Предельно допустимая концентрация тяжелых металлов. Современные проблемы науки и образования

Кадмий является одним из редких рассеянных элементов. Он мигрирует в горячих подземных водах с цинком и прочими элементами, подверженными к образованию природных сульфидов, теллуридов, сульфидов и сульфосолей и концентрируется в гидротемальных отложениях. В вулканических породах кадмий содержится в количестве до 0.2 мг на кг, в осадочных породах, в частности, в глинах – до 0.3 мг/кг, в известняках 0.035 мг/кг, в почве до 0.06 мг/кг.

Как кадмий поступает в воду?

Поступление кадмия в природные воды обусловлено процессом выщелачивания почв, медных и полиметаллических руд, в процессе разложения водных организмов, накапливающих кадмий. Растворенные формы кадмия- это органо-минеральные и минеральные комплексы. Сорбированные соединения кадмия представляют собой его основную взвешенную форму. Большая часть кадмия мигрирует в составе клеток гидробионатов.

Чем опасен кадмий в воде?

Кадмий является одним из наиболее токсичных тяжелых металлов. Российский СанПин присвоил ему статус «высокоопасных веществ», 2-й класс опасности. Наряду со многими другими тяжелыми металлами, кадмий способен накапливаться в организме. Понадобится от 10 до 35 лет для его полувыведения. В теле 50-летнего человека кадмий может содержаться в количестве от 30 до 50 г. Основные места накопления кадмия- почки, от 30 до 60% всего количества, и печень, от 20 до 25%. Оставшийся кадмий содержится в поджелудочной железе, трубчатых костях, селезенке, других тканях и органах.

Избыток кадмия при поступлении в организм может стать причиной развития гипертонии, поражения печени, анемии, эмфиземы легких, кардиопатии, деформации скелета, остеопороза. Соединения кадмия крайне опасны. Действие кадмия выражается в угнетении активности некоторых ферментных систем вследствие блокированияаминных, карбоксильных и SH-групп белковых молекул, а также ряда микроэлементов. При продолжительном воздействии кадмий провоцирует поражение легких и почек, ослабление костей.

Основные симптомы кадмиевого отравления:

  • Поражение центральной нервной системы;
  • Белок в моче;
  • Острые боли в костях;
  • Дисфункция половых органов;
  • Камни в почках.

Любая из химических форм кадмия представляет опасность. Согласно оценкам ВОЗ летальная разовая доза кадмия составляет от 350 до 3500 мг. Характерная особенность кадмия – долгое время удержания: в течение одних суток из организма человека выводится лишь 0.1% дозы.

Показателен пример с заболеванием «итай-итай», впервые отмеченным в 1940-х годах в Японии. У больных наблюдались сильные боли в мышцах (миалгия), повреждения почек, деформации скелета и переломы костей. В течение 15-30 лет от хронического отравления кадмием погибли около 150 человек. Причиной отравления стало орошение соевых плантаций и рисовых чеков водой из реки Дзингу, в которой содержался кадмий из стоков цинкового рудника. В результате исследований выяснилось, что в организм заболевших кадмий поступал в количестве 600 мкг в сутки. Одни из основных продуктов питания японцев – это рис и морепродукты, а учитывая способность этих продуктов к накоплению кадмия в высоких концентрациях, заболевание получило тяжелый массовый характер.

Для острого пищевого отравления кадмием с водой достаточно разовой дозы в 13-15 мг. В данном случае появляются признаки острого гастроэнтерита: судороги и боли вэпигастральной области, рвота.

Предельно допустимая концентрации кадмия в воде

Согласно российским СанПин 2.1.4.1074-01 предельно допустимая концентрация кадмия составляет 0.001 мг/дм.куб. В странах ЕС эта цифра составляет 0.005 мг/дм.куб.

Методы очистки воды от кадмия

Очистка воды от кадмия считается одной из наиболее сложных процедур. Поэтому к системам очистки предъявляются довольно высокие требования: очистка воды от кадмия, обеззараживание, снижение жесткости, задержка активного хлора, органики и других вредных веществ, повышение органолептических показателей. Чтобы выбрать наиболее эффективный метод очистки для конкретных нужд, необходимо определить источник, уровень содержания примесей и т.д., иными словами произвести детальный анализ воды.

Очистка воды от кадмия при помощи реагентов

Очистка воды от кадмия осуществляется в основном химическим способом. При условии изменения pHкадмий преобразуется в нерастворимую форму, выпадает в осадок и удаляется. Выбор химических реагентов, используемых для очистки воды, зависит от концентрации кадмия, требуемой степени очистки и присутствия примесей.

Когда вещество переведено в нерастворимую форму производится разделение, происходящее вследствие гравитационного осаждения кадмия с помощью осаждающих емкостей. Из этих емкостей осевший кадмий откачивают с целью обезвоживания и просушки. Это достаточно простой метод, поэтому он получил широкое распространение. Однако этот метод не лишен недостатков, главный из которых -высокая степень чувствительности к иным соединениям,которые не позволяют кадмию осаждаться.

Мембранный метод очистки воды от кадмия

Данный метод считается наиболее результативным и заключается в применении специальной установки с перегородками-мембранами. Мембраны отличаются высокой селективностью, то есть способностью разделять вещества. Полупроницаемая перегородка способна пропускать сквозь себя исключительно воду, освобожденную от примесей. Примеси, в свою очередь, скапливаются с другой стороны. Перегородки выполнены из прочного, химически стойкого материала к среде очищаемой жидкости. Одно из главных преимуществ – способность мембраны выполнять свои функции в течение всего срока эксплуатации, сохраняя при этом высокую эффективность.

Фильтры бытового назначения

Большой популярностью пользуются бытовые системы фильтрации воды- отдельные краны для чистой воды, насадки на кран, настольные фильтры на мойку, фильтры кувшинного типа и другие.

Показатели ПДК воды, мг/дм3 неорганических веществ

ПДК тяжелых металлов в питьевой воде, мг/л

1. Медь (Cu) 1,0
2. Цинк (Zn) 1,00
3. Марганец (Mn) 0,10
4. Никель (Ni) 0,10
5. Свинец (Pb) 0,03
6. Хром (Cr) 0,50
7. Фтор (F) 1,50
8. Кадмий (Cd) 0,001
9. Мышьяк (As) 0,05
10. Кобальт (Co) 0,10
11. Ртуть (Hg) 0,005
12. Железо (Fe) 0,50
13. Бор (B) 0,50
14. Стронций (Sn) 7,00
15. Бром (Br) 0,20
16. Молибден (Mo) 0,25
17. Серебро (Ag) 0,05
18. Алюминий (Al) 0,50
19. Йод (J) нет
20. Фосфор (P) -
21. Селен (Se) 0,01
22. Золото (Au) нет
23. Платина (Pt) нет
24. Сурьма (Sb) 0,05
25. Олово (Sn) нет
26. Цирконий (Zr) нет
27. Уран (U) нет
28. Барий (Ba) 0,10
29. Бериллий (Be) 0,0002
30. Литий (Li) 0,03
31. Ванадий (V) 0,10
32. Вольфрам (W) 0,05
33. Титан (Ti) 0,10
34. Рубидий (Rb) нет
35. Цезий (Cs) нет
36. Радий (R) нет

Приложение 26

1. Алюминий (Al) 0,50
2. Бериллий (Bе) 0,0002
3. Бор (В) 0,50
4. Бром (Br) 0,20
5. Ванадий (V) 0,10
6. Висмут (Bi) 0,10
7. Йод (J) нет
8. Кадмий (Cd) 0,001
9. Кобальт (Co) 0,10
10. Литий (Li) 0,03
11. Марганец (Mn) 0,10
12. Медь (Cu) 1,0
13 Молибден (Mo) 0,25
14.Мышьяк (As) 0,05
15. Никель (Ni) 0,10
16. Ниобий (Nb) 0,01
17. Олово (Sn) нет
18. Роданицы (SCN) 0,10
19. Ртуть (Hg) 0,0005
20. Свинец (Pb) 0,03
21.Селен (Se) 0,01
22. Стронций (Sr) 7,0
23. Сурьма (Sb) 0,06
24. Титан (Ti) 0,10
25. Уран (U) нет
26. Фосфаты (Po 4) 3,50
27. Фтор (F) 1,50
28. Хром (Cr 2) 0,10
29. Хром (Cr 6) 0,05
30. Хром (Cr 3) 0,50
31. Цианиды (CN) 0,10
32. Цинк (Zn) 1,0
Органические вещества
1. Бензол 2. Кислоты 3. Пропилбензол 4. Толуол 5. Этилен бензол 6. БПК (полное биологическое потребление кислорода 7. Гумусовые кислоты 8. Нефть 9. Бензин 10. Керосин 0,50 0,05 0,20 0,50 0,01 3,0 3,7 0,1-0,3 0,10 0,01-0,50

Приложение 27

Химические элементы Авторы
Обухов А.И. 1988 г. Алексеев Ю.В. 1987 г. Гончарук, Сидоренко, 1986 г. A.Klocke
Свинец 20 (фон 12) 20 (фон 12) 20 (фон 12)
Ртуть 2,1 2,1 2,1
Медь -
Хром - - -
Марганец - -
Мышьяк
Никель
Цинк -
Ванадий -
Кадмий -
Хром (6 валент) - 0,05 0,05
Хром (3 валент) - - -
Сурьма - - -
Бериллий - - -
Бор - - -
Фтор - - -
Кобальт - - -
Олово - - -
Селен - - -
Молибден - - -


Приложение 28 справочное

Предельно допустимые концентрации (ПДК)

химических веществ в почвах и допустимые уровни

Наименование веществ ПДК, мг/кг почвы с учетом фона Показатели вредности
Транслокационный (накопление в растениях) миграционный общесани- тарный
водный воздушный
Подвижные формы
Медь 3,0 3,5 72,0 - 3,0
Никель 4,0 6,7 14,0 - 4,0
Цинк 23,0 23,0 200,0 - 37,0
Кобальт 5,0 25,0 Более 1000 - 5,0
Фтор 2,8 2,9 72,0 - -
Хром 6,0 - - - -
Воднорастворимые формы
Фтор 10,0 10,0 10,0 - 25,0
Валовое содержание
Сурьма 4,5 4,5 4,5 - 50,0
Марганец 1500,0 3500,0 1500,0 - 1500,0
Ванадий 150,0 170,0 230,0 - 150,0
Марганец+ванадий 1000+100 1500+150 2000+200 - 1000+100
Свинец 30,0 35,0 260,0 - 30,0
Мышьяк 2,0 2,0 15,0 - 10,0
Ртуть 2,1 2,1 33,3 2,5 5,0
Свинец+ртуть 20,0+1,0 20,0+1,0 30,0+2,0 - 30,0+2,0
Медь ориентировочно - - - -
Никель ориентировочно - - - -
Цинк ориентировочно - - - -
Хлористый калий (К 2 О) 560,0 1000,0 560,0 1000,0 3000,0
Нитраты 130,0 180,0 130,0 - 325,0
Бензапирен (БП) 0,02 0,2 0,5 - 0,02
Бензол 0,3 3,0 10,0 0,3 50,0
Толуол 0,3 0,3 100,0 0,3 50,0
Изопропилбензол 0,5 3,0 100,0 0,5 50,0
Альфаметилстирол 0,5 3,0 100,0 0,5 50,0
Стирол 0,1 0,3 7100,0 0,1 1,0
Ксилоды (орто-, мета-, пара-) 0,3 0,3 100,0 0,4 1,0

Продолжение приложения 28

Приложение 29

Отнесение химических веществ, попадающих в почву,

и выбросов, сбросов, отходов к классам опасности

Приложение 30

ПДК тяжелых металлов в поверхностном слое почв, мг/кг,

считающиеся предельными в отношении фитотоксичности

Элемент Ковальский В. 1974 El-Basson 1977 Linzon liazon S. Kobata-Pendias Klocke A. Kitagish K.
Ag
As
B
Be
Br
Cd
Co
Cr
Cu
Fe
Hg 0.03
Mo
Mn
Ni
Pb
Sb
Se
Sn
Ti
V
Zn

Нормирование содержания тяжелых металлов в воде (ПДК)

Предельно допустимая концентрация (ПДК) - утверждённый в законодательном порядке санитарно-гигиенический норматив. Под ПДК понимается такая концентрация химических элементов и их соединений в окружающей среде, которая при повседневном влиянии в течение длительного времени на организм человека не вызывает патологических изменений или заболеваний, устанавливаемых современными методами исследований в любые сроки жизни настоящего и последующего поколений.

Значения ПДК включены в ГОСТы, санитарные нормы и другие нормативные документы, обязательные для исполнения на всей территории государства, их учитывают при проектировании технологических процессов, оборудования, очистных устройств и пр. Санитарно-эпидемиологическая служба в порядке санитарного надзора систематически контролирует соблюдение нормативов ПДК в воде водоёмов хозяйственно-питьевого водопользования, в атмосферном воздухе и в воздухе производственных помещений, контроль за состоянием водоёмов рыбопромыслового назначения осуществляют органы рыбнадзора.

Вода является средой, в которой возникала жизнь и обитает большая часть видов живых организмов (в атмосфере лишь слой около 100 м. наполнен жизнью).

Поэтому при нормировании качества природных вод необходимо заботиться не только о воде как ресурсе, потребляемом человеком, но и о сохранении водных экосистем как важнейших регуляторов условий жизни планеты. Однако действующие нормативы качества природных вод ориентированы главным образом на интересы здоровья человека и рыбного хозяйства и практически не обеспечивают экологическую безопасность водных экосистем.

Требования потребителей к качеству воды зависят от целей использования.

Выделяют три вида водопользования:

  • - Хозяйственно-питьевое - использование водных объектов или их участков в качестве источника хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности;
  • - Культурно-бытовое - использование водных объектов для купания, занятий спортом и отдыха. К этому виду водопользования относятся и участки водных объектов, находящиеся в черте населенных мест;
  • - Водоемы рыбохозяйственного назначения, которые, в свою очередь, делятся на три категории:
  • - высшая категория - места расположения нерестилищ, массового нагула и зимовальных ям особо ценных и ценных видов рыб, других промысловых водных организмов, а также охранные зоны хозяйств для искусственного разведения и выращивания рыб, других водных животных и растений;
  • - первая категория - водные объекты, используемые для сохранения и воспроизводства ценных видов рыб, обладающих высокой чувствительностью к содержанию кислорода;
  • - вторая категория - водные объекты, используемые для других рыбохозяйственных целей.

Конечно, природные воды являются объектами и других видов водопользования - промышленного водоснабжения, орошения, судоходства, гидроэнергетики и т. д.

Использование воды, связано с ее частичным или полным изъятием, называют водопотреблением. Все водопользователи обязаны соблюдать условия, которые обеспечивают качество воды, соответствующее установленным для данного водного объекта нормативам.

Существуют и некоторые общие требования к составу и свойствам воды (табл. 1.1).

Поскольку требования к качеству воды зависят от вида водопользования, необходимо определить этот вид для каждого водного объекта или его участков.

Согласно Правилам виды водопользования устанавливаются региональными органами экологического и санитарного контроля и утверждаются соответствующей исполнительной властью.

Под ПДК природных вод подразумевается концентрация индивидуального вещества в воде, при превышении которой она непригодна для установленного вида водопользования. При концентрации вещества равной или меньше ПДК вода так же безвредна для всего живого, как и вода, в которой полностью отсутствует данное вещество.

Таблица 1.1 - Общие требования к составу и свойствам воды (правила охраны поверхностных вод от загрязнения):

Показатель

Виды водопользования

хозяйственно-питьевое

культурно-бытовое

рыбохозяйственное

Взвешенные вещества

Плавающие примеси

На поверхности водоема не должны обнаруживаться плавающие пленки, пятна минеральных масел и других примесей

Не должна обнаруживаться в столбике

Вода не должна иметь окраски

Запахи, привкусы

Вода не должна приобретать запахов и привкусов более 2 баллов, обнаруживаемых

Вода не должна придавать посторонних привкусов и запахов мясу рыбы

непосредственно или после хлорирования

непосредственно

Температура

Летом, после спуска сточных вод, не должна повышаться более, чем на 3 0 С по сравнению со средней в самый жаркий месяц

Не должна повышаться более, чем на 5 0 С там, где обитают холоднолюбивые рыбы, и не более 8 0 С в остальных случаях

Водородный показатель рН

Не должен выходить за пределы 6,5 - 8,5

Минерализация воды

Не должна превышать по плотному остатку 1000 мг/л, в том числе хлоридов - 350 мг/л, сульфатов - 500 мг/л

Нормируется по показателю «привкусы»

Нормируется согласно таксации рыбохозяйственных водоемов

Растворенный кислород

В любой период года не ниже 4 мг/л в пробе, отобранной до 12 ч. дня

В подледный период не ниже

Полное биохимическое потребление кислорода (БПК полн)

При 20 0 С не должно превышать

Химическое потребление кислорода (ХПК)

Не более 15,0 мг/л

Химические вещества

СанПиН 4630-88

Перечнем ПДК и ОБУВ вредных веществ для воды рыбохозяйственных водоемов

Возбудители заболеваний

Вода не должна содержать возбудителей заболеваний, в том числе жизнеспособные яйца гельминтов и цисты патогенных кишечных простейших

Лактозоположительные кишечные палочки (ЛКП)

Колифаги (в бляшкообразующих единицах)

Не более 100 в 1 л

Сточная вода на выпуске в водный объект не должна оказывать острого токсического действия на тест-объекты

Характер воздействия загрязняющих веществ на человека и водные экосистемы может быть разным.

Многие химические вещества могут тормозить естественные процессы самоочищения, что приводят к ухудшению общего санитарного состояния водоема:

  • - дефициту кислорода;
  • - гниению;
  • - появлению сероводорода;
  • - метана и т. д.

В этом случае устанавливают ПДК по общему санитарному признаку вредности. При нормировании качества воды водоемов ПДК устанавливается по лимитирующему признаку вредности - ЛПВ.

ЛПВ - признак вредного действия вещества, который характеризуется наименьшей пороговой концентрацией.

В табл. 1.2 приведены значения ПДК соединений тяжелых металлов в водоемах хозяйственно-питьевого водопользования.

Таблица 1.2 - Предельно допустимые концентрации вредных веществ в воде водоемов хозяйственно-питьевого водопользования:

Соединение

Молекулярная масса

Концентрация, мг/л

Железа соединения в пересчете на Fe

Кадмий хлористый в пересчете на Cd

Кобальт хлористый в пересчете на Co

Марганца соединения в пересчете на Mn

Медь сернокислая в пересчете на Cu

Мышьяк окись в пересчете на As

Никель сернокислый в пересчете на Ni

  • 216,6
  • 200,6
  • 232,7
  • 0,005
  • 0,005
  • 0,005
  • 0,005
  • 0,005
  • 0,005

Свинец азотнокислый в пересчете на Pb

Свинца соединение в пересчете на Pb

Хрома (III) соединения в пересчете на Cr

Хрома (VI) соединения в пересчете на Cr

Цинка соединение в пересчете на Zn

Примечание:

При установлении ПДК вредных веществ в воде водоемов ориентируются на минимальную концентрацию веществ по одному из следующих показателей:

  • - ППКт - подпороговая концентрация вещества в водоеме, определяемая по токсилогическим характеристикам, мг/л.;
  • - ППКорл - подпороговая концентрация веществ в водоеме, определяемая по изменению органолептических характеристик(запах, цвет, привкус), мг/л.;
  • - ППКс.р.в. - подпороговая концентрация вещества, определяемая по влиянию на санитарный режим водоема (сапрофитная микрофлора, биологическая потребность в кислороде и др.), мг/л.;
  • - ПДКв - предельно допустимая концентрация вещества в воде водоема, мг/л.

Противоречие и отличие установления ПДК для водоемов различного назначения. Перечни ПДК для водоемов различного применения разрабатывают определенные ведомства рыбохозяйственного и санитарно-гигиенического профиля, как правило, не согласовывая свои действия. В результате получается следующее: одно и то же вещество называется по-разному в различных перечнях, на некоторые вещества существуют ПДК только для одних водоемов, а для других - отсутствуют.

Например, для хлорорганических соединений ПДК существуют только санитарно-гигиенические требования и отсутствуют для рыбохозяйственных водоемов. Как известно, санитарно-гигиенические ПДК более завышены по сравнению с рыбохозяйственными, ибо устанавливаются по результатам биотестирования на теплокровных животных, а не на гидробионтах-рыбах. Это приводит к путанице и отсутствию информации в Государственном реестре веществ.

Отсутствие информации, например, о ПДК хлорорганических соединений, с одной стороны, вызывает сомнения о безопасности сброса в водоемы рыбохозяйственного назначения (а к водоемам рыбохозяйственного назначения можно отнести практически любой водоем, так как рыба водится, кроме болот, везде), с другой стороны, позволяет надзорным органам, ссылаясь на норматив, запретить сброс хлорорганических веществ, или в лучшем случае - «атоматом» применить к водопользователю повышающий коэффициент 25.

НДС устанавливают требования к сбросным СВ более жесткие, чем ПДК для рыбохозяйственных водоемов, или на уровне ПДК, а в свою очередь, требования СанПиН к качеству питьевой воды более «мягкие», чем ПДК (табл. 1.3).

Таблица 1.3 - ПДК тяжелых металлов в воде рыбохозяйственных водоемов и в питьевой воде:

Элементарный здравый смысл подсказывает, что нормативные требования НДС к сточным водам и питьевой воде должны поменяться местами.

В большинстве европейских стран при установлении нормативов на качество очистки сточных вод основным условием является достижение максимально возможной степени очистки с учетом использования наилучших современных технологий.


Современный уровень развития промышленных технологий не позволяет перейти к экологически чистому производству.Одним из наиболее распространенных загрязнителей окружающей среды являются ионы тяжелых металлов, в частности кадмий. Индустриальное загрязнение кадмием характерно для многих промышленных районов России. Кадмий способен адсорбироваться на твердых частицах и переноситься на большие расстояния.

Источниками большинства антропогенных загрязнений являются отходы от металлургических производств, со сточными водами гальванических производств (после кадмирования), других производств, в которых применяются кадмийсодержащие стабилизаторы, пигменты, краски и в результате использования фосфатных удобрений. Кадмий присутствует в воздухе крупных городов вследствие истирания шин, эрозии некоторых видов пластмассовых изделий, красок и клеящих материалов. Однако больше всего в окружающую среду кадмий поступает в виде побочного продукта металлургического производства (например, при выплавке и электролитической очистке цинка), а также при хранении и переработке бытовых и промышленных отходов. Даже в незагрязненных районах с содержанием кадмия в воздухе менее 1 мкг/м, его ежедневное поступление в организм человека при дыхании составляет около 1% от допустимой суточной дозы.

Дополнительным источником поступления кадмия в организм является курение. Одна сигарета содержит 1-2 мкг кадмия, и около 10% его поступает в органы дыхания. У лиц выкуривающих до 30 сигарет в день, за 40 лет в организме накапливается 13-52 мкг кадмия, что превышает его количество, поступающее с пищей.

В питьевую воду кадмий попадает вследствие загрязнения водоисточников производственными сбросами, с реагентами, используемыми на стадии водоподготовки, а также в результате миграции из водопроводных конструкций. Доля кадмия, поступающего в организм с водой, в общей суточной дозе составляет 5-10%. Среднесуточное потребление кадмия человеком составляет примерно 50 мкг с отдельными отклонениями в зависимости от индивидуальных и региональных особенностей. Предельно допустимая концентрация (ПДК) кадмия в атмосферном воздухе составляет 0,3 мкг/м, в воде водоисточников – 0,001мг/л, в почвах песчаных и супесчаных кислых и нейтральных 0,5, 1,0 и 2,0 мг/ кг соответственно.

Всемирной организацией здравоохранения (ВОЗ) установлен допустимый уровень содержания кадмия в организме 6,7- 8 мкг/кг. Обмен кадмия в организме характеризуется следующими основными особенностями: отсутствием эффективного механизма гомеостатического контроля; длительным удержанием (кумуляцией) в организме. На задержку кадмия в организме оказывает влияние возраст человека. У детей и подростков степень его всасывания в 5 раз выше, чем у взрослых. Выведение кадмия происходит медленно. Период его биологической полужизни в организме колеблется, по разным оценкам, в пределах 10-47 лет. От 50 до 75% кадмия от попавшего количества удерживается в организме. Основное количество кадмия из организма выводится с мочой (1-2 мкг /сут) и калом(10-50 мкг/сут).

Хроническое воздействие кадмия на человека приводит к нарушениям почечной функций легочной недостаточной, остёомаляций, анемий и потери обоняния. Существует данные о возможном канцерогенном эффекте кадмия и о вероятном участии его в развитии сердечно-сосудистых заболеваний. Наиболее тяжелой формой хронического отравления кадмием является болезнь “итай-итай” характеризующаяся деформацией скелета с заметным уменьшением роста, поясничными болями, болезненным явлениями в мышцах ног, утиной походкой. Кроме того, отмечаются частные переломы размягчённых костей, а также нарушение функций поджелудочной железы, изменения в желудочно-кишечном тракте, гипохромная анемия, дисфункция почек и др. Кадмий способен накапливаться в организме человека и животных, так как сравнительно легко усваивается из пищи и воды и проникает в различные органы и ткани. Токсическое действие металла проявляется уже при очень низких концентрациях. В современной научной литературе изучению токсического действия кадмия посвящено немало работ. Наиболее типичным проявлением отравления кадмием является нарушение процессов поглощения аминокислот, фосфора и кальция в почках. После прекращения действия кадмия повреждения, вызванные его действием в почках, остаются необратимыми. Показано, что нарушение процессов обмена в почках может привести к изменению минерального состава костей. Известно, что кадмий накапливается преимущественно в корковом слое почек, а его концентрация в мозговом слое и почечных лоханках значительно ниже, что связано с его способностью депонироваться в паренхиматозных органах и медленным выведением из организма.

Предположительно проявление токсического действия ионов кадмия связано синтезом в организме белка металиотеонеина, который связывает и транспортирует его в почки. Там белок почти полностью реадсорбируется и быстро деградирует с освобождением ионов кадмия, стимулирующих металлиотионеина в клетках эпителия проксимальных канальцев. Деградация комплекса кадмий-металлиотионеин приводит к повышению уровня ионов кадмия вначале в лизосомальной фракций, а затем в цитозоле, где происходит связывание с почечным металлиотионеином. При этом в клетках появляются везикулы, и повышается число электронно-плотных лизосом, появлением низкомолекулярной протеинурии и кальцийурией.

Роль белка металиотинеина в снижении токсичности кадмия весьма значительна. Экспериментальное внутривенное введение кадмия, связанного с данным белком, предотвращает развитие некроза в почечной ткани у мышей, тогда как аналогичные дозы неорганического кадмия вызывает развитие некроза в почках. Это доказывает участие металиотионеина в снижении токсичности металла. Однако этот механизм ограничен в количественном отношении, потому что при длительном поступлении кадмия также развивается повреждение тубулярного эпителия.

Многочисленными исследованиями была показана возможная связь между кадмийиндуцированным повреждением клеток почек, межклеточным изменением содержания ионов кадмия и индукцией синтеза стрессовых белков. Первым кандидатом на роль стрессового белка является кальмодулин, так как in vitro показано, что кадмий активирует секрецию этого гормона, который через усиление потока кальция в клетку может повреждать цитоскелет.

Кадмий вызывает развитие протеинурии, глюкозурии, аминоацидурии и другие патологические процессы. При длительном поступлении кадмия в организм развивается почечный тубулярный ацидоз, гиперкальцийурия и формируются камни в мочевом пузыре. В тяжелых случаях хронической кадмиевой интоксикации может также наблюдаться нефрокальцидоз. Накопление кадмия в клетках культуры почек происходит параллельно повышению степени его токсичности. Однако характер распределения его в клетке не зависит от выраженности цитотоксического действия: более 90% металла связано с цитозолем, остальная часть – микросомной, митохондриальной, ядерной фракциями и клеточными фрагментами.

Изучение субклеточного распределения кадмия в печени позволило расшифровать механизм возникновения толерантности к данному металлу. Установлено, что снижение чувствительности к кадмию обусловлено изменением его распределения не в тканях, а цитозольной субклеточной фракции печени, являющиеся органом – мишенью, где происходит связывание его с металиотионеином. В дозе 2,4 мг/кг кадмий снижает синтез белка в микросомальной фракции печени крыс, не нарушая его в ядрах и митохондриях. Накапливаясь на внутренних мембранах митохондрий, данный металл уменьшает энергоснабжение и стимулирует перекисное окисление липидов (ПОЛ) при концентрациях 10 – 100 мкмоль.

В первые сутки после введения кадмия в дозе 4 мг/кг в мышце сердца крыс по сравнению с контролем увеличились содержание диеновых коньюгантов в 2,1 раз, активность глутатионпероксидазы – на 3,2%. В коре больших полушарий головного мозга содержание шиффовых оснований возрастало в 2,2 раза. На седьмые сутки наблюдения у животных, получавших кадмий, концентрация шиффовых оснований в неокортексе оставалась повышенной на 59,3%, в сердце – увеличилось в 2,4 раза по сравнению с контролем; содержание коньюгантов в миокарде в дозе 1 мкмоль происходит нарушение целостности мембран митохондрий, но стимуляция ПОЛ не наблюдается.

При хроническом ингаляционном воздействии кадмий вызывает тяжелые поражения легких. Как показали проведенные Шоповой В. Л. с сотрудниками исследования, процент альвеолярных макрофагов (АМ) при воздействии кадмия в первый день значительно понижался (до 11,5%). Этот эффект наблюдался и на пятнадцатый день – АМ составил 45,5% от исходных значений. Одновременно резко повышался процент полиморфонуклеарных лейкоцитов (ПНЛ), среди некоторых встречались и незрелые формы. Средняя площадь АМ после химического воздействия увеличивалась за счет повышения процента очень крупных клеток, а не за счет равномерного увеличения площади всех клеток. При этом крупные АМ имели вакуолизированную пенистую цитоплазму. Встречались и клетки с пикнотическими ядрами, кариолизисом и кариорексисом. Все это указывает на то, что соединения кадмия существенно понижают содержание внутриклеточного АТФ и ингибируют клеточное дыхание.

В основе механизма токсического действия ионов тяжелых металлов, в том числе кадмия, лежит их взаимодействие с компонентами клеток, молекулами клеточных органелл и мембран.

Ионы металлов могут влиять на процессы, протекающие в клетке, только проникая внутрь ее и фиксируясь в субклеточных мембранах. Кадмий проникает в клетку через потенциал зависимые кальциевые канальцы. Воздействие кадмия на внутриклеточные процессы весьма разнообразны. Так, металл оказывает заметное влияние на обмен нуклеиновых кислот и белка. Он ингибирует in vivo включение тимидина в ДНК регенерирующей печени, угнетает синтез белка в печени крыс на стадии инициации трансляции, нарушая образования полирибосом, тогда как процесс элонгации, напротив, ускоряется в результате активирования факторов EF – 1 и EF – 2. Избыток ионов кадмия ингибирует синтез ДНК, белков и нуклеиновых кислот, влияет на активность ферментов, нарушает усвоение и обмен ряда микроэлементов (Zn, Cu, Se, Fe), что может вызывать их дефицит. Следует заметить, что при достаточном поступлении цинка в организм токсичность кадмия снижается.

С помощью электронной микроскопии было установлено, что кадмий вызывает ультраструктурные изменения клеточных мембран, митохондрий, цистерн аппарата Гольджи, сети трубочек, хроматина, ядрышка, микрофиламентов и рибосом.

Поражение клеточной оболочки является наиболее ранним признаком действия данного металла, особенно при длительном поступлении, хотя клетки могли переносить поражения клеточной оболочки, а также митохондрий и в некоторой степени – аппарата Гольджи.

При исследовании воздействия кадмия in vitro на митохондриальную мембрану выявили, что ионы кадмия повышают проницаемость мембраны к ионам H, K, Mg, а это приводит к активации дыхания энергизованных нефосфорилирующих митохондрий.

Известно, что некоторые ферменты в своей структуре имеют ионы металлов. Существует группа ферментов, в состав простетической части которых входят ионы металлов IV периода таблицы химических элементов, которые способны замещаться на любой двухвалентный ион металла (близкий по положению в таблице Д. И. Менделеева), в частности, к таким ферментам относятся щелочная фосфатаза и ряд протеаз. На основании проведенных экспериментов можно предположить, что в результате замещения ионов в простетической части фермента один на другой происходит изменение пространственной конфигурации активного центра фермента, что приводит к изменению уровня его активности.

Свое токсическое влияние кадмий оказывает и на репродуктивные функции организма. Эффект зависит от дозы вещества и времени воздействия. Основываясь на экспериментальных данных, полагают, что тератогенное действие кадмийсодержащих веществ может быть связано с ингибированием активности карбоангидразы. Так, воздействуя на ткани семенников, кадмий вызывает уменьшение синтеза тестостерона. Данный металл может приводить к гормональным нарушениям у самок, предотвращает оплодотворение, может вызывать кровотечения и даже приводить к смерти эмбрионов. Установлено также, что кадмий способен накапливаться в плаценте и вызывать ее повреждение. В исследованиях было выяснено влияние различных доз кадмия на эмбриональную смертность. Так, при введении металла в дозе 5 мг/кг впервые обнаруживаются мертвые эмбрионы, при 10 мг/кг наблюдается снижение средней массы плода, увеличение эмбриональной смертности в 2,8 раза, а при дозе 20 мг/кг – максимальное число мертвых эмбрионов на одно животное.

В литературе описано также отдаленное воздействие кадмия на развитие потомства. В частности, в результате введения самкам раствора кадмия во время беременности и в период лактации, у потомства, подвергавшегося действию металла в эмбриогенезе, наблюдались нейрохимические изменения в мозжечке и в полосатом теле, и изменения моторной активности во взрослом состоянии.

Таким образом, основываясь на литературных данных, можно отметить, что токсичность соединений кадмия следует рассматривать двояко. С одной стороны – это непосредственное действие ионов на организм. С другой стороны – влияние на потомство особей, подвергшихся действию соединений этого тяжелого металла.

 1

В работе отражены результаты мониторинга проб приземного слоя атмосферного воздуха на предмет содержания в нем тяжелых металлов в условиях урбанизированной среды Поволжья. Основными источниками техногенных тяжелых металлов в районе исследований являются промышленные предприятия и автотранспорт. Лабораторные элементные анализы проб производились методом пламенной атомно-абсорбционной спектрометрии. В результате проведения мониторинга выявлено превышение ПДК по ряду элементов: в г. Саратове – по свинцу, цинку, марганцу, меди; в г. Сердобске – по свинцу и кобальту; в г. Кузнецке – по свинцу, цинку и кобальту; в г. Камышине – по свинцу и цинку; в г. Волжском – по свинцу, кадмию и меди; в г. Инзе – по цинку; в г. Димитровграде – по ванадию, свинцу, цинку, меди. Требуются мероприятия по оздоровлению окружающей среды и, в частности, атмосферного воздуха.

атмосферный воздух

тяжелые металлы

техногенное загрязнение

1. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2009 году». - М.: АНО «Центр международных проектов», 2010. - 523 с.

2. ГОСТ 17.2.3.01-86. Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов. - М.: Изд-во стандартов, 1987. - 5 с.

3. Другов Ю. С., Беликов А. Б., Дьякова Г. А., Тульчинский В. М. Методы анализа загрязнений воздуха. - М.: Химия, 1984. - 384 с.

4. Израэль Ю. А. Экология и контроль состояния природной среды. - М.: Гидрометеоиздат, 1984. - 560 с.

5. Израэль Ю. А. Экология и контроль состояния природной среды. - Л.: Гидрометеоиздат, 1989. - 375 с.

6. РД 52.04.186-89. Руководство по контролю загрязнения атмосферы. - М.: Изд-во Госкомгидромета, 1991. - 237 с.

7. Экологический мониторинг: метод. пособие / В. В. Снакин, М. А. Малярова, Т. Ф. Гурова и др. - М.: РЭФИА, 1996. - 92 с.

Введение

В последние десятилетия экологическая обстановка в регионах Поволжья значительно ухудшилась. В настоящее время в Саратовской, Пензенской, Волгоградской и Ульяновской областях состояние окружающей среды в пределах городов, где проживает более половины населения, характеризуется как кризисное и требующее действенных мер по оздоровлению. Особо выделяется в поволжских городах экологическая проблема загрязнения техногенными тяжелыми металлами атмосферного воздуха .

На территории практически любого города распределение поллютантов, антропогенно выделяющихся в атмосферу, имеет свою специфику. Поллютанты, которые вместе с выбросами поступают в атмосферу на большой высоте над земной поверхностью (например, из высоких труб производственных объектов), распространяются на огромные расстояния воздушными массами. Эти выбросы в основном загрязняют территории, значительно удаленные от города.

Тяжелые металлы, как известно, содержатся в приземном слое атмосферного воздуха: в 1,5-3,5 м над земной поверхностью. Они способны мигрировать и аккумулироваться в депонирующих средах: в почве, водной среде, в биомассе живых организмов.

Тяжелые металлы в составе техногенных выбросов промышленных предприятий и автотранспорта составляют основную массу твердой фазы и находятся преимущественно в форме оксидов, сульфидов, карбонатов, гидратов и микроскопических капель (шариков) металлов. Удельная масса этих соединений (г/см 3) достаточно высокая: оксидов 5-6, сульфидов 4-4,5, карбонатов 3-4, металлов 7-8 .

Цель исследований , проведенных в 2009-2011 гг., состояла в анализе среднегодового содержания тяжелых металлов в городах Поволжья - Балашове, Саратове (Саратовская область), Сердобске, Кузнецке (Пензенская область), Камышине, Волжском (Волгоградская область), Инзе, Димитровграде (Ульяновская область) - с разной степенью техногенного прессинга на окружающую среду.

Материалы и методы исследования

Отбор проб воздуха на высоте 2-2,5 м от земли осуществлялся электроаспиратором ПУ-2Э на передвижных постах (автомобиль с инструментарием) . В большинстве городов было заложено по 5 постов, за исключением крупных городов - Саратова и Волжского, в которых располагалось по 10 постов. На участках природных степных разнотравных экосистем (контроль) - в окрестностях с. Березовка и с. Пады Балашовского района Саратовской области - мониторинг проводился на 2 постах. Пробоотбор осуществлялся дискретно на передвижных постах утром (8.00 ч) и вечером (20.00 ч) в течение 3 дней в августе 2009-2011 гг.

Лабораторный анализ проб воздухана предмет содержания в твердой фазе тяжелых металлов выполнен методом пламенной атомно-абсорбционной спектрометрии .

Результаты исследования и их обсуждение

Результаты мониторинга атмосферного воздуха в эталонной экосистеме (в контроле) представлены в табл. 1. Здесь ежегодно постоянно идентифицировались четыре техногенных тяжелых металла - Pb, Zn, Mn, Cu, аэротехногенными источниками которых были: движущийся по проселочным дорогам автотранспорт и деятельность сельскохозяйственных предприятий животноводческой и растениеводческой отраслей.

Таблица 1 Содержание техногенных тяжелых металлов в атмосферном воздухе в контроле (2009-2011 гг.)

В контроле концентрации данных элементов в атмосферном воздухе предельно-допустимых значений не превышали.

В составе атмосферного воздуха г. Балашова (Саратовская область) ежегодно индентифицировались следующие поллютанты: Pb, Zn, Mn, Cu, Fe, Co, Cd. Из них пять (Pb, Zn, Mn, Cu, Fe) оказывали наиболее значимое влияние на качество воздуха (табл. 2). Эти поллютанты содержались в воздухе в количествах (мг/м 3), превышающих фоновые показатели, но не превышающих соответствующие им гигиенические нормативы (ПДК). Средние арифметические значения концентраций Pb, Zn, Mn и Cu в атмосферном воздухе г. Балашова оказались равными ПДК, что свидетельствует о начинающимся процессе ухудшения качества воздуха и деградации окружающей среды.

Таблица 2г. Балашова (2009-2011 гг.)

В атмосферном воздухе г. Саратова выявлено десять тяжелых металлов (Pb, Zn, Mn, Cu, Co, Cd, Fe, Mo, Ni, Hg), из них наиболее значимые следующие шесть элементов: Pb, Zn, Mn, Cu, Co, Cd. Первые четыре металла содержались в приземной атмосфере в количествах, превышающих ПДК в 9,0, 6,2, 3,7 и 2,9 раз соответственно. Данные величины свидетельствуют о весьма нестабильном экологическом состоянии атмосферного воздуха в пределах г. Саратова, что требует срочной реализации неотложных природоохранных мер (табл. 3).

Таблица 3 Содержание техногенных тяжелых металлов в атмосферном воздухе г. Саратова (2009-2011 гг.)

В г. Сердобске (Пензенская область) зарегистрированы следующие тяжелые металлы - загрязнители приземной атмосферы: V, Pb, Zn, Co, Cu, Cd, Ni, Mo, но наиболее существенное влияние оказывают первые шесть элементов. Из всех поллютантов лишь Pb (1 ПДК) и Co (1,3 ПДК) содержались в воздухе в больших объемах, что характеризует состояние воздуха как экологически нестабильное (табл. 4). При увеличении объемов неочищенных или недостаточно очищенных аэротехногенных выбросов в ближайшие годы уровень загрязнения воздушного бассейна в пределах г. Сердобска будет оцениваться как высокий.

Таблица 4Содержание техногенных тяжелых металлов в атмосферном воздухе г. Сердобска (2009-2011 гг.)

В пределах г. Кузнецка (Пензенская область) в связи с высокой загрязненностью воздушного бассейна сложилась напряженная экологическая ситуация. В химическом составе атмосферного воздуха выявлено восемь наименований техногенных тяжелых металлов: Fe, Pb, Zn, Co, Cr, Ni, из которых шесть содержались в воздухе практически постоянно. Концентрации Pb, Zn, Co значительно превышали ПДК в 2,2, 1,2 и 1,5 раз соответственно, что говорит о высоком уровне загрязнения воздуха (табл. 5).

Таблица 5 Содержание техногенных тяжелых металлов в атмосферном воздухе г. Кузнецка (2009-2011 гг.)

Состав атмосферного воздуха г. Камышина (Волгоградская область) включает следующие поллютанты: Pb, Zn, Cd, Cu, Sb, V, Cd. Периодически выявляется присутствие в воздухе первых пяти элементов из этого перечня. Концентрации остальных металлов составляют либо следовые значения, либо отсутствуют продолжительное время. По Pb и Zn, входящим в состав выхлопных газов автомобилей и выбросов все еще функционирующих промышленных предприятий, ежегодно регистрировались повышенные концентрации, превышающие ПДК в 1,4 и 1,3 раза соответственно для каждого из этих загрязнителей (табл. 6). В соответствии с этим экологическое состояние воздушного бассейна в пределах г. Камышина оценивается как нестабильное.

Таблица 6Содержание техногенных тяжелых металлов в атмосферном воздухе г. Камышина (2009-2011 гг.)

Основными ингредиентами атмосферного воздуха в границах г. Волжского (Волгоградская область) являются следующие тяжелые металлы: Pb, Zn, Cd, Cu, Ni, Cd, Co, Hg, Cr. Первые четыре элемента являются приоритетными поллютантами, загрязняющими объекты окружающей среды. Экологическая обстановка на территории города оценивается как напряженная, связанная с большими объемами промышленных выбросов и значительно возросших количеств автомобильных выхлопов, содержащих Pb, Cd, и Cu в достаточно высоких концентрациях: 5,4, 2,3 и 2,5 долей ПДК по данным экотоксикантам (табл. 7). Требуются срочные природоохранные мероприятия.

Таблица 7Содержание техногенных тяжелых металлов в атмосферном воздухе г. Волжского (2009-2011 гг.)

Состояние атмосферного воздуха г. Инзы (Ульяновская область) оценивается как повышено загрязненное, поскольку в его составе периодически регистрируются тяжелые металлы: V, Pb, Zn, Cr, Cd, Ni, Mo. Ежегодно отмечаются высокие концентрации у Pb, Zn и Cr в приземном слое воздуха, причем Zn в среднем содержится в количестве, в 1,2 раза превышающим ПДК (табл. 8). Состояние воздуха оценивается как повышенно загрязненное. Экологическая проблема атмосферного воздуха связана с ежегодно возрастающими концентрациями тяжелых металлов, приближающихся к ПДК и превышающих ее.

Таблица 8Содержание техногенных тяжелых металлов в атмосферном воздухе г. Инзы (2009-2011 гг.)

В составе приземного слоя атмосферного воздуха в пределах г. Димитровграда установлено содержание порядка восьми техногенных элементов: V, Pb, Zn, Cu, Cr, Ni, Cd, Hg. Максимальное токсическое действие на окружающую среду оказывают четыре тяжелых металла: V, Pb, Zn и Cu. Их средневзвешенное содержание превышает ПДК в 1,5, 2,0, 1,8 и 2,5 раза соответственно для каждого из этих поллютантов (табл. 9). Состояние воздушного бассейна в пределах г. Димитровграда характеризуется как кризисное, напряженное и требует мер по его улучшению.

Таблица 9Содержание техногенных тяжелых металлов в атмосферном воздухе г. Димитровграда (2009-2011 гг.)

Выводы

Максимально загрязнен атмосферный воздух в городах с мощным техногенным воздействием на окружающую среду промышленностью и автотранспортом: в Саратове (уровень загрязнения воздуха - «очень высокий»), Кузнецке (уровень загрязнения воздуха - «высокий»), Волжском («высокий» уровень загрязнения воздуха), Димитровграде («высокий» уровень загрязнения воздуха).

Рецензенты:

  • Любимов Валерий Борисович, д.б.н., профессор, зав. кафедрой экологии и рационального природопользования ФГБОУ ВПО «Брянский государственный университет имени академика И. Г. Петровского», г. Брянск.
  • Зайцева Елена Владимировна, д.б.н., профессор, зав. кафедрой зоологии и анатомии ФГБОУ ВПО «Брянский государственный университет имени академика И. Г. Петровского», г. Брянск.

Библиографическая ссылка

Ларионов М.В., Ларионов Н.В. СОДЕРЖАНИЕ ТЕХНОГЕННЫХ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРИЗЕМНОМ СЛОЕ ВОЗДУХА УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ ПОВОЛЖЬЯ // Современные проблемы науки и образования. – 2012. – № 2.;
URL: http://science-education.ru/ru/article/view?id=6063 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
Поделиться: