Распознавание образов. Обзор существующих методов распознавания образов

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания. Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом. Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей. Метод заключается в том, что при классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

И т. п. объектов , которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.

Необходимость в таком распознавании возникает в самых разных областях - от военного дела и систем безопасности до оцифровки аналоговых сигналов.

Проблема распознавания образа приобрела выдающееся значение в условиях информационных перегрузок, когда человек не справляется с линейно-последовательным пониманием поступающих к нему сообщений, в результате чего его мозг переключается на режим одновременности восприятия и мышления, которому такое распознавание свойственно.

Неслучайно, таким образом, проблема распознавания образа оказалась в поле междисциплинарных исследований - в том числе в связи с работой по созданию искусственного интеллекта , а создание технических систем распознавания образа привлекает к себе всё большее внимание.

Энциклопедичный YouTube

    1 / 4

    Введение в распознавание образов

    Р.В. Шамин. Лекция № 6 Сети Хопфилда и Хемминга в задачах распознавания образов

    [ДДШ-2016]: Нейронные сети и современное компьютерное зрение

    Лекция 9. Экспоненциальное сглаживание. Распознавание образов: метод к-го ближайшего соседа

    Субтитры

Направления в распознавании образов

Можно выделить два основных направления :

  • Изучение способностей к распознаванию, которыми обладают живые существа, объяснение и моделирование их;
  • Развитие теории и методов построения устройств, предназначенных для решения отдельных задач в прикладных целях.

Формальная постановка задачи

Распознавание образов - это отнесение исходных данных к определенному классу с помощью выделения существенных признаков, характеризующих эти данные, из общей массы несущественных данных.

При постановке задач распознавания стараются пользоваться математическим языком, стремясь - в отличие от теории искусственных нейронных сетей , где основой является получение результата путём эксперимента, - заменить эксперимент логическими рассуждениями и математическими доказательствами .

Классическая постановка задачи распознавания образов : Дано множество объектов. Относительно них необходимо провести классификацию. Множество представлено подмножествами, которые называются классами. Заданы: информация о классах, описание всего множества и описание информации об объекте, принадлежность которого к определенному классу неизвестна. Требуется по имеющейся информации о классах и описании объекта установить - к какому классу относится этот объект.

Наиболее часто в задачах распознавания образов рассматриваются монохромные изображения , что дает возможность рассматривать изображение как функцию на плоскости. Если рассмотреть точечное множество на плоскости T {\displaystyle T} , где функция выражает в каждой точке изображения его характеристику - яркость, прозрачность, оптическую плотность, то такая функция есть формальная запись изображения.

Множество же всех возможных функций f (x , y) {\displaystyle f(x,y)} на плоскости T {\displaystyle T} - есть модель множества всех изображений X {\displaystyle X} . Вводя понятие сходства между образами можно поставить задачу распознавания. Конкретный вид такой постановки сильно зависит от последующих этапов при распознавании в соответствии с тем или иным подходом.

Некоторые методы распознавания графических образов

Для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д.

Второй подход - найти контур объекта и исследовать его свойства (связность, наличие углов и т. д.)

Ещё один подход - использовать искусственные нейронные сети . Этот метод требует либо большого количества примеров задачи распознавания (с правильными ответами), либо специальной структуры нейронной сети, учитывающей специфику данной задачи.

Персептрон как метод распознавания образов

Ф. Розенблатт, вводя понятие о модели мозга , задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления, описал простейшие эксперименты по различению. Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем, что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого эксперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением персептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем персептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением , но включает в себя и элементы обобщения .
  2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения .

Персептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых персептрон уже накопил определенный опыт.

Примеры задач распознавания образов

  • Распознавание штрих-кодов
  • Распознавание автомобильных номеров
  • Распознавание изображений
  • Распознавание локальных участков земной коры, в которых находятся месторождения

Распознавание образов - научное направление, связанное с разработкой принципов и построением систем, предназначенных для определения принадлежности данного объекта к одному из заранее выделенных классов объектов.

Введение

С развитием вычислительной техники стало возможным решить ряд задач, возникающих в процессе жизнедеятельности, облегчить, ускорить, повысить качество результата. К примеру, работа различных систем жизнеобеспечения, взаимодействие человека с компьютером, появление роботизированных систем и др. Тем не менее, отметим, что обеспечить удовлетворительный результат в некоторых задачах (распознавание быстродвижущихся подобных объектов, рукописного текста) в настоящее время не удается. Таким образом, в этой статье предлагается обсудить методы и принципы, применяемые в вычислительной технике для выполнения поставленной задачи.

Задача поиска изображения по образцу является частью (подзадачей) более общей задачи распознавания образов. При несистематизированном и ненаправленном поиске «схожих» объектов из множества объектов, их можно перечислять бесконечно долго и не прийти к завершению с заданной вероятностью. В частных случаях объекты характеризуются такими идентификационными параметрами(признаками), как форма, цвет, положение, подвижность, по отличительным особенностям, их комбинации и т.п. В зависимости от этих факторов объекты подвергаются классификации. Часто стоит не глобальная задача классификации всех окружающих объектов, а необходимость выделить в поступающем видео-потоке объекты определенного рода. Далее рассмотрены наиболее распространенные классификационные признаке.

Классификация

Классификация по форме

Когда встает задача выделить объекты по форме, должны быть заданы классификационные примитивы. В большинстве методов поиска в качестве примитивов используются круглые, эллиптические, прямоугольные или прямолинейные объекты.

Поиск по шаблону

Универсальным способом поиска по форме признан метод вписывания шаблона. Шаблон, имеющий форму, объекты которой необходимо выделить, перемещается по изображению, рассчитывается характеристика положения, и там, где показатель этой характеристики превышает некоторый порог – может находиться объект искомой формы.

Рис. 1. Обход картинки шаблоном

Рис. 2. Определение вероятного местоположения

Техника расчета характеристики может быть различна. Чаще всего используется среднеквадратичная разность значений яркости изображений шаблона и анализируемого кадра.

d i f f = ∑ i = 0 ∞ (p i x e l I 1 i − p i x e l I 2 i) ⋅ (p i x e l I 1 i − p i x e l I 2 i) n − 1 (1) {\displaystyle diff=\frac{\sqrt{\sum_{i=0}^\infty\left(pixelI1_i-pixelI2_i\right)\cdot\left(pixelI1_i-pixelI2_i\right)}}{n-1} \quad \quad {\color{Maroon}(1)} \,\!}

Недостатком этого метода является его ресурсоемкость. Требуется неоднократное непоследовательное обращение к одним и тем же фрагментам памяти изображения. К тому же, изображение шаблона не является динамически масштабируемым – то есть, если объект в кадре несколько меньше или больше шаблонного – он, скорее всего не будет выделен. Решением данной проблемы может быть поиск объектов по аналитической зависимости, описывающей их форму.

Поиск по аналитическому описанию формы

Распространена практика поиска объектов по форме, имеющей аналитическое описание. Например, эллипс (или его частный случай – окружность) могут быть описаны несложной формулой из курса аналитической геометрии.

x 2 a 2 + y 2 b 2 = R 2 (2) {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=R^{2}\quad \quad {\color {Maroon}(2)}\,\!}

По аналогии с методом поиска по шаблону для большинства точек изображения рассматривается их характеристика – в нее включаются значения яркостей точек, положение которых удовлетворяет аналитической зависимости.

Рис. 3. Вписывание эллипса в совокупность точек

В остальном этот метод аналогичен методу поиска по шаблону. Однако, ситуация когда объект искомой формы расположен в кадре нужным образом достаточно редка. Чаще всего отдельные элементы заслоняются или просто не видны, объект повернут и вообще мало похож на свою форму по аналитической зависимости или шаблону. В такой распространенной ситуации можно пытаться выделять отдельные фрагменты формы, например прямые линии.

Классификация по положению

Одним из наиболее наполненных эвристикой направлений в теории распознавания образов являются методы поиска по положению. В частности, при поиске лиц или других фрагментов тел в области кадра принимается допущение, что искомые области представляют собой продолговатые, чаще всего вытянутые в вертикальном направлении совокупности пикселей близких по яркости. Таким же образом используется множество других допущений относительно взаимного местоположения объектов – если на некий объект были нанесены легко отыскиваемые метки, или некие детали, изначально содержимые объектом, значительно проще классифицировать, чем весь объект в целом, то, обнаружив эти метки или детали, можно классифицировать содержащий их объект. То есть, если существует устойчивый метод выделения в кадре, например, глаз человека или носа, то можно по этим деталям сделать предположение, где находится все остальное. Исключения составляют атипичные случаи, когда объект в кадре обладает нетривиальным сочетанием этих деталей в неподходящих для распознавания положениях.

Классификация по цвету

Многие объекты можно классифицировать в зависимости от их цвета: они либо постоянно имеют определенную окраску, либо в некоторые моменты их окраска может быть регламентирована достаточно четко. Более того, в связи с тем, что существует множество базисов представления цветовых компонент (RGB, YUV, YCrCb, HSV и т.д.), нередки случаи, когда в том или ином базисе данный объект можно классифицировать практически безошибочно. Однако информация о том, какой базис использовать и как лучше организовать поиск объекта, имея в распоряжении изображение в данном базисе, зачастую может быть получена исключительно экспериментальным путем.

Базовые положения теории распознавания образов

Распознавание образов (объектов, сигналов, ситуаций, явлений или процессов) - задача идентификации объекта или определения каких-либо его свойств по его изображению (оптическое распознавание) или аудиозаписи (акустическое распознавание) и другим характеристикам.

Одним из базовых является не имеющее конкретной формулировки понятие множества. В компьютере множество представляется набором неповторяющихся однотипных элементов. Слово «неповторяющихся» означает, что какой-то элемент в множестве либо есть, либо его там нет. Универсальное множество включает все возможные для решаемой задачи элементы, пустое не содержит ни одного.

Образ - классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей. Образы обладают характерными объективными свойствами в том смысле, что разные люди, обучающиеся на различном материале наблюдений, большей частью одинаково и независимо друг от друга классифицируют одни и те же объекты. В классической постановке задачи распознавания универсальное множество разбивается на части-образы. Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы.

Методика отнесения элемента к какому-либо образу называется решающим правилом. Еще одно важное понятие - метрика, способ определения расстояния между элементами универсального множества. Чем меньше это расстояние, тем более похожими являются объекты (символы, звуки и др.) - то, что мы распознаем. Обычно элементы задаются в виде набора чисел, а метрика - в виде функции. От выбора представления образов и реализации метрики зависит эффективность программы, один алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть «поощрениями» и «наказаниями». Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация - это процесс изменения параметров и структуры системы, а возможно - и управляющих воздействий, на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Обучение - это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация - это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий.

Примеры задач распознавания образов:

  • pаспознавание букв;
  • pаспознавание штрих-кодов;
  • pаспознавание автомобильных номеров;
  • pаспознавание лиц и других биометрических данных;
  • pаспознавание изображений;
  • pаспознавание речи.

Методы распознавания образов

В целом, можно выделить следующие методы распознавания образов:

  • Метод перебора. В этом случае производится сравнение с базой данных, где для каждого вида объектов представлены всевозможные модификации отображения. Например, для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями, деформациями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д. В случае распознавания звуковых образов, соответственно, происходит сравнение с некоторыми известными шаблонами (например, слово, произнесенное несколькими людьми).
  • Второй подход - производится более глубокий анализ характеристик образа. В случае оптического распознавания это может быть определение различных геометрических характеристик. Звуковой образец в этом случае подвергается частотному, амплитудному анализу и т. д.
  • Следующий метод - использование искусственных нейронных сетей (ИНС). Этот метод требует либо большого количества примеров задачи распознавания при обучении, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Тем не менее, его отличает более высокая эффективность и производительность. .
  • Экспертный метод, основанный на непрерывном обучении экспертной системы в процессе эксплатации.

Персептрон как метод распознавания образов

Ф. Розенблатт, вводя понятие о модели мозга, задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления - описал простейшие эксперименты по различению. Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем, что алгоритм решения не детерминированный. Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого эксперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию. В опыте с обучением персептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем персептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты: 1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением, но включает в себя и элементы обобщения. 2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения. Персептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых персептрон уже накопил определенный опыт.

Общая характеристика задач распознавания образов и их типы

Общая структура системы распознавания и этапы в процессе ее разработки показаны на рис. 4.

Рис. 4. Пример структуры системы распознавания

Задачи распознавания - это информационные задачи, состоящие из двух этапов:

  • преобразование исходных данных к виду, удобному для распознавания;
  • собственно распознавание (указание принадлежности объекта определенному классу).

В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать правила, на основании которых объект зачисляется в один и тот же класс или в разные классы. В этих задачах можно оперировать набором прецедентов-примеров, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения. Для этих задач трудно строить формальные теории и применять классические математические методы (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов несоизмерим с затратами).

Выделяют следующие типы задач распознавания:

  • задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем);
  • задача автоматической классификации - разбиение множества объектов, ситуаций, явлений по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, самообучение);
  • задача выбора информативного набора признаков при распознавании;
  • задача приведения исходных данных к виду, удобному для распознавания;
  • динамическое распознавание и динамическая классификация - задачи 1 и 2 для динамических объектов;
  • задача прогнозирования - предыдущий тип, в котором решение должно относиться к некоторому моменту в будущем.

Распознавание образов, научное направление, связанное с разработкой принципов и построением систем, предназначенных для определения принадлежности данного объекта к одному из заранее выделенных классов объектов. Под объектами в распознавания образов понимают различные предметы, явления, процессы, ситуации, сигналы. Каждый объект описывается совокупностью основных характеристик (признаков, свойств) X = (x 1 , … , x i , … , x n) {\displaystyle X=(x_{1},\dots ,x_{i},\dots ,x_{n})} , где i {\displaystyle i} -я координата вектора X {\displaystyle X} определяет значения i {\displaystyle i} -й характеристики, и дополнительной характеристикой S {\displaystyle S} , которая указывает на принадлежность объекта к некоторому классу (образу). Набор заранее расклассифицированных объектов, т. е. таких, у которых известны характеристики X {\displaystyle X} и S {\displaystyle S} , используется для обнаружения закономерных связей между значениями этих характеристик, и поэтому называются обучающей выборкой. Те объекты, у которых характеристика S {\displaystyle S} неизвестна, образуют контрольную выборку. Отдельные объекты обучающей и контрольной выборок называются реализациями. Одна из основных задач Распознавания образов - выбор правила (решающей функции) D {\displaystyle D} , в соответствии с которым по значению контрольной реализации X {\displaystyle X} устанавливается её принадлежность к одному из образов, т. е. указываются «наиболее правдоподобные» значения характеристики S {\displaystyle S} для данного X {\displaystyle X} .

Успех в решении задачи Распознавания образов зависит в значительной мере от того, насколько удачно выбраны признаки X {\displaystyle X} . Исходный набор характеристик часто бывает очень большим. В то же время приемлемое правило должно быть основано на использовании небольшого числа признаков, наиболее важных для отличия одного образа от другого. Так, в задачах медицинской диагностики важно определить, какие симптомы и их сочетания (синдромы) следует использовать при постановке диагноза данного заболевания. Поэтому проблема выбора информативных признаков - важная составная часть проблемы распознавания образов

Проблема распознавания образов тесно связана с задачей предварительной классификации, или таксономией.

В основной задаче распознавания образов построения решающих функций D {\displaystyle D} используются закономерные связи между характеристиками X {\displaystyle X} и S {\displaystyle S} , обнаруживаемые на обучающей выборке, и некоторые дополнительные априорные предположения, например, следующие гипотезы: характеристики X {\displaystyle X} для реализаций образов представляют собой случайные выборки из генеральных совокупностей с нормальным распределением; реализации одного образа расположены «компактно» (в некотором смысле); признаки в наборе X {\displaystyle X} независимы и т.д.

В области Распознавания образов существенно используются идеи и результаты многих др. научных направлений - математики, кибернетики, психологии и т.д.

В 60-х гг. 20 в. в связи с развитием, электронной техники, в частности ЭВМ, широкое применение получили автоматические системы распознавания. Под системами распознавания обычно понимают комплексы средств, предназначенных для решения описанных выше, задач. Методы Распознавания образов используются в процессе машинной диагностики различных заболеваний, для прогнозирования полезных ископаемых в геологии, для анализа экономических и социальных процессов, в психологии, криминалистике, лингвистике, океанологии, химии, ядерной и космической физике, в автоматизированных системах управления и т.д. Их применение оправдано практически всюду, где приходится иметь дело с классификацией экспериментальных данных.

Одним из способов решения задачи распознавания образов является использование спектральных методов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Новосибирский государственный университет экономики и управления «НИНХ»

Информационно-технический факультет

Кафедра прикладных информационных технологий

по дисциплине Нечеткая логика и нейронные сети

Распознавание образов

Направление: Бизнес-информатика (электронный бизнес)

Ф.И.О студента: Мазур Екатерина Витальевна

Проверил: Павлова Анна Илларионовна

Новосибирск 2016

  • Введение
  • 1. Понятие распознавания
    • 1.1 История развития
    • 1.2 Классификация методов распознавания образов
  • 2. Методы распознавания образов
  • 3. Общая характеристика задач распознавания образов и их типы
  • 4. Проблемы и перспективы развития распознавания образов
    • 4.1 Применение распознавания образов на практике
  • Заключение

Введение

Достаточно продолжительное время задача распознавания образов рассматривалась только с биологической точки зрения. При этом наблюдениям подвергались лишь качественные характеристики, которые не позволяли описать механизм функционирования.

Введённое Н.Винером в начале XX века понятие кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе), позволила в вопросах распознавания ввести количественные методы. То есть, представить данный процесс (по сути - природное явление) математическими методами.

Теория распознавания образов является одним из основных разделов кибернетики как в теоретическом, так и в прикладном плане. Так, автоматизация некоторых процессов предполагает создание устройств, способных реагировать на изменяющиеся характеристики внешней среды некоторым количеством положительных реакций.

Базой для решения задач такого уровня являются результаты классической теории статистических решений. В ее рамках строились алгоритмы определения класса, к которому может быть отнесен распознаваемый объект.

Цель данной работы - познакомиться с понятиями теории распознавания образов: раскрыть основные определения, изучить историю возникновения, выделить основные методы и принципы теории.

Актуальность темы заключается в том, что на данный момент распознавание образов - одно из ведущих направлений кибернетики. Так, в последние годы оно находит все большее применение: оно упрощает взаимодействие человека с компьютером и создает предпосылки для применения различных систем искусственного интеллекта.

распознавание образ применение

1. Понятие распознавания

Долгое время проблема распознавания привлекала внимание только ученых области прикладной математики. В результате, работы Р. Фишера, созданные в 20-х годах , привели к формированию дискриминантного анализа - одного из разделов теории и практики распознавания образов. В 40-х годах А. Н. Колмогоровым и А. Я. Хинчиным была поставлена цель о разделении смеси двух распределений. А в 50-60-е годы ХХ века на основе большого количества работ появилась теория статистических решений. В рамках кибернетики начало складываться новое направление, связанное с разработкой теоретических основ и практической реализацией механизмов, а также систем, предназначенных для распознавания объектов и процессов. Новая дисциплина получила название "Распознавание образов".

Распознавание образов (объектов) - это задача идентификации объекта по его изображению (оптическое распознавание), аудиозаписи (акустическое распознавание) или другим характеристикам. Образ - это классификационная группировка, которая позволяет объединить группу объектов по некоторым признакам. Образы обладают характерной чертой, проявляющейся в том, что ознакомление с конечным числом явлений из одного множества дает возможность узнать большое количество его представителей. В классической постановке задачи распознавания множество разбивается на части.

Одним из базовых определений также является и понятие множества. В компьютере множество - это набор неповторяющихся однотипных элементов. "Неповторяющихся" - значит, что элемент в множестве либо есть, либо нет. Универсальное множество включает все возможные элементы, пустое не содержит ни одного.

Методика отнесения элемента к какому-то образу называется решающим правилом. Еще одно важное понятие - метрика - определяет расстояние между элементами множества. Чем меньше это расстояние, тем больше схожи объекты (символы, звуки и др.), которые мы распознаем. Стандартно элементы задаются в виде набора чисел, а метрика - в виде какой-то функции. От выбора представления образов и реализации метрики зависит эффективность работы программы: одинаковый алгоритм распознавания с разными метриками будет ошибаться с разной частотой.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на факторы внешних похожих сигналов путем их многократного воздействия на систему. Самообучение отличается от обучения тем, что здесь дополнительная информация о реакции системе не сообщается.

Примерами задач распознавания образов являются:

Распознавание букв;

Распознавание штрих-кодов;

Распознавание автомобильных номеров;

Распознавание лиц и других биометрических данных;

Распознавание речи и др..

1.1 История развития

К середине 50-х годов Р. Пенроуз ставит под сомнение нейросетевую модель мозга, указывая на существенную роль в его функционировании квантово-механических эффектов. Отталкиваясь от этого, Ф.Розенблатт разработал модель обучения распознавания зрительных образов, названную персептроном.

Рисунок 1 - Схема Персептрона

Далее были придуманы различные обобщения персептрона, и функция нейронов была усложнена: нейроны смогли не только умножать входные числа и сравнивать результат с пороговыми значениями, но и применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений:

Рис. 2 Схема нейронной сети.

Кроме того, топология нейронной сети могла быть еще более усложненной. Например, такой:

Рисунок 3 - Схема нейронной сети Розенблатта.

Нейронные сети, будучи сложным объектом для математического анализа, при грамотном их использовании, позволяли находить весьма простые законы данных. Но это достоинство одновременно является и источником потенциальных ошибок. Трудность для анализа, в общем случае, объясняется только сложной структурой, но, как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей.

1.2 Классификация методов распознавания образов

Как мы уже отметили, распознаванием образов называются задачи установления отношений эквивалентности между определенными образами-моделями объектов реального или идеального мира.

Данные отношения определяют принадлежность распознаваемых объектов к каким-либо классам, которые рассматриваются как самостоятельные независимые единицы.

При построении алгоритмов распознавания эти классы могут задаваться исследователем, который пользуется собственными представлениями или использует дополнительную информацию о сходстве или различии объектов в контексте данной задачи. В данном случае говорят о "распознавании с учителем". В другом, т.е. когда автоматизированная система решает задачу классификации без привлечения дополнительной информации, говорят о "распознавании без учителя".

В работах В.А. Дюка дан академический обзор методов распознавания и используется два основных способа представления знаний:

Интенсиональное (в виде схемы связей между атрибутами);

Экстенсиональное с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над признаками объектов, приводящих к нужному результату. Интенсиональные представления реализуются через операции над значениями и не предполагают проведения операций над конкретными объектами.

В свою очередь экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как самостоятельные системы.

Таким образом, в основу классификации методов распознавания, предложенной В.А. Дюка, положены фундаментальные закономерности, которые лежат в основе человеческого способа познания в принципе. Это ставит данное деление на классы в особое положение по сравнению с другими менее известными классификациями, которые на этом фоне выглядят искусственными и неполными.

2. Методы распознавания образов

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций . В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания.Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом . Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей . Метод заключается в том, чтопри классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

3. Общая характеристика задач распознавания образов и их типы

Общая структура системы распознавания и ее этапы показаны на рисунке 4:

Рисунок 4 - Структура системы распознавания

Задачи распознавания имеют следующие характерные этапы:

Преобразование исходных данных к удобному виду для распознавания;

Распознавание (указание принадлежности объекта определенному классу).

В этих задачах можно вводить понятие подобия объектов и формулировать набор правил, на основании которых объект зачисляется в один или разные классы.

Так же можно оперировать набором примеров, классификация которых известна и которые в виде заданных описаний могут быть объявлены алгоритму распознавания для настройки на задачу в процессе обучения.

Трудности решения задач распознавания связаны с невозможностью применять без исправлений классические математические методы (часто в доступе нет информация для точной математической модели)

Выделяют следующие типы задач распознавания:

Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем);

Задача автоматической классификации - разбиение множества систему непересекающихся классов (таксономия, кластерный анализ, самообучение);

Задача выбора информативного набора атрибутов при распознавании;

Задача приведения исходных данных к удобному виду;

Динамическое распознавание и классификация;

Задача прогнозирования - то есть, решение должно относиться к определенному моменту в будущем.

В существующих системах распознавания есть две наиболее сложные проблемы:

Проблема «1001 класса» - добавление 1 класса к 1000 существующим вызывает трудности с переобучением системы и проверке данных, полученных до этого;

Проблема «соотношения словаря и источников» - наиболее сильно проявляется в распознавании речи. Текущие системы могут распознавать либо большое количество слов от небольшой группы лиц, либо мало слов от большой группы лиц. Так же трудно распознавать большое количество лиц с гримом или гримасами.

Нейронные сети не решают эти задачи напрямую, однако в силу своей природы они гораздо легче адаптируются к изменениям входных последовательностей.

4. Проблемы и перспективы развития распознавания образов

4.1 Применение распознавания образов на практике

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа независимых объектов с отнесением их к тому или другому классу. По итогу обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными - на все другие. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему.

Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную, точную информацию. Такая информация представляет собой совокупность свойств объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Кроме того, объекты одного и того же образа могут сильно отличаться друг от друга.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться достаточно легкой и, наоборот, неудачно выбранное может привести к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Распознавание объектов, сигналов, ситуаций, явлений - самая часто встречающаяся задача, которую человеку необходимо решать ежесекундно. Для этого используются огромные ресурсы мозга, который оценивается таким показателем как число нейронов, равное 10 10 .

Также, распознавание постоянно встречается в технике. Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность и успел превратиться в инженерную дисциплину, связанную с производством коммерческих продуктов. В большом объеме ведутся работы по созданию элементной базы для нейровычислений.

Основной их характерной чертой является способность решать неформализованные проблемы, для которых в силу тех или иных причин не предполагается алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию получения алгоритмов путем обучения. В этом их основное преимущество. Поэтому нейрокомпьютинг оказывается актуальным именно сейчас - в период расцвета мультимедиа, когда глобальное развитие требует разработки новых технологий, тесно связанных с распознаванием образов.

Одной из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах распознавания. Дальнейшее развитие и проектирование компьютеров, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, нерешаемы без распознавания. Здесь уже встает вопрос о развитии робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Заключение

В результате работы был сделан краткий обзор основных определений понятий такого раздела кибернетики как распознавание образов, выделены методы распознавания, сформулированы задачи.

Безусловно, существует множество направлений по развитию данной науки. К тому же, как было сформулировано в одной из глав, распознавание - одно из ключевых направлений развития на данный момент. Так, программное обеспечение в ближайшие десятилетия может стать ещё более привлекательным для пользователя и конкурентоспособным на современном рынке, если приобретет коммерческий формат и начнет распространяться в рамках большого количества потребителей.

Дальнейшие исследования могут быть направлены на следующие аспекты: глубокий анализ основных методов обработки и разработка новых комбинированных или модифицированных методов для распознавания. На основании проведенных исследований можно будет разработать функциональную систему распознавания, с помощью которой возможно проверить выбранные методы распознавания на эффективность.

Список литературы

1. Дэвид Формайс, Жан Понс Компьютерное зрение. Современный подход, 2004

2. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин. - М.: Наука, 2004.

3. Журавлев Ю.И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. М.: Наука, 2005. - Вып. 33.

4. Мазуров В.Д. Комитеты систем неравенств и задача распознавания // Кибернетика, 2004, № 2.

5. Потапов А.С. Распознавание образов и машинное восприятие. - С-Пб.: Политехника, 2007.

6. Минский М., Пейперт С. Персептроны. - М.: Мир, 2007.

7. Растригин Л. А., Эренштейн Р. Х. Метод коллективного распознавания. М. Энергоиздат, 2006.

8. Рудаков К.В. Об алгебраической теории универсальных и локальных ограничений для задач классификации // Распознавание, классификация, прогноз. Математические методы и их применение. Вып. 1. - М.: Наука, 2007.

9. Фу К. Структурные методы в распознавании образов. - М.: Мир, 2005.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа , добавлен 15.01.2014

    Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация , добавлен 06.01.2014

    Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа , добавлен 13.10.2017

    Обзор задач, возникающих при разработке систем распознавания образов. Обучаемые классификаторы образов. Алгоритм персептрона и его модификации. Создание программы, предназначенной для классификации образов методом наименьшей среднеквадратической ошибки.

    курсовая работа , добавлен 05.04.2015

    Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа , добавлен 15.08.2011

    Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа , добавлен 06.04.2014

    Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.

    реферат , добавлен 10.04.2010

    Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.

    курсовая работа , добавлен 21.06.2014

    Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.

    курсовая работа , добавлен 14.11.2013

    Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.

В этой статье я задался целью осветить некоторые фундаментальные результаты теории машинного обучения таким образом, чтобы концепции были понятны читателям, немного знакомыми с задачами классификации и регрессии. Идея написать такую статью все четче проявлялась в моем сознании с каждой прочитанной книгой, в которой идеи обучения машин распознаванию рассказывались как бы с середины и совершенно не понятно, на что авторы того или иного метода опирались при его разработке. С другой стороны существует ряд книг, посвященных основным концепциям в машинном обучении, но изложение материала в них может показаться слишком сложным для первого прочтения.

Мотивация

Рассмотрим такую задачу. У нас есть яблоки двух классов - вкусные и не вкусные, 1 и 0. Яблоки обладают признаками - цветом и размером. Цвет изменятся непрерывно от 0 до 1, т.е. 0 -полностью зеленое яблоко, 1 - полностью красное. Размер может меняться аналогично, 0 - яблоко маленькое, 1 - большое. Мы хотели бы разработать алгоритм, который бы получал на вход цвет и размер, а на выходе отдавал класс яблока - вкусное оно или нет. Весьма желательно, чтобы число ошибок при этом было чем меньше тем лучше. При этом мы обладаем конечным списком, в котором указаны исторические данные о цвете, размере и классе яблок. Как бы мы могли решать такую задачу?

Логический подход

Решая нашу задачу, первый метод, который возможно придет на ум, может быть такой: давайте вручную составим правила типа if-else и в зависимости от значений цвета и размера будем присваивать яблоку определенный класс. Т.е. у нас есть предпосылки - это цвет и размер, и есть следствие - вкус яблока. Вполне разумно, когда признаков немного и можно на глаз оценить пороги для сравнения. Но может случится так, что придумать четкие условия не получится, и из данных не очевидно какие пороги брать, да и число признаков может увеличиваться в перспективе. А что делать, если в нашем списке с историческими данными, мы обнаружили два яблока с одинаковыми цветом и размером, но одно помечено как вкусное, а другое нет? Таким образом наш первый метод не настолько гибкий и масштабируемый, как нам бы хотелось.

Обозначения

Введем следующую нотацию. Будем обозначать -ое яблоко как . В свою очередь каждый состоит из двух чисел - цвета и размера. Этот факт мы будем обозначать парой чисел: . Класс каждого -го яблока мы обозначим как . Список с историческими данными обозначим буквой , длина этого списка равна . -ый элемент этого списка есть значение признаков яблока и его класс. Т.е. . Так же будем называть выборкой. Большими буквами и мы обозначим переменные, которые могут принимать значения конкретного признака и класса. Веедем новое понятие - решающее правило есть функция, которая принимает на вход значение цвета и размера , а на выходе возвращает метку класса:

Вероятностный подход

Развивая идею логического метода с предпосылками и следствиями, зададим себе вопрос - а какова вероятность того, что -ое яблоко, которое не принадлежит нашей выборке будет вкусное, при условии измеренных значений цвета и размера? В нотации теории вероятностей этот вопрос можно записать так:

В этом выражении можно интерпретировать как посылку, как следствие, но переход от посылки к следствию будет подчинятся вероятностным законам, а не логическим. Т.е. вместо таблицы истинности с булевскими значениями 0 и 1 для класса, будут значения вероятности, которые принимают значения от 0 до 1. Применим формулу Байеса и получим следующее выражение:

Рассмотрим правую часть этого выражения более подробно. Множитель называется априорной вероятностью и означает вероятность встретить вкусное яблоко среди всех возможных яблок. Априорная вероятность встретить невкусное яблоко есть . Эта вероятность может отражать наше личное знание о том, как распределены вкусные и невкусные яблоки в природе. Например, по нашему прошлому опыту мы знаем, что 80% всех яблок - вкусные. Или мы можем оценить это значение просто посчитав долю вкусных яблок в нашем списке с историческими данными S. Следующий множитель - показывает, насколько вероятно получить конкретное значение цвета и размера для яблока класса 1. Это выражение так же называется функцией правдоподобия и может иметь вид какого-нибудь конкретного распределения, например, нормального. Знаменатель мы используем в качестве нормировочной константы, что бы искомая вероятность изменялась в пределах от 0 до 1. Нашей конечной целью является не поиск вероятностей, а поиск решающего правила, которое бы сразу давало нам класс. Конечный вид решающего правила зависит от того, какие значения и параметры нам известны. Например, мы можем знать только значения априорной вероятности, а остальные значения оценить невозможно. Тогда решающее правило будет такое - ставить всем яблокам значение того класса, для которого априорная вероятность наибольшая. Т.е. если мы знаем, что 80% яблок в природе вкусные, то каждому яблоку ставим класс 1. Тогда наша ошибка составит 20%. Если же мы к тому же можем оценить значения функции правдоподобия $p(X=x_m | Y=1)$, то можем и найти значение искомой вероятности по формуле Байеса, как написано сверху. Решающее правило здесь будет таким: поставить метку того класса, для которого вероятность максимальна:

Это правило назовем Байесовским классификатором. Поскольку мы имеем дело с вероятностями, то даже большое значение вероятности не дает гарантий, что яблоко не принадлежит к классу 0. Оценим вероятность ошибки на яблоке следующим образом: если решающее правило вернуло значение класса равное 1, то вероятность ошибиться будет и наоборот:

Нас интересует вероятность ошибки классификатора не только на данном конкретном примере, но и вообще для всех возможных яблок:

Это выражение является математическим ожидаем ошибки . Итак, решая исходную проблему мы пришли к байесовскому классификатору, но какие у него есть недостатки? Главная проблема - оценить из данных условную вероятность . В нашем случае мы представляем объект парой чисел - цвет и размер, но в более сложных задачах размерность признаков может быть в разы выше и для оценки вероятности многомерной случайной величины может не хватить числа наблюдений из нашего списка с историческими данными. Далее мы попробуем обобщить наше понятие ошибки классификатора, а так же посмотрим, можно ли подобрать какой-либо другой классификатор для решения проблемы.

Потери от ошибок классификатора

Предположим, что у нас уже есть какое-либо решающее правило . Тогда оно может совершить два типа ошибок - первый, это причислить объект к классу 0, у которого реальный класс 1 и наоборот, причислить объект к классу 1, у которого реальный класс 0. В некоторых задачах бывает важно различать эти случаи. Например, мы страдаем больше от того, что яблоко, помеченное как вкусное, оказалось невкусным и наоборот. Степень нашего дискомфорта от обманутых ожиданий мы формализуем в понятии Более обще - у нас есть функция потерь, которая возвращает число для каждой ошибки классификатора. Пусть - реальная метка класса. Тогда функция потерь возвращает величину потерь для реальной метки класса и значения нашего решающего правила . Пример применения этой функции - берем из яблоко с известным классом , передаем яблоко на вход нашему решающему правилу , получаем оценку класса от решающего правила, если значения и совпали, то считаем что классификатор не ошибся и потерь нет, если значения не совпадают, то величину потерь скажет наша функция

Условный и байесовский риск

Теперь, когда у нас есть функция потерь и мы знаем, сколько мы теряем от неправильной классификации объекта , было бы неплохо понять, сколько мы теряем в среднем, на многих объектах. Если мы знаем величину - вероятность того, что -ое яблоко будет вкусное, при условии измеренных значений цвета и размера, а так же реальное значение класса(например возьмем яблоко из выборки S, см. в начале статьи), то можем ввести понятие условного риска. Условный риск есть средняя величина потерь на объекте для решающего правила :

В нашем случае бинарной классификации когда получается:

Выше мы описывали решающее правило, которое относит объект к тому классу, который имеет наибольшее значение вероятности Такое правило доставляет минимум нашим средним потерям(байесовскому риску), поэтому Байесовский классификатор является оптимальным с точки зрения введенного нами функционала риска. Это значит, что Байесовский классификатор имеет наименьшую возможную ошибку классификации.

Некоторые типовые функции потерь

Одной из наиболее частовстречающихся функций потерь является симметричная функция, когда потери от первого и второго типов ошибок равнозначны. Например, функция потерь 1-0 (zero-one loss) определяется так:

Тогда условный риск для a(x) = 1 будет просто значением вероятности получить класс 0 на объектке :

Аналогично для a(x) = 0:

Функция потерь 1-0 принимает значение 1, если классификатор делает ошибку на объекте и 0 если не делает. Теперь сделаем так, чтобы значение на ошибке равнялось не 1, а другой функции Q, зависящей от решающего правила и реальной метки класса:

Тогда условный риск можно записать так:

Замечания по нотации

Предыдущий текст был написан согласно нотации, принятой в книге Дуды и Харта. В оригинальной книге В.Н. Вапника рассматривался такой процесс: природа выбирает объект согласно распределению $p(x)$, а затем ставит ему метку класса согласно условному распределению $p(y|x)$. Тогда риск(матожидание потерь) определяется как

Где - функция, которой мы пытаемся аппроксимировать неизвестную зависимость, - функция потерь для реального значения и значения нашей функции . Эта нотации более наглядна для того чтобы ввести следущее понятие - эмпирический риск.

Эмпирический риск

На данном этапе мы уже выяснили, что логический метод нам не подходит, потому что он недостаточно гибкий, а байесовский классификатор мы не можем использовать, когда признаков много, а данных для обучения ограниченное число и мы не сможем восстановить вероятность . Так же нам известно, что байесовский классификатор обладает наименьшей возможной ошибкой классификации. Раз уж мы не можем использовать байесовский классификатор, давайте возьмем что-нибудь по проще. Давайте зафиксируем некоторое параметрическое семейство функций H и будем подбирать классификатор из этого семейства.

Пример: пусть множество всех функций вида

Все функции этого множества будут отличаться друг от друга только коэффициентами Когда мы выбрали такое семейство, мы предположили, что в координатах цвет-размер между точками класса 1 и точками класса 0 можно провести прямую линию с коэффициентами таким образом, что точки с разными классами находятся по разные стороны от прямой. Известно, что у прямой такого вида вектор коэффициентов является нормалью к прямой. Теперь делаем так - берем наше яблоко, меряем у него цвет и размер и наносим точку с полученными координатами на график в осях цвет-размер. Далее меряем угол между этой точкой и вектором $w$. Замечаем, что наша точка может лежать либо по одну, либо по другую сторону от прямой. Тогда угол между и точкой будет либо острый, либо тупой, а скалярное произведение либо положительное, либо отрицательное. Отсюда вытекает решающее правило:

После того как мы зафиксировали класс функций $Н$, возникает вопрос - как выбрать из него функцию с нужными коэффициентами? Ответ - давайте выберем ту функцию, которая доставляет минимум нашему байесовскому риску $R()$. Опять проблема - чтобы посчитать значения байесовского риска, нужно знать распределение $p(x,y)$, а оно нам не дано, и восстановиь его не всегда возможно. Другая идея - минимизировать риск не на всех возможных объектах, а только на выборке. Т.е. минимизировать функцию:

Эта функция и называется эмпирическим риском. Следующий вопрос - почему мы решили, что минимизируя эмпирический риск, мы при этом так же минимизируем байесовский риск? Напомню, что наша задача практическая - допустить как можно меньше ошибок классификации. Чем меньше ошибок, тем меньше байесовский риск. Обоснование о сходимости эмпирического риска к байесовскому с ростом объема данных было получено в 70-е годы двумя учеными - В. Н. Вапником и А. Я. Червоненкисом.

Гарантии сходимости. Простейший случай

Итак, мы пришли к тому, что байесовский классификатор дает наименьшую возможною ошибку, но обучить его в большинстве случаев мы не можем и ошибку(риск) посчитать мы тоже не в силах. Однако, мы можем посчитать приближение к байесовскокому риску, которое называется эмпирический риск, а зная эмпирический риск подобрать такую аппроксимирующую функцию, которая бы минимизировала эмпирический риск. Давайте рассмотрим простейшую ситуацию, когда минимизация эмпирического риска дает классификатор, так же минимизирующий байесовский риск. Для простейшего случая нам придется сделать предположение, которое редко выполняется на практике, но которое в дальнейшем можно будет ослабить. Зафиксируем конечный класс функций из которого мы будем выбирать наш классификатор и предположим, что настоящая функция, которую использует природа для разметки наших яблок на вкусы находится в этом конечном множестве гипотез: . Так же у нас есть выборка , полученная из распределения над объектами . Все объекты выборки считаем одинаково независимо распределенными(iid). Тогда будет верна следующая

Теорема

Выбирая функцию из класса с помощью минимизации эмпирического риска мы гарантированно найдем такую , что она имеет небольшое значение байесовского риска если выборка, на которой мы производим минимизацию имеет достаточный размер.

Что значит «небольшое значение» и «достаточный размер» см. в литературе ниже.

Идея доказательства

По условию теоремы мы получаем выборку из распределения , т.е. процесс выбора объектов из природы случаен. Каждый раз, когда мы собираем выборку она будет из того же распределения, но сами объекты в ней могут быть различны. Главная идея доказательства состоит в том, что мы можем получить такую неудачную выборку , что алгоритм, который мы выберем с помощью минимизации эмпирического риска на данной выборке будет плохо минимизировать байесовский риск но при этом хорошо минимизировать эмпирический риск, но вероятность получить такую выборку мала и ростом размера выборки эта вероятность падает. Подобные теоремы существуют и для более реалистичных предположений, но здесь мы не будем их рассматривать.

Практические результаты

Имея доказательства того, что функция, найденная при минимизации эмпирического риска не будет иметь большую ошибку на ранее не наблюдаемых данных при достаточном размере обучающей выборки мы можем использовать этот принцип на практике, например, следующим образом - берем выражение:

И подставляем разные функции потерь, в зависимости от решаемой задачи. Для линейной регрессии:

Для логистической регресии:

Несмотря на то, что за методом опорных векторов лежит в основном геометрическая мотивация, его так же можно представить как проблему минимизации эмпирического риска.

Заключение

Многие методы обучения с учителем можно рассматривать в том числе как частные случаи теории, разработанной В. Н. Вапником и А. Я. Червоненкисом. Эта теория дает гарантии относительно ошибки на тестовой выборке при условии достаточного размера обучающей выборки и некоторых требований к пространству гипотез, в котором мы ищем наш алгоритм.

Используемая литература

  • The Nature of Statistical Learning Theory, Vladimir N. Vapnik
  • Pattern Classification, 2nd Edition, Richard O. Duda, Peter E. Hart, David G. Stork
  • Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben-David
P.S. Просьба писать в личку обо всех неточностях и опечатках

Теги: Добавить метки

Поделиться: