соединительных тканей. Это эластины, кератины, коллагены.

Особую группу составляют которые состоят не только из аминокислот, но и нуклеиновых кислот, углеводов и прочих веществ. Все эти компоненты играют особую роль. Особое значение имеет каталитическая функция белков. Помимо этого, вещества подобного плана являются дыхательными пигментами, гормонами, а также надежной защитой для любого организма. Биосинтез белка осуществляется на рибосомах. Этот процесс определяется при трансляции кодом нуклеиновых кислот.

Каталитическая функция белков

Катализ разнообразных химических веществ - это самая главная функция белков. Подобные процессы осуществляются ферментами. Это белки, которые обладают каталитическими специфическими свойствами. Каждый из подобных веществ может осуществлять одну или же несколько похожих реакций. Катализируют ферменты процесс расщепления сложных молекул, а также их синтез. По-другому эти реакции называют катаболизмом и анаболизмом. Каталитическая функция белков подразумевает также репарацию и а также матричный синтез РНК.

Что такое катализ

Уже к 2013 году учеными было выявлено чуть более 5 тысяч ферментов. Подобные вещества способны влиять на ход практически любых биохимических реакций. Чтобы стала более понятной каталитическая функция белков, стоит разобраться, что же такое катализ. С греческого языка это понятие переводится как "прекращение". Катализ представляет собой изменение скорости протекания любой химической реакции. Происходит это под действием определенных соединений. Ферментами выполняется каталитическая функция белков. Примеры этого явления встречаются в повседневной жизни постоянно. Просто человек этого не замечает.

Пример каталитической функции

Чтобы понять, как действуют ферменты, стоит рассмотреть несколько примеров. Итак, в чем заключается каталитическая функция белков. Примеры:

  1. При фотосинтезе рибулезобифосфаткарбоксилаза осуществляет катализ фиксации СО 2 .
  2. Перекись водорода расщепляется до кислорода и воды.
  3. ДНК синтезирует ДНК-полимераза.
  4. Амилаза способна расщепляет до мальтозы крахмал.
  5. Деградация угольной кислоты: СО 2 + Н 2 О НСО 3 + Н + .

Каталитическая функция белков заключается в ускорении любых химических превращений. К подобным реакциям относится синтез, распад веществ, перенос отдельных атомов или электронов от одного компонента к другому.

Транспортная функция

Жизнедеятельность любой клетки должна поддерживаться различными веществами, которые являются для них не только строительным материалом, но и своеобразной энергией. Биологические функции белков включают и транспортную. Именно эти компоненты поставляют в клетки все важные вещества, ведь мембраны построены из нескольких слоев липидов. Именно здесь и находятся различные белки. При этом гидрофильные участки все сосредоточены на поверхности, а хвостики - в толще мембран. Такое строение не позволяет проникать внутрь клеток очень важным веществам - ионам щелочных металлов, аминокислотам и сахарам. Белки переносят все эти компоненты внутрь клеток для их питания. Например, гемоглобин транспортирует кислород.

Рецепторная

Основные функции белка обеспечивают не только питание клеток живых организмов, но и помогают распознать сигналы, которые поступают из внешней среды и соседних клеток. Самый яркий пример такого явления - рецепторы ацетилхолина, который расположен на мембране около межнейронных контактов. Сам процесс очень важен. Белки выполняют рецепторную функцию, их взаимодействие с ацетилхолином проявляется специфическим образом. В результате внутрь клетки передается сигнал. Однако спустя некоторое время нейромедиатор обязательно должен быть удален. Только в этом случае клетка сможет получить новый сигнал. Именно эту функцию выполняет один из ферментов - ацетилхолтнэстераза, который выполняет расщепление до холина и ацетата гидролизацетилхолина.

Защитная

Любого живого существа способна отвечать на появление в организме чужеродных частиц. В данном случае срабатывает защитная функция белка. В организме происходит выработка большого количества лимфоцитов, которые способны наносить вред макромолекулам, раковым клеткам и прочее. Одна из групп данных веществ осуществляет выработку особых белков - иммуноглобулинов. Происходит выделение данных веществ в кровеносную систему. Иммуноглобулины распознают чужеродные частицы и образуют высоко специфический комплекс определенной стадии уничтожения. Так осуществляется

Структурная

Функции белка в клетке протекают незаметно для человека. Некоторые вещества имеют по большей части структурное значение. Подобные белки обеспечивают механическую прочность отдельных тканей в организмах. Прежде всего, это коллаген. Это основной компонент внеклеточного матрикса всех соединительных тканей в живом организме.

Стоит отметить, что у млекопитающих коллаген составляет примерно 25 % от общей массы белков. Синтез данного компонента происходит в фибробластах. Это основные клетки любой соединительной ткани. Первоначально образуется проколлаген. Это вещество является предшественником и проходит химическую обработку, которая состоит в окислении до гидроксипролина остатков пролина, а также до гидрксилина остатков лизина. Коллаген образуется в виде трех пептидных цепей, скрученных в спираль.

Это не все функции белков. Биология - достаточно сложная наука, которая позволяет определить и распознать множество явлений, протекающих в организме человека. Каждая функция белка играет особую роль. Так, в эластичных тканях, например в легких, стенках кровеносных сосудов и коже имеется эластин. Этот белок способен растягиваться, а затем возвращаться к исходной форме.

Двигательные белки

Мышечные сокращения - это процесс, при котором происходит превращение энергии, запасенной в молекулах АТФ в виде пирофосфатных макроэргических связей, именно в механическую работу. В данном случае функции белка в клетке выполняют миозин и актин. Каждый из них имеет свои особенности.

Миозин обладает необычайным строением. Этот белок состоит из нитевидной достаточно длиной части - хвоста, а также из нескольких глобулярных головок. Выделяется миозин, как правило, в виде гексамера. Этот компонент образуется несколькими совершенно одинаковыми полипептидными цепями, каждая из которых обладает молекулярной массой в 200 тысяч, а также 4 цепями, молекулярная масса которых составляет всего 20 тысяч.

Актин представляет собой глобулярный белок, который обладает способностью полимеризоваться. При этом вещество образует достаточно длинную структуру, которую принято называть F-актином. Только в таком состоянии компонент может нормально взаимодействовать с миозином.

Примеры основных функций белков

Ежесекундно в клетках живого организма протекают всевозможные процессы, которые невозможны были бы без белков. Примером рецепторной функции подобных веществ может послужить сообщение клеткам адренорецептором о присоединении адреналина. Под воздействием света происходит разложение родопсина. Подобное явление запускает реакцию и возбуждает палочку.

Что касается структурной функции, то лучшим примером в данном случае может послужить действие коллагена. Это вещество придает соединительным тканям больше упругости.

Примером транспортной функции является перенос гемоглобином кислорода по всему живому организму.

В заключение

Это все основные биологические функции белков. Каждая из них очень важна для живого организма. При этом определенная функция выполняется соответствующим белком. Отсутствие подобных компонентов может привести к нарушению работы определенных органов и систем в организме.

По жизнь на нашей планете зародилась из коацерватной капельки. Она же представляла собой молекулу белка. То есть следует вывод, что именно эти химические соединения - основа всего живого, что существует сегодня. Но что же собой представляют белковые структуры? Какую роль сегодня они играют в организме и жизни людей? Какие виды белков существуют? Попробуем разобраться.

Белки: общее понятие

С точки зрения молекула рассматриваемого вещества представляет собой последовательность аминокислот, соединенных между собой пептидными связями.

Каждая аминокислота имеет две функциональные группы:

  • карбоксильную -СООН;
  • амино-группу -NH 2 .

Именно между ними и происходит формирование связи в разных молекулах. Таким образом, пептидная связь имеет вид -СО-NH. Молекула белка может содержать сотни и тысячи таких группировок, это будет зависеть от конкретного вещества. Виды белков очень разнообразны. Среди них есть и те, которые содержат незаменимые для организма аминокислоты, а значит должны поступать в организм с пищевыми продуктами. Существуют такие разновидности, которые выполняют важные функции в мембране клетки и ее цитоплазме. Также выделяют катализаторы биологической природы - ферменты, которые тоже являются белковыми молекулами. Они широко используются и в быту человека, а не только участвуют в биохимических процессах живых существ.

Молекулярная масса рассматриваемых соединений может колебаться от нескольких десятков до миллионов. Ведь количество мономерных звеньев в большой полипептидной цепи неограниченно и зависит от типа конкретного вещества. Белок в чистом виде, в его нативной конформации, можно увидеть при рассмотрении куриного яйца в Светло-желтая, прозрачная густая коллоидная масса, внутри которой располагается желток - это и есть искомое вещество. То же самое сказать об обезжиренном твороге, Данный продукт также является практически чистым белком в его натуральном виде.

Однако не все рассматриваемые соединения имеют одинаковое пространственное строение. Всего выделяют четыре организации молекулы. Виды определяют его свойства и говорят о сложности строения. Также известно, что более пространственно запутанные молекулы подвергаются тщательной переработке в организме человека и животных.

Виды структур белка

Всего их выделяют четыре. Рассмотрим, что собой представляет каждая из них.

  1. Первичная. Представляет собой обычную линейную последовательность аминокислот, соединенных пептидными связями. Никаких пространственных закручиваний, спирализации нет. Количество входящих в полипептид звеньев может доходить до нескольких тысяч. Виды белков с подобной структурой - глицилаланин, инсулин, гистоны, эластин и другие.
  2. Вторичная. Представляет собой две полипептидные цепи, которые скручиваются в виде спирали и ориентируются по направлению друг к другу образованными витками. При этом между ними возникают водородные связи, удерживающие их вместе. Так формируется единая белковая молекула. Виды белков такого типа следующие: лизоцим, пепсин и другие.
  3. Третичная конформация. Представляет собой плотно упакованную и компактно собранную в клубок вторичную структуру. Здесь появляются другие типы взаимодействия, помимо водородных связей - это и ван-дер-ваальсово взаимодействие и силы электростатического притяжения, гидрофильно-гидрофобный контакт. Примеры структур - альбумин, фиброин, белок шелка и прочие.
  4. Четвертичная. Самая сложная структура, представляющая собой несколько полипептидных цепей, скрученных в спираль, свернутых в клубок и объединенных все вместе в глобулу. Такие примеры, как инсулин, ферритин, гемоглобин, коллаген, иллюстрируют собой как раз такую конформацию белков.

Если рассматривать все приведенные структуры молекул детально с химической точки зрения, то анализ займет много времени. Ведь на самом деле чем выше конфигурация, тем сложнее и запутаннее ее строение, тем больше типов взаимодействий наблюдается в молекуле.

Денатурация белковых молекул

Одним из самых важных химических свойств полипептидов является их способность разрушаться под влиянием определенных условий или химических агентов. Так, например, широко распространены разные виды денатурации белков. Что это за процесс? Он заключается в разрушении нативной структуры белка. То есть если изначально молекула имела третичную структуру, то после действия специальными агентами она разрушится. Однако при этом последовательность аминокислотных остатков остается в молекуле неизменной. Денатурированные белки быстро теряют свои физические и химические свойства.

Какие реагенты способны привести к процессу разрушения конформации? Таких несколько.

  1. Температура. При нагревании происходит постепенное разрушение четвертичной, третичной, вторичной структуры молекулы. Зрительно это можно наблюдать, например, при жарке обычного куриного яйца. Образующийся "белок" - это первичная структура полипептида альбумина, который был в сыром продукте.
  2. Радиация.
  3. Действие сильными химическими агентами: кислотами, щелочами, солями тяжелых металлов, растворителями (например, спиртами, эфирами, бензолом и прочими).

Данный процесс иногда еще называют плавлением молекулы. Виды денатурации белков зависят от агента, при действии которого она наступила. При этом в некоторых случаях имеет место процесс, обратный рассмотренному. Это ренатурация. Не все белки способны восстанавливать обратно свою структуру, однако значительная их часть может это делать. Так, химики из Австралии и Америки осуществили ренатурацию вареного куриного яйца при помощи некоторых реагентов и способа центрифугирования.

Этот процесс имеет значение для живых организмов при синтезе полипептидных цепочек рибосомами и рРНК в клетках.

Гидролиз белковой молекулы

Наравне с денатурацией, для белков характерно еще одно химическое свойство - гидролиз. Это также разрушение нативной конформации, но не до первичной структуры, а полностью до отдельных аминокислот. Важная часть пищеварения - гидролиз белка. Виды гидролиза полипептидов следующие.

  1. Химический. Основан на действии кислот или щелочей.
  2. Биологический или ферментативный.

Однако суть процесса остается неизменной и не зависит от того, какие виды гидролиза белков имеют место быть. В результате образуются аминокислоты, которые транспортируются по всем клеткам, органам и тканям. Дальнейшее их преобразование заключается в участии синтеза новых полипептидов, уже тех, что необходимы конкретному организму.

В промышленности процесс гидролиза белковых молекул используют как раз для получения нужных аминокислот.

Функции белков в организме

Различные виды белков, углеводов, жиров являются жизненно необходимыми компонентами для нормальной жизнедеятельности любой клетки. А значит и всего организма в целом. Поэтому во многом их роль объясняется высокой степенью значимости и повсеместной распространенности внутри живых существ. Можно выделить несколько основных функций полипептидных молекул.

  1. Каталитическая. Ее осуществляют ферменты, которые имеют белковую природу строения. О них скажем позже.
  2. Структурная. Виды белков и их функции в организме прежде всего влияют на структуру самой клетки, ее форму. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.
  3. Регуляторная. Данная функция проявляется в участии полипептидов в таких процессах, как: транскрипция, трансляция, клеточный цикл, сплайсинг, считывание мРНК и прочих. Во всех них они играют важную роль регулировщика.
  4. Сигнальная. Данную функцию выполняют белки, находящиеся на мембране клеток. Они передают различные сигналы от одной единицы к другой, и это приводит к сообщению тканей между собой. Примеры: цитокины, инсулин, факторы роста и прочие.
  5. Транспортная. Некоторые виды белков и их функции, которые они выполняют, являются просто жизненно необходимыми. Так происходит, например, с белком гемоглобином. Он осуществляет транспорт кислорода от клетки к клетке в составе крови. Для человека он незаменим.
  6. Запасная или резервная. Такие полипептиды накапливаются в растениях и яйцеклетках животных как источник дополнительного питания и энергии. Пример - глобулины.
  7. Двигательная. Очень важная функция, особенно для простейших организмов и бактерий. Ведь они способны передвигаться только при помощи жгутиков или ресничек. А эти органоиды по своей природе не что иное, как белки. Примеры таких полипептидов следующие: миозин, актин, кинезин и прочие.

Очевидно, что функции белков в организме человека и других живых существ очень многочисленны и немаловажны. Это еще раз подтверждает, что без рассматриваемых нами соединений невозможна жизнь на нашей планете.

Защитная функция белков

Полипептиды могут защищать от разных воздействий: химических, физических, биологических. Например, если организму угрожает опасность в виде вируса или бактерии, имеющих чужеродную природу, то иммуноглобулины (антитела) вступают с ними "в бой", выполняя защитную роль.

Если говорить о физических воздействиях, то здесь большую роль играют, например, фибрин и фибриноген, которые участвуют в свертывании крови.

Белки пищевые

Виды пищевого белка следующие:

  • полноценные - те, что содержат все необходимые для организма аминокислоты;
  • неполноценные - те, в которых находится неполный аминокислотный состав.

Однако для организма человека важны и те и другие. Особенно первая группа. Каждый человек, особенно в периоды интенсивного развития (детский и юношеский возраст) и полового созревания должен поддерживать постоянный уровень протеинов в себе. Ведь мы уже рассмотрели функции, которые выполняют эти удивительные молекулы, и знаем, что практически ни один процесс, ни одна биохимическая реакция внутри нас не обходится без участия полипептидов.

Именно поэтому необходимо каждый день потреблять суточную норму протеинов, которые содержатся в следующих продуктах:

  • яйцо;
  • молоко;
  • творог;
  • мясо и рыба;
  • бобы;
  • фасоль;
  • арахис;
  • пшеница;
  • овес;
  • чечевица и прочие.

Если потреблять в день 0,6 г полипептида на один кг веса, то у человека никогда не будет недостатка в этих соединениях. Если же длительное время организм недополучает необходимых белков, то наступает заболевание, имеющее название аминокислотного голодания. Это приводит к сильному нарушению обмена веществ и, как следствие, многим другим недугам.

Белки в клетке

Внутри самой маленькой структурной единицы всего живого - клетки - также находятся белки. Причем выполняют они там практически все вышеперечисленные свои функции. В первую очередь формируют цитоскелет клетки, состоящий из микротрубочек, микрофиламентов. Он служит для поддержания формы, а также для транспорта внутри между органоидами. По белковым молекулам, как по каналам или рельсам, движутся различные ионы, соединения.

Немаловажна роль белков, погруженных в мембрану и находящихся на ее поверхности. Здесь они и рецепторные, и сигнальные функции выполняют, принимают участие в строительстве самой мембраны. Стоят на страже, а значит играют защитную роль. Какие виды белков в клетке можно отнести к этой группе? Примеров множество, приведем несколько.

  1. Актин и миозин.
  2. Эластин.
  3. Кератин.
  4. Коллаген.
  5. Тубулин.
  6. Гемоглобин.
  7. Инсулин.
  8. Транскобаламин.
  9. Трансферрин.
  10. Альбумин.

Всего насчитывается несколько сотен различных которые постоянно передвигаются внутри каждой клетки.

Виды белков в организме

Их, конечно же, огромное разнообразие. Если же попытаться как-то разделить все существующие протеины на группы, то может получиться примерно такая классификация.


Вообще, можно взять за основу множество признаков для классификации белков, находящихся в организме. Единой пока не существует.

Ферменты

Биологические катализаторы белковой природы, которые значительно ускоряют все происходящие биохимические процессы. Нормальный обмен невозможен без этих соединений. Все процессы синтеза и распада, сборка молекул и их репликация, трансляция и транскрипция и прочие осуществляются под воздействием специфического вида фермента. Примерами этих молекул могут служить:

  • оксидоредуктазы;
  • трансферазы;
  • каталазы;
  • гидролазы;
  • изомеразы;
  • лиазы и прочие.

Сегодня ферменты используются и в быту. Так, при производстве стиральных порошков часто используют так называемые энзимы - это и есть биологические катализаторы. Они улучшают качество стирки при соблюдении указанного температурного режима. Легко связываются с частицами грязи и выводят их с поверхности тканей.

Однако из-за белковой природы энзимы не переносят слишком горячую воду или соседство с щелочными или кислотными препаратами. Ведь в этом случае произойдет процесс денатурации.

Белки и их функции.

Изучим основные вещества составляющие наши с вами организмы. Одни из них самых важных это белки.

Белки (протеины, полипептиды) – углеродные вещества, состоящие из соединенных в цепочку аминокислот . Являются обязательной составной частью всех клеток.

Аминокислоты - углеродные соединения, в молекулах которых одновременно содержатся карбоксильные (-COOH) и аминные (NH2) группы.

Соединение, состоящее из большого числа аминокислот, называется - полипептидом . Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Свойства белков, определяет их аминокислотный состав, в строго зафиксированной последовательности, а аминокислотный состав в свою очередь определяется генетическим кодом. При создании белков используется 20 стандартных аминокислот.

Структура белков.

Выделяют несколько уровней:

- Первичная структура - определяется порядком чередования аминокислот в полипептидной цепи.

Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300-500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

- Вторичная структура – белковые молекулы в виде спирали, с одинаковыми расстояниями между витками.

Между группами N-Н и С=О, расположенными на соседних витках, возникают водородные связи. Они повторенные многократно, скрепляют регулярные витки спирали.

- Третичная структура – образование спиралиевого клубка.

Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы.

Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.
- Четвертичная структура – сборный белок, состоящий из нескольких цепей, отличающихся по первичной структуре.
Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой.

Денатурация белка.

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений рН (концентрация йонов водорода), а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи (с объединением электронов) не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т.е. ренатурировать.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости - важнейшего свойства всех живых существ.

Функции белков.

Каталитическая.

В каждой живой клетке происходят непрерывно сотни биохимических реакций. В ходе этих реакций идут расщепление и окисление поступающих извне питательных веществ. Полученную вследствие окисления энергию питательных веществ и продукты их расщепления клетка использует для синтеза необходимых ей разнообразных органических соединений. Быстрое протекание таких реакций обеспечивают биологические катализаторы, или ускорители реакций, - ферменты. Известно более тысячи разных ферментов. Все они белки.
Белки-ферменты – ускоряют протекающие реакции в организме. Ферменты учавствуют в расщеплении сложных молекул (катаболизм) и их синтезе (анаболизм) а также создания и ремонте ДНК и матричного синтеза РНК.

Структурная.

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная.

  1. Физическая защита. (пример: коллаген - белок, образующий основу межклеточного вещества соединительных тканей)
  1. Химическая защита. Связывание токсинов белковыми молекулами обеспечивает их детоксикацию. (пример: ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма)
  1. Иммунная защита. На попадание бактерий или вирусов в кровь животных и человека организм реагирует выработкой специальных защитных белков - антител. Эти белки связываются с чужеродными для организма белками возбудителей заболеваний, чем подавляется их жизнедеятельность. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела.
Регуляторная.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и программируемую клеточную смерть, обеспечивают согласованность действий иммунной, эндокринной и нервной систем.

Транспортная.

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны- Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).

Рецепторная.

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы.

Строительная.

Животные в процессе эволюции утратили способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми. Они получают их в готовом виде с растительной и животной пищей. Такие аминокислоты содержатся в белках молочных продуктов (молоко, сыр, творог), в яйцах, рыбе, мясе, а также в сое, бобах и некоторых других растениях. В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются в кровь и попадают в клетки. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма. Белки являются обязательным компонентом всех клеточных структур и в этом состоит их важная строительная роль.

Энергетическая.

Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. При длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Моторная (двигательная).

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе движение миозиновых мостиков в мышце, перемещение клеток внутри организма (например, амебоидное движение лейкоцитов).

На самом деле это очень краткое описание функций белков, которое только наглядно может продемонстрировать их функции и значимость в организме.

Немного видео для понимания о белках:

Структурная функция белков

Структурная функция белков заключается в том, что белки

  • участвуют в образовании практически всех органоидов клеток, во многом определяя их структуру (форму);
  • образуют цитоскелет , придающий форму клеткам и многим органоидам и обеспечивающий механическую форму ряда тканей;
  • входят в состав межклеточного вещества, во многом определяющего структуру тканей и форму тела животных.

Белки межклеточного вещества

В теле человека белков межклеточного вещества больше, чем всех остальных белков. Основными структурными белками межклеточного вещества являются фибриллярные белки.

Коллагены

Коллагены - семейство белков, в теле человека составляют до 25 - 30 % общей массы всех белков. Кроме структурной функции коллаген выполняет также механическую, защитную, питательную и репаративную функции.

Молекула коллагена представляет собой правозакрученную спираль из трёх α-цепей.

Всего у человека имеется 28 типов коллагена. Все они сходны по структуре.

Эластин

Эластин широко распространён в соединительной ткани, особенно в коже, легких и кровеносных сосудах. Общими характеристиками для эластина и коллагена являются большое содержание глицина и пролина. В эластине значительно больше валина и аланина и меньше глутаминовой кислоты и аргинина, чем в коллагене. В эластине содержатся десмозин и изодесмозин. эти соединения можно обнаружить только в эластине. Эластин нерастворим в водных растворах (как и коллаген), в растворах солей, кислот и щелочей даже при нагревании. В эластине большое количество аминокислотных остатков с неполярными боковыми группами, что, по-видимому, обусловливает высокую эластичность его волокон.

Другие белки внеклеточного матрикса

Кератины разделяются на две группы: α-кератины и β-кератины. Прочность кератина уступает, пожалуй, только хитину. Характерной особенностью кератинов является их полная нерастворимость в воде при pH 7,0. Содержат в молекуле остатки всех аминокислот. Отличаются от других фибриллярных структурных белков (например, коллагена) в первую очередь повышенным содержанием остатков цистеина. Первичная структура полипептидных цепей a-кератинов не имеет периодичности.

Другие белки промежуточных филаментов

В других типах тканей (кроме эпителиев) промежуточные филаменты образованы похожими на кератин по структуре белками - виментином , белками нейрофиламентов и др. Белки ламины в большинстве клеток эукариот образуют внутреннюю выстилку оболочки ядра. Состоящая из них ядерная ламина поддерживает ядерную мембрану и контактирует с хроматином и ядерными РНК.

Тубулин

Структурные белки органелл

Белки создают и определяют форму (структуру) многих клеточных органелл . В основном из белков состоят такие органеллы, как рибосомы , протеасомы , ядерные поры и др. Гистоны необходимы для сборки и упаковки нитей ДНК в хромосомы. Из белков состоят клеточные стенки некоторых протистов (например,хламидомонады); в составе оболочки клеток многих бактерий и архей присутствует белковый слой (S-слой), который крепится у грамположительных видов к клеточной стенке, а у грамотрицательных - к наружной мембране. Из белка флагеллина состоят прокариотические жгутики .


Wikimedia Foundation . 2010 .

Смотреть что такое "Структурная функция белков" в других словарях:

    Разные способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы. Слева «палочковая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине изображены структурные мотивы … Википедия

    Исследования атомной структуры конденсир. сред методом дифракции нейтронов низких энергий на атомных ядрах (упругого когерентного рассеяния). В H. с. используются нейтроны с длиной волны де Бройля l >= 0,3 Рассеяние нейтронной волны на… … Физическая энциклопедия

    У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

    Высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные… …

    Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

    - (транскрипционные факторы) белки, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе… … Википедия

    Факторы транскрипции (транскрипционные факторы) белки, контролирующие перенос информации с молекулы ДНК в структуру мРНК (транскрипцию) путем связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию… … Википедия

    Особое качественное состояние мира, возможно, необходимая ступень в развитии Вселенной. Естественно научный подход к сущности Ж. сосредоточен на проблеме ее происхождения, ее материальных носителей, на отличии живого от неживого, на эволюции… … Философская энциклопедия

    Взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома (о чём подробнее сказано ниже) показывает число связей … Большая советская энциклопедия

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Поделиться: