Фамилии известных физиков. Великие ученые в области физики

Во время своих экспериментов Галилео обнаружил, что тяжелые предметы падают быстрее легких из-за меньшего воздушного сопротивления: воздух мешает легкому объекту сильнее, чем тяжелому.

Решение Галилея проверить закон Аристотеля стало поворотным моментом в науке, оно ознаменовало начало проверки всех общепринятых законов опытным путем. Опыты Галилея с падающими телами привели к нашему начальному пониманию ускорения под действием гравитации.

Всемирное тяготение

Говорят, что однажды Ньютон сидел под яблоней в саду и отдыхал. Вдруг он увидел, как с ветки упало яблоко. Этот простой инцидент заставил его задуматься, почему яблоко упало вниз, в то время, как Луна все время оставалась в небе. Именно в этот момент в мозгу молодого Ньютона свершилось открытие: он понял, что на яблоко и Луну действует единая сила гравитации.


Ньютон представил себе, что на весь фруктовый сад действовала сила, которая притягивала к себе ветки и яблоки. Его более важно то, что он распространил эту силу до самой Луны. Ньютон понял, что сила притяжения есть везде, до него никто до этого не додумывался.

Согласно этому закону, гравитация влияет на все тела во Вселенной, включая яблоки, луны и планеты. Сила притяжения такого крупного тела, как Луна, может провоцировать такие явления, как приливы и отливы океанов на Земле.

Вода в той части океана, которая находится ближе к Луне, испытывает большее притяжение, поэтому Луна, можно сказать, перетягивает воду из одной части океана в другую. А так, как Земля вращается в противоположном направлении, эта задержанная Луной вода оказывается дальше привычных берегов.

Понимание Ньютоном того, что у каждого предмета есть собственная сила притяжения, стало великим научным открытием. Однако, его дело было еще не завершено.

Законы движения

Возьмем, например хоккей. Бьете клюшкой по шайбе, и она скользит по льду. Это первый закон: под действием силы предмет движется. Если бы не было трения о лед, то шайба скользила бы бесконечно долго. Когда вы бьете клюшкой по шайбе, то придаете ей ускорение.

Второй закон гласит: ускорение прямо пропорционально приложенной силе и обратно пропорционально массе тела.

А согласно третьему закону при ударе шайба действует на клюшку с такой же силой, как клюшка на шайбу, т.е. сила действия равна силе противодействия.

Законы движения Ньютона были смелым решением объяснять механику функционирования Вселенной, они стали основой классической физики.

Второй закон термодинамики

Наука о термодинамике – это наука о тепле, которая преобразуется в механическую энергию. От нее зависела вся техника во время промышленной революции.

Тепловая энергия может быть преобразована в энергию движения, например, путем вращения коленчатого вала или турбины. Важнее всего выполнить как можно больше работы, используя как можно меньше топлива. Это наиболее экономически выгодно, поэтому люди стали изучать принципы работы паровых двигателей.


Среди тех, кто занимался этим вопросом, был немецкий ученый . В 1865 году он сформулировал Второй закон термодинамики . Согласно этому закону, при любом энергетическом обмене, например, во время нагревания воды в паровом котле, часть энергии пропадает. Клаузиус ввел в оборот слово энтропия , объясняя с его помощью ограниченную эффективность паровых двигателей. Часть тепловой энергии теряется во время преобразования в механическую.

Это утверждение изменило наше понимание того, как функционирует энергия. Не существует теплового двигателя, который был бы эффективен на 100%. Когда вы едете на машине, только 20% энергии бензина действительно тратится на движение. Куда девается остальная часть? На нагревание воздуха, асфальта и шин. Цилиндры в блоке цилиндров нагреваются и изнашиваются, а детали ржавеют. Грустно думать о том, насколько расточительны такие механизмы.

Хотя Второй закон термодинамики был основой промышленной революции, следующее великое открытие привело мир в новое, его современное состояние.

Электромагнетизм


Ученые научились создавать магнитную силу с помощью электричества, когда пустили ток по завитому проводу. В результате получился электромагнит. Как только подается ток, возникает магнитное поле. Нет напряжения – нет поля.

Электрогенератор в своей самой простейшей форме является витком проволоки между полюсами магнита. Майкл Фарадей обнаружил, что когда магнит и проволока находятся на близком расстоянии, по проволоке проходит ток. По этому принципу работают все электрогенераторы.

Фарадей вел записи о своих экспериментах, но шифровал их. Тем не менее они были по достоинству оценены физикомДжеймсом Клерком Максвеллом , который использовал их, чтобы еще лучше понять принципы электромагнетизма . Максвелл позволил человечеству понять, как электричество распределяется по поверхности проводника.

Если вы хотите знать, каким был бы мир без открытий Фарадея и Максвелла, то представьте себе, что электричество не существует: не было бы радио, телевидения, мобильных телефонов, спутников, компьютеров и всех средств связи. Представьте себе, что вы в 19 веке, потому что без электричества вы бы именно там и оказались.

Совершая открытия, Фарадей и Максвелл не могли знать, что их труд вдохновил одного юношу на раскрытие тайн света и на поиск его связи с величайшей силой Вселенной. Этим юношей был Альберт Эйнштейн.

Теория относительности

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.


В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время – это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них – это «парадокс близнецов» . Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

E=mc 2

Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E – энергия фонарика зависит от m – массы в пропорции, равной c 2 . Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

Квантовая теория

Квантовый скачок – самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома – это закон.

Квантовая теория появилась в самом начале 20 века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри , например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах – квантах .


Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик , наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

Природа света

Древние задавались вопросом: из чего состоит Вселенная? Они считали, что она состоит из земли, воды, огня и воздуха. Но если это так, то что же такое свет? Его нельзя поместить в сосуд, нельзя дотронуться до него, почувствовать, он бесформенный, но присутствует везде вокруг нас. Он одновременно везде и нигде. Все видели свет, но не знали, что это такое.

Физики пытались ответить на этот вопрос на протяжении тысячи лет. над поиском природы света работали величайшие умы, начиная с Исаака Ньютона. Сам Ньютон использовал солнечный свет, разделенный призмой, чтобы показать все цвета радуги в одном луче. Это значило, что белый свет состоит из лучей всех цветов радуги.


Ньютон показал, что красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета могут быть объединены в белый свет. Это привело его к мысли, что свет делится на частицы, которые он назвал корпускулами. Так появилась первая световая теория – корпускулярная.

Представьте себе морские волны: любой человек знает, что когда одна из волн сталкивается с другой под определенным углом, обе волны смешиваются. Юнг проделал то же самое со светом. Он сделал так, чтобы свет от двух источников пересекался, и место пересечения было отчетливо видно.

Итак, тогда было все две световые теории: корпускулярная у Ньютона и волновая у Юнга . И тогда за дело взялся Эйнштейн, который сказал, что возможно, обе теории имеют смысл. Ньютон показал, что у света есть свойства частиц, а Юнг доказал, что свет может иметь волновые свойства. Все это – две стороны одного и того же. Возьмем, например, слона: если вы возьмете его за хобот, то подумаете, что это змея, а если обхватите его ногу, то вам покажется, что это дерево, но на самом деле слон обладает качествами и того, и другого. Эйнштейн ввел понятие дуализма света , т.е. наличия у света свойств как частиц, так и волн.

Чтобы увидеть свет таким, каким мы знает его сегодня, потребовалась работа трех гениев на протяжении трех веков. Без их открытий мы, возможно, до сих пор жили бы в раннем Средневековье.

Нейтрон

Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.


О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале 20 века провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром .

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Сверхпроводники

Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники .

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.


Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называетсясверхпроводимостью .

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее. С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка .

Ядерные силы

Наше стремление найти ответы на все вопросы о Вселенной привело человека как внутрь атомов и кварков, так и за пределы галактики. Данное открытие – результат работы многих людей на протяжении столетий.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в 20 веке были открыты еще две силы, объединенные одним понятием – атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы – это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет – это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера . Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки. (weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация – великолепная, прекрасная система, она красива до слез – физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди – самый любопытный вид на планете – никогда не перестанут стремиться понимать, искать и открывать.

МАРРИ ГЕЛЛ-МАНН (род. в 1929 г.)

Марри Гелл-Манн родился 15 сентября 1929 года в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Марри поступил в Йельский университет. Он окончил его в 1948 году с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетсского технологического института. Здесь в 1951 году Гелл-Манн получил докторскую степень по физике.

ЛЕВ ДАВИДОВИЧ ЛАНДАУ (1908—1968)

Лев Давидович Ландау родился 22 января 1908 года в семье Давида Любови Ландау в Баку. Его отец был известным инженером-нефтяником,! работавшим на местных нефтепромыслах, а мать — врачом. Она занималась физиологическими исследованиями. Старшая сестра Ландау стала инженером-химиком.


ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ (1903—1960)

Игорь Васильевич Курчатов родился 12 января 1903 года в семье помощника лесничего в Башкирии В 1909 году семья переехала в Симбирск В 1912 году Курчатовы перебираются в Симферополь Здесь мальчик поступает в первый класс гимназии.

ПОЛЬ ДИРАК (1902—1984)

Английский физик Поль Адриен Морис Дирак родился 8 августа 1902 года в Бристоле, в семье уроженца Швеции Чарлза Адриена Ладислава Дирака, учителя французского языка в частной школе, и англичанки Флоренс Ханны (Холтен) Дирак.

ВЕРНЕР ГЕЙЗЕНБЕРГ (1901—1976)

Вернер Гейзенберг был одним из самых молодых ученых, получивших Нобелевскую премию. Целеустремленность и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки — принципа неопределенности.

ЭНРИКО ФЕРМИ (1901—1954)

«Великий итальянский физик Энрико Ферми, — писал Бруно Понтекорво, — занимает особое место среди современных ученых: в наше время, когда узкая специализация в научных исследованиях стала типичной, трудно указать столь же универсального физика, которым был Ферми. Можно даже сказать, что появление на ученой арене XX века человека, который внес такой громадный вклад в развитие теоретической физики, и экспериментальной физики, и астрономии, и технической физики, ~ явление скорее уникальное, чем редкое».

НИКОЛАЙ НИКОЛАЕВИЧ СЕМЕНОВ (1896—1986)

Николай Николаевич Семенов родился 15 апреля 1896 года в Саратове, в семье Николая Александровича и Елены Дмитриевны Семеновых. Окончив в 1913 году реальную школу в Самаре, он поступил на физико-математический факультет Санкт-Петербургского университета, где, занимаясь у известного русского физика Абрама Иоффе, проявил себя активным студентом.

ИГОРЬ ЕВГЕНЬЕВИЧ ТАММ (1895—1971)

Игорь Евгеньевич родился 8 июля 1895 года во Владивостоке в семье Ольги (урожденной Давыдовой) Тамм и Евгения Тамма, инженера-строителя. Евгений Федорович работал на строительстве Транссибирской железной дороги. Отец Игоря был не только разносторонним инженером, но и исключительно мужественным человеком. Во время еврейского погрома в Елизаветграде он один пошел на толпу черносотенцев с тростью и разогнал ее. Возвращаясь из дальних краев с трехлетним Игорем, семья совершила путешествие морем через Японию в Одессу.

ПЕТР ЛЕОНИДОВИЧ КАПИЦА (1894—1984)

Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Это был образованный интеллигентный человек, одаренный инженер, сыгравший важную роль в развитии русских вооруженных сил. Мать, Ольга Иеронимовна, урожденная Стебницкая, была образованной женщиной. Она занималась литературой, педагогической и общественной деятельностью, оставив след в истории русской культуры.


ЭРВИН ШРЁДИНГЕР (1887—1961)

Австрийский физик Эрвин Шредингер родился 12 августа 1887 года в Вене Его отец, Рудольф Шредингер, был владельцем фабрики по производству клеенки, увлекался живописью и питал интерес к ботанике Единственный ребенок в семье, Эрвин получил начальное образование дома Его первым учителем был отец, о котором впоследствии Шредингер отзывался как о «друге, учителе и не ведающем усталости собеседнике» В 1898 году Шредингер поступил в Академическую гимназию, где был первым учеником по греческому языку, латыни, классической литературе, математике и физике В гимназические годы у Шредингера возникла любовь к театру.

НИЛЬС БОР (1885—1962)

Эйнштейн сказал однажды: «Что удивительно привлекает в Боре как ученом-мыслителе, так это редкий сплав смелости и осторожности; мало кто обладал такой способностью интуитивно схватывать суть скрытых вещей, сочетая это с обостренным критицизмом. Он, без сомнения, является одним из величайших научных умов нашего века».

МАКС БОРН (1882—1970)

Его имя ставят в один ряд с такими именами, как Планк и Эйнштейн, Бор, Гейзенберг. Борн по праву считается одним из основателей квантовой механики. Ему принадлежат многие основополагающие работы в области теории строения атома, квантовой механики и теории относительности.

АЛЬБЕРТ ЭЙНШТЕЙН (1879—1955)

Его имя часто на слуху в самом обычном просторечии. «Эйнштейном здесь и не пахнет»; «Ничего себе Эйнштейн»; «Да, это точно не Эйнштейн!». В его век, когда доминировала как никогда ранее наука, он стоит особняком, словно некий символ интеллектуальной мощи Иной раз даже как бы возникает мысль" человечество делится на две части — Альберт Эйнштейн и весь остальной мир.

ЭРНЕСТ РЕЗЕРФОРД (1871—1937)

Эрнест Резерфорд родился 30 августа 1871 года вблизи города Нелсон (Новая Зеландия) в семье переселенца из Шотландии. Эрнест был четвертым из двенадцати детей. Мать его работала сельской учительницей. Отец будущего ученого организовал деревообрабатывающее предприятие. Под руководством отца мальчик получил хорошую подготовку для работы в мастерской, что впоследствии помогло ему при конструировании и постройке научной аппаратуры.

МАРИЯ КЮРИ-СКЛОДОВСКА (1867—1934)

Мария Склодовска родилась 7 ноября 1867 года в Варшаве Она была младшей из пяти детей в семье Владислава и Брониславы Склодовских. Мария воспитывалась в семье, где занятия наукой пользовались уважением. Ее отец преподавал физику в гимназии, а мать, пока не заболела туберкулезом, была директором гимназии. Мать Марии умерла, когда девочке было одиннадцать лет.

ПЕТР НИКОЛАЕВИЧ ЛЕБЕДЕВ (1866—1912)
Петр Николаевич Лебедев родился 8 марта 1866 года в Москве, в купеческой семье Его отец работал доверенным приказчиком и относился к своей работе с настоящим энтузиазмом В его глазах торговое дело было окружено ореолом значимости и романтики Это же отношение он прививал своему единственному сыну, и поначалу успешно В первом письме восьмилетний мальчик пишет отцу «Милый папа, здоров ли ты и хорошо ли торгуешь?»

МАКС ПЛАНК (1858—1947)

Немецкий физик Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепиано и органе, обнаруживая незаурядные музыкальные способности. В 1867 году семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам.

ГЕНРИХ РУДОЛЬФ ГЕРЦ (1857—1894)

В истории науки не так много открытий, с которыми приходится соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а он сделал открытие именно в этой области.

ДЖОЗЕФ ТОМСОН (1856—1940)

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

ГЕНДРИК ЛОРЕНЦ (1853—1928)

В историю физики Лоренц вошел как создатель электронной теории, в которой синтезировал идеи теории поля и атомистики.Гендрик Антон Лоренц родился 15 июля 1853 года в голландском городе Арнхеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

ВИЛЬГЕЛЬМ РЕНТГЕН (1845—1923)

В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Конрада Рентгена. Казалось не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген, жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.

ЛЮДВИГ БОЛЬЦМАН (1844—1906)

Людвиг Больцман, без сомнения, был величайшим ученым и мыслителем, которого дала миру Австрия. Еще при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим ученым, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

АЛЕКСАНДР ГРИГОРЬЕВИЧ СТОЛЕТОВ (1839—1896)

Александр Григорьевич Столетов родился 10 августа 1839 года в семье небогатого владимирского купца. Его отец, Григорий Михайлович, владел небольшой бакалейной лавкой и мастерской по выделке кож. В доме была неплохая библиотека, и Саша, научившись читать в четырехлетнем возрасте, стал рано ею пользоваться. В пять лет он уже читал совершенно свободно.

УИЛЛАРД ГИББС (1839—1903)

Загадка Гиббса заключается не в том, был ли он неправильно понятым или неоцененным гением. Загадка Гиббса состоит в другом: как случилось, что прагматическая Америка в годы царствования практицизма произвела на свет великого теоретика? До него в Америке не было ни одного теоретика. Впрочем, как почти не было теоретиков и после. Подавляющее большинство американских ученых — экспериментаторы.

ДЖЕЙМС МАКСВЕЛЛ (1831—1879)

Джеймс Максвелл родился в Эдинбурге 13 июня 1831 года. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. С этого времени «берлога в узком ущелье» прочно вошла в жизнь Максвелла. Здесь жили и умерли его родители, здесь подолгу жил и похоронен он сам.

ГЕРМАН ГЕЛЬМГОЛЬЦ (1821—1894)

Герман Гельмгольц — один из величайших ученых XIX века. Физика, физиология, анатомия, психология, математика... В каждой из этих наук он сделал блестящие открытия, которые принесли ему мировую славу.

ЭМИЛИЙ ХРИСТИАНОВИЧ ЛЕНЦ (1804—1865)

С именем Ленца связаны фундаментальные открытия в области электродинамики. Наряду с этим ученый по праву считается одним из основоположников русской географии.Эмилий Христианович Ленц родился 24 февраля 1804 года в Дерпте (ныне Тарту). В 1820 году он окончил гимназию и поступил в Дерптский университет. Самостоятельную научную деятельность Ленц начал в качестве физика в кругосветной экспедиции на шлюпе «Предприятие» (1823— 1826), в состав которой был включен по рекомендации профессоров университета. В очень короткий срок он совместно с ректором Е.И. Парротом создал уникальные приборы для глубоководных океанографических наблюдений — лебедку-глубомер и батометр. В плавании Ленц провел океанографические, метеорологические и геофизические наблюдения в Атлантическом, Тихом и Индийском океанах. В 1827 году он выполнил обработку полученных данных и проанализировал их.

МАЙКЛ ФАРАДЕЙ (1791—1867)

олько открытий, что их хватило бы доброму десятку ученых, чтобы обессмертить свое имя.Майкл Фарадей родился 22 сентября 1791 года в Лондоне, в одном из беднейших его кварталов. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Квартира, в которой появился на свет и провел первые годы своей жизни великий ученый, находилась на заднем дворе и помещалась над конюшнями.

ГЕОРГ ОМ (1787—1854)

О значении исследований Ома хорошо сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году: «Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал) единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты! только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы, Ом вырвал у природы так долго скрываемую ею тайну и передал ее в руки современников».

ГАНС ЭРСТЕД (1777—1851)

«Ученый датский физик, профессор, — писал Ампер, — своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом».

АМЕДЕО АВОГАДРО (1776—1856)

В историю физики Авогадро вошел как автор одного из важнейших законов молекулярной физики.Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился 9 августа 1776 года в Турине — столице итальянской провинции Пьемонт в семье служащего судебного ведомства Филиппе Авогадро. Амедео был третьим из восьми детей. Предки его с XII века состояли на службе католической церкви адвокатами и по традиции того времени их профессии и должности передавались по наследству. Когда пришла пора выбирать профессию, Амедео также занялся юриспруденцией. В этой науке он быстро преуспел и уже в двадцать лет получил ученую степень доктора церковного права.

АНДРЕ МАРИ АМПЕР (1775—1836)

Французский ученый Ампер в истории науки известен, главным образом, как основоположник электродинамики. Между тем он был универсальным ученым, имеющим заслуги и в области математики, химии, биологии и даже в лингвистике и философии. Это был блестящий ум, поражавший своими энциклопедическими знаниями всех близко знавших его людей.

ШАРЛЬ КУЛОН (1736—1806)
Для измерения сил, действующих между электрическими зарядами. Кулон использовал изобретенные им крутильные весы.Французский физик и инженер Шарль Кулон достиг блестящих научных результатов. Закономерности внешнего трения, закон кручения упругих нитей, основной закон электростатики, закон взаимодействия магнитных полюсов — все это вошло в золотой фонд науки. «Кулоновское поле», «кулоновский потенциал», наконец, название единицы электрического заряда «кулон» прочно закрепились в физической терминологии.

ИСААК НЬЮТОН (1642—1726)

Исаак Ньютон родился в день Рождественского праздника 1642 года в деревушке Вульсторп в Линкольншире Отец его умер еще до рождения сына Мать Ньютона, урожденная Айскоф, вскоре после смерти мужа преждевременно родила, и новорожденный Исаак был поразительно мал и хил Думали, что младенец не выживет Ньютон, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьезной болезни, отличался хорошим здоровьем.

ХРИСТИАН ГЮЙГЕНС (1629—1695)

Принцип действия анкерного спускового механизма.Ходовое колесо (1) раскручивается пружиной (на рисунке не показана}. Анкер (2), связанный с маятником (3), входит левой палетой (4) между зубьями колеса. Маятник отклоняется в другую сторону, анкер освобождает колесо. Оно успевает повернуться только на один зуб, и в зацепление входит правая полета (5). Потом все повторяется в обратной последовательности.

БЛЕЗ ПАСКАЛЬ (1623—1662)

Блез Паскаль, сын Этьена Паскаля и Антуанетты, урожденной Бегон, родился в Клермоне 19 июня 1623 года. Вся семья Паскалей отличалась выдающимися способностями. Что касается самого Блеза, он с раннего детства обнаруживал признаки необыкновенного умственного развития.В 1631 году, когда маленькому Паскалю было восемь лет, его отец переселился со всеми детьми в Париж, продав по тогдашнему обычаю свою должность и вложив значительную часть своего небольшого капитала в Отель де-Билль.

АРХИМЕД (287 — 212 до н. э.)

Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

Которая позволяет людям узнавать больше об основополагающих законах планеты Земля. Каждый день люди не замечают, как пользуются теми благами, которые стали возможными благодаря труду многочисленных ученых. Если бы не их самоотверженная работа, человек не смог бы летать в самолете, пересекать на огромных лайнерах океаны и даже просто включить электрический чайник. Все эти самоотверженные исследователи сделали облик мира таким, каким его видят современные люди.

Открытия Галилея

Ученый-физик Галилей - один из самых известных. Он является физиком, астрономом, математиком и механиком. Именно он впервые изобрел телескоп. С помощью этого невиданного для того времени аппарата можно было наблюдать за далекими небесными телами. Галилео Галилей является основателем экспериментального направления в физической науке. Первые открытия, которые Галилей совершил с телескопом, увидели свет в его сочинении «Звездный вестник». Эта книга имела воистину сенсационный успех. Так как идеи Галилея во многом противоречили Библии, долгое время его преследовала инквизиция.

Биография и открытия Ньютона

Великим ученым, который совершил открытия во множестве областей, является также Исаак Ньютон. Самое известное из его открытий - это Кроме этого, ученый-физик объяснил множество природных явлений на основе механики, а также описал особенности движения планет вокруг Солнца, Луны и Земли. Ньютон родился 4 января 1643 года в английском городке Вулсторпе.

Окончив школу, он поступил в колледж при Кембриджском университете. Ученые-физики, которые преподавали в колледже, оказали на Ньютона большое влияние. Вдохновившись примером преподавателей, Ньютон сделал несколько своих первых открытий. Главным образом они касались сферы математики. Далее Ньютон начинает проводить опыты по разложению света. В 1668 году он получает степень магистра. В 1687 году была опубликована первая серьезная научная работа Ньютона - «Начала». В 1705 году ученому было присвоено звание рыцаря, и правившая в ту эпоху английская лично отблагодарила Ньютона за его исследования.

Женщина-физик: Мария Кюри-Склодовская

Ученые-физики всего мира до сих пор пользуются в своей работе и достижениями Марии Кюри-Склодовской. Она является единственным физиком-женщиной, которая два раза была номинирована на Нобелевскую премию. Мария Кюри родилась 7 ноября 1867 года в Варшаве. В детстве в семье девочки случилась трагедия - погибла мать и одна из сестер. Во время обучения в школе Мария Кюри отличалась прилежностью и интересом к науке.

В 1890 году переехала к старшей сестре в Париж, где поступила в Сорбонну. Тогда же она познакомилась и со своим будущим супругом - Пьером Кюри. В результате многолетних научных исследований супруги открыли два новых радиоактивных элемента - радий и полоний. Незадолго до начала войны на территории Франции был открыт где Мария Кюри занимала должность директора. В 1920 году она выпустила книгу под названием «Радиология и война», в которой был обобщен ее научный опыт.

Альберт Эйнштейн: один из величайших умов планеты

Ученые-физики всей планеты знают имя Альберта Эйнштейна. Его авторству принадлежит теория относительности. Современная физика во многом опирается на взгляды Эйнштейна, несмотря на то что не все современные ученые согласны с его открытиями. Эйнштейн был лауреатом Нобелевской премии. В течение своей жизни он написал порядка 300 научных работ, касающихся физики, а также 150 работ об истории и философии науки. До 12 лет Эйнштейн был очень религиозным ребенком, так как образование он получал в католической школе. После того, как маленький Альберт прочитал несколько научных книг, он пришел к выводу: не все положения в Библии могут быть правдивыми.

Многие считают, что Эйнштейн был гениален с самого детства. Это далеко не так. Будучи школьником, Эйнштейн считался весьма слабым учеником. Хотя уже тогда его интересовала математика, физика, а также философские труды Канта. В 1896 году Эйнштейн поступил на педагогический факультет в Цюрихе, где также познакомился со своей будущей супругой - Милевой Марич. В 1905 году Эйнштейном были опубликованы некоторые статьи, которые, однако, некоторые ученые-физики подвергли критике. В 1933 году Эйнштейн навсегда переезжает в США.

Другие исследователи

Но есть и другие известные фамилии ученых-физиков, которые сделали не менее значительные открытия в своей области. Это и В. К. Рентген, и С. Хокинг, Н. Тесла, Л. Л. Ландау, Н. Бор, М. Планк, Э. Ферми, М. Фарадей, А. А. Беккерель и многие другие. Их вклад в физическую науку не менее важен.

Представляем вашему вниманию список ученых, чье мировоззрение было религиозным. Для придания списку большей «надёжности» мы старались всеми силами избегать включения в него людей, о мировоззрении которых имеются противоречивые сведения, сообщает "Православие.фм".

Физика

Галилео Галилей Galileo Galilei (1564 - 1642)

Мировоззрение. Католик. Утверждал, что «Священное Писание не может ни в каком случае утверждать ложь или ошибаться; изречения его абсолюты и непреложно истинны».

Вклад в науку. Опроверг аристотелевскую физику. Первым использовал телескоп для наблюдения небесных тел. Заложил основы классической механики, основывая её на экспериментальном методе, за что его часто называют «отцом современной физики».

Эдм Мариотт Edme Mariotte (1620 - 1684)

Мировоззрение. Римо-католический священник, настоятель монастыря Сен-Мартэнсубон.

Вклад в науку. Один из основателей Французской Академии Наук. В 1660 году открыл т.н. «слепое пятно» в человеческом глазе. На 17 лет позже Бойля открыл закон зависимости между объемом и упругостью газа. Построил теорию удара в механик, а также создал баллистический маятник. Внес вклад в развитие аэродинамической теории соображениями о соотношении скорости и сопротивления.

Блез Паскаль Blaise Pascal (1623 - 1662)

Мировоззрение. Католик-янсенист. Религиозный философ, Паскаль защищал христианскую веру, спорил с Декартом, спорил с атеистами своего времени, порицал казуистику иезуитов, которые оправдывали пороки высшего общества (в «Письмах к провинциалу»), автор многочисленных размышлений на философские и религиозные темы. Написал произведение «Мысли о религии и других предметах», собрание идей в защиту христианства от критики со стороны атеистов в которое входит знаменитое «пари Паскаля».

Вклад в науку. Создал счетную машину-арфмометр. Опытным путем опроверг в то время господствующую аксиому, воспринятую от Аристотеля о том, что природа «боится пустоты», одновременно сформулировал основной закон гидростатики. В переписке с Ферма заложил основы теории вероятностей. Он также стоит у истоков проективной геометрии и математического анализа.

Сэр Исаак Ньютон Sir Isaac Newton (1642 - 1727)

Мировоззрение . Англиканин, взгляды близки к ереси арианства. Ньютон исследовал Библию, причём объем его текстов по исследованию Писания превосходит объем написанных им научных текстов. Своим трудом «Principia Mathematica» надеялся побудить мыслящего человека поверить в Бога.

Пьер Луи де Мопертюи Pierre-Louis Moreau de Maupertuis (1698 - 1759)

Мировоззрение. Католик, философ. Вольтер написал против него множество сатир, например «Доктор Акакий, папский лекарь», перед смертью ученый признал, что христианство «ведёт человека к величайшему благу при помощи величайших возможных средств».

Вклад в науку. Ввел в механику понятие принципа наименьшего действия, причем сразу указал на его универсальную природу. Был первопроходцем в генетике, в частности некоторые находят, что его взгляды способствовали становлению теории эволюции и естественного отбора.

Луиджи Гальвани Luigi Galvani (1737 - 1798)

Мировоззрение. Католик. Изучал богословие, хотел связать свою жизнь с Церковью, но выбрал путь науки. О глубокой религиозности Гальвани говорит его биограф, профессор Вентуроли. В 1801 году об ученом пишет другой его биограф, Алиберт: «можно добавить, что в своих публичных демонстрациях, он никогда не завершал свои лекции без призыва к свои слушателям к обновлению веры, всегда обращая их внимание на идею вечного Провидения, которое развивает, сохраняет и заставляет жизнь литься среди многих других видов вещей».

Вклад в науку. Одним из первых исследовал электрофизиологию и «животное электричество». В честь него был назван феномен «гальванизм».

Алессандро Вольта Alessandro Volta (1745 - 1827)

Мировоззрение. Католик. Догматы, общественная жизнь и обряды римской Церкви составляли большую часть жизни (культуры) Вольта. Его лучшими друзьями были клирики. Вольта оставался близок к своим братьям: канонику и архидиакону и был воцерковленным человеком (практикующим, в католической терминологии). Среди примеров его религиозности - заигрывание с Янсенизмом в 1790х годах, исповедание веры 1815 года, написанное для того, чтобы защитить религию от сциентизма. В 1794 году Вольта написал несколько писем: своим братьям и профессору богословия из университета Павии, в этих письмах он просил у них совета о своем возможном браке.

Вклад в науку. Физик, в 1800 году изобрел химическую батарею. Открыл метан. Нашел способы измерить заряд (Q) и потенциал (V). Создал первый в мире химический источник тока.

Андре-Мари Ампер André-Marie Ampère (1775 - 1836)

Мировоззрение. Католик. Ученому приписывают следующее высказывание: «Учись, исследуй земное - это обязанность мужа науки. Одной рукой исследуй природу, а другою, как за одежду отца, держись за край Божией ризы». В 18 лет ученый считал, что в его жизни было три кульминационных момента: «Первое причастие, прочтение работы Антуана Томаса «хвалебная речь Декарту», и взятие Бастилии». Когда умерла его жена, Ампер выписал две строфы из Псалмов и молитву «О Господе, Боже Милостивый, соедини меня на Небесах с теми, кого ты разрешил мне любить на Земле», в то время его обуревали сильные сомнения, и в свободное время ученый читал Библию и Отцов Церкви.

Вклад в науку. Физик и математик. В электродинамике: установил правило для определения направления действия магнитного поля на магнитную стрелку («правило Ампера»), обнаружил влияние магнитного поля Земли на движущиеся проводники с током, открыл взаимодействие между электрическими токами, сформулировал закон этого явления («закон Ампера»). Внес вклад в развитие теории магнетизма: открыл магнитный эффект соленоида. Ампер был и изобретателем - именно он придумал коммутатор и электромагнитный телеграф. Ампер внес вклад и в химию, своими совместными работами с Авогадро

Ханс Кристиан Эрстед Hans Christian Ørsted (1777 - 1851)

Мировоззрение. Лютеранин (предположительно). В своей речи 1814 года, озаглавленной «Развитие науки, понимаемое как задача религии» (эту речь ученый поместил в свою книгу «The Soul in Nature», в ней он пишет, что данное выступление включает в себя многие идеи, которые более развиты в других частях книги, но здесь они представлены как единое целое), Эрстед утверждает следующее: «мы попытаемся установить наше убеждение о существующей гармонии между наукой и религией, показав, как человек науки должен смотреть на свои занятия, если он понимает их правильно, а именно, как на задачу религии». Далее идет длинное рассуждение, которое можно найти в книге.

Вклад в науку. Физик и химик. Открыл, что электрический ток создает магнитное поле. Первый современный мыслитель, который подробно описал и дал название мыслительному эксперименту. Работы Эрстеды явились важным шагом на пути к унифицированному понятию энергии.

Майкл Фарадей Michael Faraday (1791 - 1867)

Мировоззрение . Протестант, церковь Шотландии. После женитьбы служил дьяконом и церковным старостой в одном из домов собраний своей юности, исследователи отмечают, что «сильное чувство согласия между Богом и природой пропитывало собой всю его жизнь и работу».

Вклад в науку. Внес вклад в электромагнетизм и электрохимию. Считается лучшим экспериментатором и одним из самых влиятельных ученых в истории науки. Открыл бензол. Заметил явление, названное им диамагнетизмом. Открыл принцип электромагнитной индукции. Изобретение им электромагнитных вращателей послужило основой для электродвигателя. В том числе благодаря его усилиям электричество стало использоваться в технологиях.

Джеймс Прескотт Джоуль James Prescott Joule (1818 - 1889)

Мировоззрение. Англиканин (предположительно). Джоуль писал: «Феномен природы, будь то механическая, химическая, жизненная, почти полностью продолжительно переходит сама в себя. Таким образом, поддерживается порядок и ничто не выведено из строя, ничто не потеряно навечно, но весь механизм, как он есть, работает гладко и гармонично весь управляем Божьей волей». Был одним из ученых, подписавших «Декларацию студентов Естественных и физических наук», написанной в ответ на волну Дарвинизма, пришедшую в Англию.

Вклад в науку. Сформулировал первый закон термодинамики, открыл Закон Джоуля о мощности тепла при протекании электрического тока. Первым посчитал скорость молекул газа. Вычислил механический эквивалент тепла.

Сэр Джордж Габриель Стокс Sir George Gabriel Stokes (1819 - 1903)

Мировоззрение. Англиканин (предположительно). В 1886 году стал президентом Института Виктории (Victoria Institute), целью которого было дать ответ эволюционному движению 60х годов, в 1891 Стокс выступил с лекцией в этом институте, также был президентом Британского и Зарубежного (Foreign) Библейского общества, активно занимался миссионерскими проблемами. Стокс говорил «Я не знаю никаких здравых выводов науки, которые бы противоречили христианской религии».

Вклад в науку. Физик и математик, автор теоремы Стокса, внес значительный вклад в развитие гидродинамики, оптики и математической физики.

Уильям Томсон, лорд Кельвин William Thomson, 1st Baron Kelvin (1824 - 1907)

Мировоззрение. Пресвитерианин. На протяжении всей жизни был набожным человеком, каждый день посещал церковь. Как видно из выступления ученого в «Christian Evidence Society» (организация, созданная, чтобы побороть атеизм в викторианском обществе), Томпсон считал, что его вера помогает ему познавать действительность, информирует его. В широком смысле этого слова, ученый был креационистом, однако он ни в коем случае не был «геологом потопа», можно сказать, что он поддерживал взгляд, известный как теистическая эволюция. Часто открыто не соглашался с последователями Ч. Дарвина, вступал с ними в споры.

Вклад в науку. Математический физик и инженер. Сформулировал первый и второй законы термодинамики, помог унифицировать возникающие дисциплины в физике. Он догадался, что существует нижний предел температуры, абсолютный ноль. Известен также как изобретатель, автор около 70 патентов.

Джеймс Клерк Максвелл James Clerk Maxwell (1831 - 1879)

Мировоззрение. Христианин евангелической веры. В конце жизни стал церковным старостой в Церкви Шотландии. В детстве посещал богослужения как в Церкви Шотландии (деноминация его отца) так и в Епископальной Церкви (деноминация его матери), в апреле 1853 года ученый обратился в евангельскую веру, из-за чего стал придерживаться антипозитивистских взглядов.

Вклад в науку. Физик, основное достижение которого состояло в формулировке классической теории электромагнетизма. Таким образом, он объединил до этого разрозненные наблюдения, эксперименты и уравнения в электричестве, магнетизме и оптике в единую теорию. Уравнения Максвелла показывают, что электричество, магнетизм и свет есть одно и то же явление. Эти его достижения были названы «вторым величайшим объединением в физике» (после работ Исаака Ньютона). Ученый также помог разработать распределение Больцмана-Максвелла, которая есть статистическое средство описания некоторых аспектов в кинетической теории газов. Максвелл также известен, как человек, создавший первую долговечную цветную фотографию в 1861 году.

Сэр Джон Амброз Флеминг Sir John Ambrose Fleming (1849 - 1945)

Мировоззрение. Конгрегационалист. Флеминг был креационистом и отвергал идеи Дарвина, считая их атеистическими (из книги Флеминга «Evolution or Creation?»). В 1932 году он помог основать «Движение против эволюции» («Evolution Protest Movement»). Флеминг однажды проповедовал в лондонской церкви Святого Мартина «что в полях», и проповедь его была посвящена свидетельству Воскресения. Большую часть своего наследства ученый завещал христианским благотворительным организациям, помогавшим нищим.

Вклад в науку. Физик и инженер. Считается отцом современной электротехники. Сформулировал два известных физике правила: левой и правой руки. Изобрел так называемую лампу Флеминга («Fleming valve»)

Сэр Джозеф Джон Томсон Sir Joseph John Thomson (1856 - 1940)

Мировоззрение. Англиканин. Рэймонд Сиджер в своей книге «J. J. Thomson, Anglican» утверждает следующее: «Как профессор, Томпсон посещал вечернюю воскресную службу университетской часовни, и как глава университета, утреннюю. Более того, он проявлял интерес к Миссии Тринити в Кэмбервелле. С уважением к своей личной религиозной жизни, Томпсон неизменно молился каждый день, и читал Библию перед сном. Он действительно был верующим христианином!».

Вклад в науку. Физик, открыл электрон и изотоп. Лауреат Нобелевской премии по физике 1906 года за «открытие электрона и заслуги в области теоретических и экспериментальных исследований проводимости электричества в газах». Ученый также изобрел масс-спектрометр, открыл естественную радиоактивность у калия и показал, что водород имеет лишь один электрон на атом, в то время как предыдущие теории допускали множество электронов у водорода.

Макс Планк Max Karl Ernst Ludwig Planck (1858 - 1947)

Мировоззрение. Католик (обратился за шесть месяцев до смерти), до этого - глубоко религиозный деист. В своей работе «Религия и естествознание» ученый написал (цитата проведена с контекстом, с начала абзаца: «При таком совпадении следует, однако, обратить внимание на одно принципиальное различие. Религиозному человеку Бог дан непосредственно и первично. Из Него, Его всемогущей воли исходит вся жизнь и все явления как телесного, так и духовного мира. Хотя Он и непознаваем разумом, но тем не менее непосредственно проявляет себя через посредство религиозных символов, вкладывая свое святое послание в души тех, кто, веруя, доверяется Ему. В отличие от этого для естествоиспытателя первичным является только содержание его восприятий и выводимых из них измерений. Отсюда путем индуктивного восхождения он пытается по возможности приблизиться к Богу и Его миропорядку как к высшей, вечно недостижимой цели. Следовательно, и религия, и естествознание нуждаются в вере в Бога, при этом для религии Бог стоит в начале всякого размышления, а для естествознания - в конце».

Вклад в науку. Основоположник квантовой физики, из-за чего стал лауреатом Нобелевской премии по физике 1918 года. Сформулировал постулат Планка (радиация темный тел), выражение для спектральной плотности мощности излучения абсолютно чёрного тела.

Пьер Дюэм Pierre Maurice Marie Duhem (1861 - 1916)

Мировоззрение. Католик. Часто спорил с Марселем по поводу религиозных вопросов. Д. ОКоннор и Е. Робинсон в биографии Дюгема утверждают, что его религиозные взгляды сыграли большую роль в определении его взглядов научных. Ученый также занимался философией науки, в своей главной работе он показал, что начиная с 1200 года наука не игнорировалась, и что Римо-Католическа Церковь поощряла развитие Западной науки.

Вклад в науку. Известен своими работами по термодинамике (отношение Гиббса-Дюэма, уравнение Дюэма-Маргулеса), также внес вклад в гидродинамику, теорию упругости.

Сэр Уильям Брэгг Sir William Lawrence Bragg (1890 - 1971)

Мировоззрение. Англиканин (возможно, англо-католик). Дочь Брэгга, писала о вере ученого: «Для У. Брэгга религиозная вера была готовностью поставить все на гипотезу, что Иисус Христос был прав, и проверить это экспериментом по совершению дела милосердия на протяжении всей жизни. Чтение Библии было обязательным. Брэгг часто говорил, что «если у меня вообще есть какой-либо стиль письма, то это все из-за того, что я был воспитан на Авторизованной Версии [Библии]». Он знал Библию и мог обычно выдать «главу или стих». Молодой профессор У. Брэгг стал церковным старостой в Церкви св. Иоанна в Аделаиде. Он также получил разрешение проповедовать».

Вклад в науку. Физик, лауреат Нобелевской премии 1915 года за «заслуги в исследовании кристаллов с помощью рентгеновских лучей». Брэгг также создал первый прибор для регистрации дифракционной картины. Вместе с сыном он разработал основы метода определения структуры кристаллов по дифракционной картине рентгеновских лучей.

Артур Холли Комптон Arthur Holly Compton (1892 - 1962)

Мировоззрение. Пресвитерианин. Рэймонд Сиджер в своей статье «Compton, Christian Humanist», опубликованной в журнале «The Journal of the American Scientific Affiliation» пишет следующее: «Вместе с тем как Артур Комптон взрослел, расширялся и его кругозор, но это всегда был четкий христианский взгляд на мир. На протяжении всей жизни ученый был активен в делах церкви, начиная с преподавания в воскресной школе и работы церковным старостой, заканчивая должности в «Presbyterian Board of Education». Комптон верил, что основная проблема человечества, вдохновляющий смысл жизни, лежит вне науки. По информации журнала «Times» за 1936 год, ученый некоторое время был диаконом в Баптисткой Церкви.

Вклад в науку. Физик, за открытие «эффекта Комптона» был удостоен Нобелевской премии 1927 года. Изобрел метод демонстрации вращения Земли.

Жорж Леметр Monseigneur Georges Henri Joseph Édouard Lemaître (1894 - 1966)

Мировоззрение. Католический священник (с 1923 года). Леметр считал, что вера может быть преимуществом для ученого: «По мере того, как наука проходит простую стадию описания, она становится истинной наукой. Также она становится более религиозной. Математики, астрономы и физики, например, являются очень религиозными людьми, за немногими исключениями. Чем глубже они проникают в тайну Вселенной, тем глубже становится их убеждение, что сила, стоящая за звездами, электронами и атомами, есть закон и благость».

Вклад в науку. Космолог, является автором теории расширяющейся Вселенной, Леметр первым сформулировал зависимость между расстоянием и скоростью галактик и предложил в 1927 году первую оценку коэффициента этой зависимости, известную ныне как постоянная Хаббла. Теория Леметра об эволюции мира начиная с «первоначального атома» иронично была названа «Большим взрывом» Фредом Хойлом в 1949 году. Это название, «Большой взрыв», исторически закрепилось в космологии.

Вернер Карл Гейзенберг Werner Karl Heisenberg (1901 - 1976)

Мировоззрение. Лютеранин, хотя, к концу жизни его считали мистиком, так как его взгляды на религию не были ортодоксальными. Автор высказывания: «Первый глоток из стакана естествознания делает атеистом, но на дне стакана ожидает Бог».

Вклад в науку. Лауреат Нобелевской премии 1932 года за создание квантовой механики. В 1927 году ученый опубликовал свой принцип неопределенности, который принес ему всемирную известность.

Сэр Невилл Мотт Sir Nevill Francis Mott (1905 - 1996)

Мировоззрение. Христианин. Приводим высказывание ученого: «Я верю в Бога, который может ответить на молитвы, которому мы можем довериться и без которого жизнь на Земле была бы бессмысленной (сказкой, рассказанной умалишенным). Я верю, что Бог открыл Себя нам многими путями, через многих мужчин и женщин, и для нас, живущих на Западе, понятнейшее откровение через Иисуса Христа и тех, кто за ним последовал».

Вклад в науку. В 1977 году получил Нобелевскую премию по физике за «фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем».

Николай Николаевич Боголюбов (1909 - 1992)

Мировоззрение. Православный. А. Боголюбов пишет о нём: «Вся совокупность его знаний была единым целым, и основу его философии составляла его глубокая религиозность (он говорил, что нерелигиозных физиков можно пересчитать на пальцах). Он был сыном православной церкви и всегда, когда ему позволяло время и здоровье, он ходил к вечерне и к обедне в ближайшую церковь».

Вклад в науку. Доказал теорему «об остроте клина», создал совместно с Н. Крыловым теорию нелинейных колебаний. Создал последовательную теорию сверхпроводимости. В теории сверхтекучести вывел кинетические уравнения. Предложил новый синтез теории Бора квазипериодических функций.

Артур Леонард Шавлов Arthur Leonard Schawlow (1921 - 1999)

Мировоззрение. Методист. Генри Маргено приводит следующее высказывание ученого: «И вижу необходимость в Боге как во Вселенной, так и в своей жизни». Когда ученого спросили, является ли он человеком религиозным, то он ответил: «Да, я был воспитан протестантом и я был в нескольких деноминациях. Я хожу в церковь, в очень хорошую методистскую церковь». Ученый также заявлял о том, что он - ортодоксальный протестант.

Вклад в науку. Физик, получил Нобелевскую премию по физике 1981 года за «вклад в развитие лазерной спектроскопии». Помимо оптики, Шавлов также исследовал такие области физики как сверхпроводимость и ядерный магнитный резонанс.

Абдус Салам Mohammad Abdus Salam (محمد عبد السلام‎) (1926 - 1996)

Мировоззрение . Мусульманин общины ахмадитов. В своей нобелевской речи учёный цитирует Коран. Когда пакистанское правительство приняло поправку к конституции, объявляющей членов общины Ахмадия не-мусульманами, ученый в знак протеста покинул страну.

Вклад в науку. В 1979 году получил Нобелевскую премию по физике за теорию объединения слабых и электромагнитных взаимодействий. Одними из его главный достижений были также: модель Пати-Салама, магнитный фотон, векторные мезоны, работа по суперсимметрии.

Чарлз Хард Таунс Charles Hard Townes (род. 1915)

Мировоззрение . Протестант (Объединенная Церковь Христа). В своем интервью журналу «The Guardian» за 2005 год, ученый сказал, что «был воспитан христианином, и в то время, как мои идеи менялись, я всегда чувствовал себя религиозным человеком», в том же интервью Таунс заявил следующее: «Что такое наука? Наука есть попытка понять как работает Вселенная, включая человеческий род. Что такое религия? Она есть попытка понять назначение и смысл Вселенной, включая род человеческий. Если существует это назначение и смысл, тогда оно должно быть взаимосвязано со структурой Вселенной и тем, как она работает (…) Поэтому вера должна научить нас чему-то в науке и наоборот».

Вклад в науку. Один из создателей квантовой электроники, в 1964 году получил Нобелевскую премию по физике за «фундаментальные работы в области квантовой электроники, которые привели к созданию излучателей и усилителей на лазерно-мазерном принципе». В 1969 году совместно с другими учеными открыл т.н. «мазерный эффект» (излучение космических молекул воды на длине волны 1,35 см.), совместно с коллегой первым посчитал массу черной дыры в центре нашей галактики. Ученый также внес вклад и в нелинейную оптику: обнаружил вынужденное рассеяние Мандельштама Бриллюэна, ввел представление о критической мощности пучка света и явлении самофокусировки, экспериментально наблюдал эффект автоколлимации света.

Фримен Джон Дайсон Freeman John Dyson (род. 1923)

Мировоззрение. Христианин без деноминации, хотя взгляды Дайсона можно охарактеризовать как агностицизм (в одной из своих книг он написал, что не считает себя верующим христианином, но лишь практикующим и заявил, что не видит смысл в теологии, которая заявляет, что знает ответы на фундаментальные вопросы). Ученый энергично не соглашается с редукционизмом, так, в своей темпелтоновской лекции, Дайсон сказал: «Наука и религия есть два окна, в которые люди смотрят, пытаясь понять Вселенную, понять почему они здесь находятся. Эти два окна открывают различный вид, но они направлены на одну и ту же Вселенную. Ни один из них не полон, оба они односторонни. Оба исключают существенные части реального мира».

Вклад в науку. Теоретический физик и математик, известный своими работами по квантовой электродинамики, астрономии и ядерной инженерии.

Энтони Хьюиш Antony Hewish (род. 1924)

Мировоззрение . Христианин. Из письма Т. Дмитрову: «Я верю в Бога. Мне представляется бессмысленной та мысль, что Вселенная и наше существование лишь случайность космического масштаба и что жизнь возникла в результате беспорядочных физических процессов, просто потому что для этого сложились благоприятные условия. Как христианин, я начинаю понимать смысл жизни благодаря вере в Творца, Чья природа отчасти открылась в Человеке, рожденном 2000 лет назад».

Вклад в науку. В 1974 году удостоен Нобелевской премии по физике за «определяющую роль в открытии пульсаров».

Арно Аллан Пензиас Arno Allan Penzias (род. 1933)

Мировоззрение . Иудей, в книге Джерри Бергмана приводится следующая цитата ученого: «Наилучшие данные, которые у нас имеются, представляют из себя то, что я бы сумел предсказать, имей я перед собой только Пятикнижие Моисеево, книгу Псалмов и Библию целиком». В своих речах ученый часто говорил, что видит во Вселенной смысл, и указывал на нежелание научной среды принимать Теорию Большого Взрыва, так как она указывает на сотворение мира.

Вклад в науку. Физик, за открытие реликтового излучения в 1976 году получил Нобелевскую премию по физике. С помощью мазера решил задачу увеличения точности настройки антенны.

Джозеф Тейлор младший Joseph Hooton Taylor, Jr. (род. 1941)

Мировоззрение. Квакер. Мировоззрении ученого известно из книги Иштвана Харгитая, на вопрос «Не могли бы вы рассказать о своем отношении к религии?» ученый ответил следующим образом: «Мы с семьей активные члены религиозной общины «Друзья», то есть квакерской общины. Религия составляет важную часть нашей жизни (особенно для нас с женой; для наших детей в меньшей мере). Мы с женой часто проводим время с другими верующими нашей общины; это помогает нам лучше осознать свое отношение к жизни, напоминает о том, для чего мы на Земле и что мы можем сделать для других. Квакеры это группа христиан, верящих в возможность непосредственного общения человека с Духом, Которого мы называем Богом. Размышление и самосозерцание помогает общаться с этим Духом и узнавать многое о себе и о том, как следует жить на Земле. Квакеры считают, что войны не способны разрешить противоречия и что долговременные результаты достигаются путем мирного решения проблем. Мы всегда отказывались и отказываемся участвовать в войне, но готовы служить своей стране другими способами. Мы верим, что в каждом человеке есть нечто Божественное, поэтому человеческая жизнь священна. В людях нужно искать глубину духовного присутствия, даже в тех, с кем расходишься во взглядах».

Вклад в науку. Физик, награжден Нобелевской премией по физике 1993 года за «открытие нового типа пульсаров, давшее новые возможности в изучении гравитации».

Уильям Дэниел Филлипс William Daniel Phillips (род. 1948)

Мировоззрение. Методист. Один из создателей «Междуранродного обшества за Науку и Религию». Известен своим частым участие в диалоге «веры и науки». В своей автобиографии на сайте Нобелевской премии Филлипс пишет: «В 1979 году, после того, как Джейн (жена ученого, прим. перев.) и я переехали в Гэсерсбург, мы присоединились к Объедененной Методистской Церкви (…) Наши дети были для нас неисчерпаемым источником благословения, приключения и вызова. На то время мы с Джейн старались найти новые работы, и появление детей требовало тонкого равновесия между работой, домом и церковной жизнью. Но так или иначе, наша вера и наша юношеская энергия провела нас через эти времена».

Вклад в науку. Физик, лауреат Нобелевской премии по физике 1997 года за «создание методов охлаждения и улавливания атомов лазерным лучом».

Математика

Рене Декарт René Descartes (1596 - 1650)

Мировоззрение. Католик. Одной из причин написания его «Размышлений» была защита христианской веры, в частности в одной из глав Декарт по-новому сформулировал онтологическое доказательство бытия Бога, он также писал: «В каком-то смысле можно сказать, что, не зная Бога, нельзя иметь достоверного познания ни о чем».

Вклад в науку. Математик, создал декартову систему координат и заложил основы аналитической геометрии. Первый вывел математически закон преломления света на границе двух различных сред.

Пьер де Ферма Pierre de Fermat (1601 - 1665)

Мировоззрение. Католик.

Вклад в науку. Математик, создатель теории чисел, автор Великой теоремы Ферма. Ученый сформулировал общий закон дифференцирования дробных степеней. Основал аналитическую геометрию (наряду с Декартом), применил её к пространству. Стоял у истоков теории вероятностей.

Христиан Гюйгенс Christiaan Huygens (1629 - 1695)

Мировоззрение. Протестант Реформаторской Церкви. Когда французская монархия перестала в 1881 году относиться терпимо к протестантизму (отмена Нантского эдикта), Гюйгенс покинул страну, хотя для него хотели сделать исключение, что свидетельствует о его религиозных убеждениях.

Вклад в науку. Первый президент Фарнцузской Академии наук, пробыл им 15 лет. Открыл теорию эволют и эвольвент. Изобрел часы с маятником и опубликовал классический труд по механике «Маятниковы часы». Вывел законы равноускоренных свободно падающих тел и сформулировал тринадцать теорем о центробежной силе. Совместно с Ферма и Паскалем заложил основы теории вероятностей. Открыл спутник Сатурна Титан и описал кольца Сатурна, обнаружил ледяную шапку на Южном полюсе Марса. Изобрел особый окуляр, состоящий из двух плоско-выпуклых линз, названный в его честь. Первый призвал выбрать всемирную натуральную меру длины. Одновременно с Валлисом и Реном решил вопрос о соударении упругих тел.

Готфрид Вильгельм Лейбниц Gottfried Wilhelm von Leibniz (1646 - 1716)

Мировоззрение. Христианин, предположительно, - протестант. Выступал и против богословской ортодоксии, и против материализма и атеизма. Создал свое философское учение т.н. монадологию Лейбница, которая была близка к деизму и пантеизму.

Вклад в науку. Предосновал математический анализ и комбинаторику. Заложил основы математической логики и комбинаторики. Сделал очень важный шаг к созданию ЭВМ, впервые описал двоичную систему исчисления. Был единственным человеком, свободно работающим как с непрерывными, так и с дискретными. Впервые сформулировал закон сохранения энергии. Создал механический калькулятор (вместе с Х.Гюйгенсом).

Леонард Эйлер Leonhard Euler (1707 - 1783)

Мировоззрение. Христианин. Верил в Боговдохновенность Писания, спорил с Денни Дидро о существовании Бога, написал апологетический трактат «Защита Божественного Откровения от возражений Вольнодумцев».

Вклад в науку. Часто говорят, что с точки зрения математики XVIII век - век Эйлера. Многие называют его величайшим математиком всех времен, Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. отрасли математики в единую систему, перечисление всех его открытий поименно невозможно ввиду формата этой рубрики.

Карл Фридрих Гаусс Johann Carl Friedrich Gauß (1777 - 1855)

Мировоззрение . Лютеранин. Хотя Гаусс и не верил в личного Бога и считался деистом, можно утверждать о том, что он имел религиозное мировоззрение, к примеру, он верил в бессмертие души и жизнь после смерти. Согласно Дуннингтону, Гаусс верил в бессмертного, праведного, всезнающего и всемогущего Бога. При всей своей любви к математики, Карл Фридрих её никогда не абсолютизировал, он говорил: «Есть задачи, решению которых я бы приписал бесконечно большую важность по сравнению с задачами математическими, например, задачи, связанные с этикой, или нашим отношением к Богу, или касающиеся нашей судьбы и нашего будущего; но их решение лежит полностью за нашими пределами и абсолютно за рамками науки».

Вклад в науку. Ученого часто называют Королем математики (лат. Princeps mathematicorum), это отражает его неоценимый и неохватный вклад в «царицу наук». Так, в алгебре Гаусс придумал строгое доказательство основной теоремы алгебры, открыл кольцо целых комплексных чисел, создал классическую теорию сравнений. В геометрии ученый внес вклад в дифференциальную геометрию, впервые занялся внутренней геометрией поверхностей: открыл характеристику поверхности (названную в его честь), доказал основную теорему поверхностей, Гаусс также создал отдельную науку - высшую геодезию. Дуннингтон утверждал, что Гаусс первым начал изучать неевклидову геометрию, но боялся опубликовать свои результаты, сочтя их бессмысленными. В математическом анализе Гаусс создал теорию потенциала, занимался эллиптическими функциями. Интересовался ученый и астрономией, где изучал орбиты малых планет, нашел способ определения элементов орбиты по трем полным наблюдениям. Многие его ученики впоследствии стали великими математиками. Ученый также занимался физикой, где он развил теорию капиллярности и теорию систем линз, а также заложил основы теории электромагнетизма, сконструировал (совместно с Вебером) первый примитивный электрический телеграф.

Бернард Больцано Bernard Placidus Johann Nepomuk Bolzano (1781 - 1848)

Мировоззрение. Католический священник. Помимо своих научных исследований Больцано также занимался теологическими и философскими вопросами.

Вклад в науку. Труды Больцано способствовали формированию строгих определений анализа, использующих «эпсилон» и «дельта». Во многих областях математики ученый был первопроходцем, опережал свое время: ещё до Кантора, Больцано исследовал бесконечные множества, при помощи геометрических соображений ученый получил примеры непрерывных, но нигде не дифференцируемых функций. Ученый выдвинул идею арифметической теории вещественного числа, в 1817 году доказал теорему Больцано-Вейерштрасса (независимо от последнего, который открыл её спустя полвека), теорему Больцано-Коши.

Огюстен Луи Коши Augustin Louis Cauchy (1789 - 1857)

Мировоззрение. Католик. Был близок к ордену Иезуитов, входил в Общество святого Викентия де Поля, у Огюстена часто возникали трудности с коллегами из-за его взглядов.

Вклад в науку. Разработал основу математического анализа, впервые строго определил предел, непрерывность, производную, интеграл, сходимость ряда в математическом анализе ввел понятие сходимости ряда, создал теорию интегральных вычетов, заложил основы математической теории упругости, внес значительный вклад в другие области науки.

Чарльз Бэббидж Charles Babbage (1791 - 1871)

Мировоззрение. Англиканин (предположительно). Убежденно защищал достоверность библейских чудес в эпоху, когда люди все сильнее отходили от христианского мировоззрения.

Если вы заметили ошибку, выделите ее мышкой и нажмите Ctrl+Enter

Поделиться: