Как изучать тригонометрию. История тригонометрии: возникновение и развитие

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

ТРИГОНОМЕТРИЯ –(от греч. trigwnon – треугольник и metrew – измеряю) – математическая дисциплина, изучающая зависимости между углами и сторонами треугольников и тригонометрические функции.

Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

В тригонометрии выделяют три вида соотношений: 1) между самими тригонометрическими функциями; 2) между элементами плоского треугольника (тригонометрия на плоскости); 3) между элементами сферического треугольника, т.е. фигуры, высекаемой на сфере тремя плоскостями, проходящими через ее центр. Тригонометрия началась именно с наиболее сложной, сферической части. Она возникла прежде всего из практических нужд. Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Наблюдения за звездным небом с незапамятных времен вели и астрологи.

Естественно, все измерения, связанные с расположением светил на небосводе, – измерения косвенные. Прямые могли быть проведены только на поверхности Земли, но и здесь далеко не всегда удавалось непосредственно определить расстояние между какими-то пунктами и тогда вновь прибегали к косвенным измерениям. Например, вычисляли высоту дерева, сравнивая длину его тени с длиной тени от какого-нибудь шеста, высота которого была известна. Аналогичным образом вычисляли и размеры острова в море. Подобные задачи сводятся к анализу треугольника, в котором одни его элементы выражают через другие. Этим и занимается тригонометрия. А поскольку звезды и планеты представлялись древним точками на небесной сфере, то сначала стала развиваться именно сферическая тригонометрия. Ее считали разделом астрономии.

А начиналось все очень давно. Первые отрывочные сведения по тригонометрии сохранились на клинописных табличках Древнего Вавилона. Астрономы Междуречья научились предсказывать положение Земли и Солнца и именно от них к нам пришла система измерения углов в градусах, минутах и секундах, потому что у вавилонян была принята шестидесятеричная система счисления .

Однако первые по-настоящему важные достижения принадлежат древнегреческим ученым. Например, 12-я и 13-я теоремы второй книги Начал Евклида (конец 4–3 в. до н. э.) выражают по существу теорему косинусов. Во 2 в. до н.э. астроном Гиппарх из Никеи (180–125 до н.э.) составил таблицу для определения соотношений между элементами треугольников. Такие таблицы нужны потому, что значения тригонометрических функций нельзя вычислить по аргументам с помощью арифметических операций. Тригонометрические функции приходилось рассчитывать заранее и хранить в виде таблиц. Гиппарх подсчитал в круге заданного радиуса длины хорд, отвечающих всем углам от 0 до 180°, кратным 7,5°. По существу, это таблица синусов. Труды Гиппарха до нас не дошли, но многие сведения из них включены в Альмагест (II в.) – знаменитое сочинение в 13 книгах греческого астронома и математика Клавдия Птолемея (ум. ок.160 н. э.). Древние греки не знали синусов, косинусов и тангенсов, вместо таблиц этих величин они употребляли таблицы, позволявшие находить хорду окружности по стягиваемой дуге. В Альмагесте автор приводит таблицу длин хорд окружности радиуса в 60 единиц, вычисленных с шагом 0,5° с точностью до 1/3600 единицы, и объясняет, как эта таблица составлялась. Труд Птолемея несколько веков служил введением в тригонометрию для астрономов.

Чтобы понять, как ученые древности составляли тригонометрические таблицы, надо познакомиться с методом Птолемея. Метод основан на теореме – произведение диагоналей вписанного в окружность четырехугольника равно сумме произведений его противоположных сторон.

Пусть ABCD – вписанный четырехугольник, АD – диаметр окружности, а точка O – ее центр (рис. 1). Если известно, как вычислять хорды, стягивающие углы DOC = a и DОВ = b, т. е. сторону СD и диагональ B, то, по теореме Пифагора , из прямоугольных треугольников АDВ и АDС можно найти АВ и АС, а потом, по теореме Птолемея, – BC = (АС ·ВD – АВ ·СD ) /АD , т.е. хорду, стягивающую угол ВОС = b – a. Некоторые хорды, например стороны квадрата, правильных шестиугольника и восьмиугольника, отвечающие углам 90, 60 и 45°, легко определить. Известна также сторона правильного пятиугольника, которая стягивает дугу в 72°. Приведенное выше правило позволяет вычислять хорды для разностей этих углов, например для 12° = 72° – 60°. Кроме того, можно находить хорды половинных углов, однако этого недостаточно, чтобы рассчитать, чему равна хорда дуги в 1°, – хотя бы потому, что все названные углы кратны 3°. Для хорды 1° Птолемей нашел оценку, показав, что она больше 2/3 хорды (3/2)° и меньше 4/3 хорды (3/4)° – двух чисел, совпадающих с достаточной для его таблиц точностью.

Если греки по углам вычисляли хорды, то индийские астрономы в сочинениях 4–5 вв. перешли к полухордам двойной дуги, т.е. в точности к линиям синуса (рис. 2). Они пользовались и линиями косинуса – вернее, не его самого, а «обращенного» синуса, получившего позднее в Европе название «синус-верзус», сейчас эта функция, равная 1 – cos a, уже не употребляется. Впоследствии тот же подход привел к определению тригонометрических функций через отношения сторон прямоугольного треугольника.

За единицу измерения отрезков MP , OP , PA принималась дуговая минута. Так, линия синуса дуги AB = 90° есть OB – радиус окружности; дуга AL , равная радиусу, содержит (округленно) 57°18" = 3438".

Дошедшие до нас индийские таблицы синусов (древнейшая составлена в 4–5 веке н.э.) не столь точны, как птолемеевы; они составлены через 3°45" (т.е. через 1/24 часть дуги квадранта).

Термины «синус» и «косинус» пришли от индийцев, не обошлось и без любопытного недоразумения. Полухорду индийцы называли «ардхаджива» (в переводе с санскрита – «половина тетивы лука»), а потом сократили это слово до «джива». Мусульманские астрономы и математики, получившие знания по тригонометрии от индийцев, восприняли его как «джиба», а затем оно превратилось в «джайб», что на арабском языке означает «выпуклость», «пазуха». Наконец, в 7 в. «джайб» буквально перевели на латынь словом «sinus», которое не имело никакого отношения к обозначаемому им понятию. Санскритское «котиджива» – синус остатка (до 90°), а на латинском – sinus complementi, т.е. синус дополнения, в 17 в. сократилось до слова «косинус». Наименования «тангенс» и «секанс» (в переводе с латинского означающие «касательная» и «секущая») введены в 1583 немецким ученым Финком.

Большой вклад в развитие тригонометрии внесли арабские ученые, например, Аль-Баттани (ок. 900 н.э.). В 10 в. багдадский ученый Мухаммед из Буджана, известный под именем Абу-ль-Вефа (940–997), присоединил к линиям синусов и косинусов линии тангенсов, котангенсов, секансов и косекансов. Он дает им те же определения, которые содержатся и в наших учебниках. Абу-ль-Вефа устанавливает и основные соотношения между этими линиями.

Итак, к концу 10 в. ученые исламского мира уже оперировали, наряду с синусом и косинусом, четырьмя другими функциями – тангенсом, котангенсом, секансом и косекансом; открыли и доказали несколько важных теорем плоской и сферической тригонометрии; использовали окружность единичного радиуса (что позволило толковать тригонометрические функции в современном смысле); придумали полярный треугольник сферического треугольника. Арабские математики составили точные таблицы, например таблицы синусов и тангенсов с шагом в 1" и точностью до 1/700 000 000. Очень важной прикладной задачей была и такая: научиться определять направление на Мекку для пяти ежедневных молитв, где бы ни находился мусульманин.

Особенно большое влияние на развитие тригонометрии оказал Трактат о полном четырехстороннике астронома Насир-эд-Дин из Туса (1201–1274), известного так же под именем ат-Туси. Это было первое в мире сочинение, в котором тригонометрия трактовалась как самостоятельная область математики.

В 12 в. был переведен с арабского языка на латинский ряд астрономических работ, по ним впервые европейцы познакомились с тригонометрией.

Трактат Насир-эд-Дина произвел большое впечатление на немецкого астронома и математика Иоганна Мюллера (1436–1476). Современники больше знали его под именем Региомонтана (так переводится на латинский название его родного города Кенигсберга, ныне – Калининграда). Региомонтан составил обширные таблицы синусов (через 1 минуту с точностью до седьмой значащей цифры). Он впервые отступил от шестидесятиричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса. Таким образом, синусы выражались целыми числами, а не шестидесятиричными дробями. До введения десятичных дробей оставался только один шаг, но он потребовал более 100 лет. Труд Региомонтана О треугольниках всех родов пять книг сыграл в европейской математике ту же роль, что и сочинение Насир-эд-Дина в науке мусульманских стран.

За таблицами Региомонтана последовал ряд других, еще более подробных. Друг Коперника Ретик (1514–1576) вместе с несколькими помощниками в течение 30 лет работал над таблицами, законченными и изданными в1596 его учеником Отто. Углы шли через 10"", а радиус делился на 1 000 000 000 000 000 частей, так что синусы имели 15 верных цифр.

Дальнейшее развитие тригонометрии шло по пути накопления и систематизации формул, уточнения основных понятий, становления терминологии и обозначений. Многие европейские математики работали в области тригонометрии. Среди них такие великие ученые, как Николай Коперник (1473–1543), Тихо Браге (1546–1601) и Иоганн Кеплер (1571–1630). Франсуа Виет (1540–1603) дополнил и систематизировал различные случаи решения плоских и сферических треугольников, открыл «плоскую» теорему косинусов и формулы для тригонометрических функций от кратных углов. Исаак Ньютон (1643–1727) разложил эти функции в ряды и открыл путь для их использования в математическом анализе. Леонард Эйлер (1707–1783) ввел и само понятие функции, и принятую в наши дни символику. Величины sin x , cos x и т.д. он рассматривал как функции числа x – радианной меры соответствующего угла. Эйлер давал числу x всевозможные значения: положительные, отрицательные и даже комплексные. Он также обнаружил связь между тригонометрическими функциями и экспонентой комплексного аргумента, что позволило превратить многочисленные и зачастую весьма замысловатые тригонометрические формулы в простые следствия из правил сложения и умножения комплексных чисел. Он же ввел и обратные тригонометрические функции.

К концу 18 в. тригонометрия как наука уже сложилась. Тригонометрические функции нашли применение в математическом анализе, физике, химии, технике – везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника.

Решение любых треугольников, в конечном счете, сводится к решению прямоугольных треугольников (т.е. таких, у которых один из углов – прямой). Поскольку все прямоугольные треугольники с заданным острым углом подобны друг другу, отношения их соответственных сторон одинаковы. Например, в прямоугольном треугольнике ABC отношение двух его сторон, например, катета а к гипотенузе с , зависит от величины одного из острых углов, например А . Отношения различных пар сторон прямоугольного треугольника и называются тригонометрическими функциями его острого угла. Всего таких отношений в треугольнике шесть, и им отвечают шесть тригонометрических функций (обозначения сторон и углов треугольника на рис. 3).

Так как А + В = 90°, то

sin A = cos B = cos (90° – A ),

A = ctg B = ctg (90° – A ).

Из определений вытекает несколько равенств, связывающих тригонометрические функции одного и того же угла между собой:

С учетом теоремы Пифагора a 2 + b 2 = c 2 можно выразить все шесть функций через какую-нибудь одну. Например, синус и косинус связаны основным тригонометрическим тождеством

sin 2 A + cos 2 A = 1.

Некоторые соотношения между функциями:

Эти формулы справедливы и для тригонометрических функций любого угла, но ими надо пользоваться осторожно, поскольку правые и левые части могут иметь разные области определения.

Есть только два прямоугольных треугольника, у которых и углы «хорошие» (выражаются целым или рациональным числом градусов), и хотя бы одно из отношений сторон рационально. Это равнобедренный треугольник (с углами 45, 45 и 90°) и половина равностороннего треугольника (с углами 30, 60, 90°) – как раз те два случая, когда значения тригонометрических функций удается вычислить прямо по определению. Эти значения приведены в таблице

n 0 1 2 3 4
Угол 0 30° 45° 60° 90°
sin
cos
tg
ctg

Отношения, входящие в теорему синусов, имеют простой геометрический смысл. Если описать окружность около треугольника ABC (рис. 4) и провести диаметр BD , то по теореме о вписанном угле РBCD = РA либо, если угол тупой, 180° – А . В любом случае a = BC = BD sin A = 2 R sin A или

где R – радиус описанной окружности треугольника АВС . Это «усиленная» теорема синусов, объясняющая, почему таблицы хорд древних были, по существу, таблицами синусов.

Доказывается и теорема косинусов

с 2 = а 2 + b 2 – 2аb cos С .

позволяющая найти сторону треугольника по двум другим сторонам и углу между ними, а также углы по трем сторонам.

Есть и ряд других соотношений между элементами треугольника, например. теорема тангенсов:, где

cos (a + b) = cos a cos bsin a sin b,

cos (ab) = cos a cos b + sin a sin b.

Общее определение тригонометрических функций

Пусть точка движется с единичной скоростью по единичной окружности с центром в начале координат О против часовой стрелки (рис. 5). В момент t = 0 точка минует P 0 (1; 0). За время t точка проходит дугу длиной t и занимает положение Р t , а значит, угол, на который поворачивается луч, проведенный в эту точку из О , тоже равен t. Таким образом, мы сопоставляем каждому моменту времени, т.е. точке t действительной прямой, точку Р t единичной окружности.

Подобное отображение прямой на окружность иногда называют «намоткой». Если представить действительную ось в виде бесконечной нерастяжимой нити, приложить точку t = 0 к точке P 0 окружности и начать наматывать оба конца нити на окружность, то каждая точка t попадет как раз в точку Р t . При этом:

1) точки оси, отстоящие друг от друга на целое число длин окружностей, т, е. на 2pk (k =±1, ± 2, …), попадают в одну и ту же точку окружности;

2) точки t и –t попадают в точки, симметричные относительно Ox ;

3) при 0 Ј t Ј p угол P 0 OP t отложен в полуплоскость у і 0 и равен t (рис. 8).

Три этих условия составляют формальное определениетакогоотображения – намотки. В силу условия 3 при 0 = t Ј p координаты точки р равны (cos t , sin t ). Данное наблюдение и подсказывает определение: косинусом и синусом произвольного числа t называются соответственно абсцисса и ордината точки Р t .

Тангенс тоже можно определить через координаты. Проведем касательную к единичной окружности в точке (1; 0) (рис. 7). Она называется осью тангенсов. Точка Q t пересечения прямой OP t с осью тангенсов имеет координаты (1; sin t /cos t ), и ее ордината, по определению, равна tg t . По абсолютной величине это длина отрезка касательной, проведенной из Q t к окружности. Таким образом, само название «тангенс» вполне оправдывается. Кстати, как и секанса: на рис. 9 sec t – отрезок OQ t , являющийся, правда, не всей секущей, но ее частью. Наконец, котангенс можно определить как абсциссу точки пересечения OP t с осью котангенсов – касательной к единичной окружности в точке (0, 1): ctg t =cos t / sin t .

Теперь тригонометрические функции определены для всех чисел.

Марина Федосова

Другие разделы

Слово «тригонометрия» впервые встречается (1505 г.) в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: xpiyrovov - треугольник, цетресо - мера. Иными словами, тригонометрия - наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие
синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (1в. н.э.), хотя и не приобрели специального названия.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В IV-V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты (476 - ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива
.

Позднее привилось более краткое название джива. Арабскими математиками в IX в. слово джива (или джиба) было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в XII в. это слово было заменено латинским
синус (sinus - изгиб, кривизна).

Слово косинус намного моложе.
Косинус - это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos а = sin (90° - а)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абул-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г.). 

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - это касательная к единичной окружности).


Современные обозначения
arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера и известного французского ученого Лагранжа, хотя несколько ранее их уже рассматривал Я. Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка «арк» происходит от латинского arcus (лук, дуга), что вполне согласуется со смыслом понятия: arcsin х, например, - это угол (а можно сказать, и дуга), синус которого равен х.

Длительное время тригонометрия развивалась как часть геометрии
. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затмений и т. д.).

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере.


Во всяком случае в геометрической форме многие формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками. (Правда, формулы разности тригонометрических функций стали известны только в XVII в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)


Принципиальное значение имело составление К. Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.


Современный вид тригонометрии придал крупнейший математик XVIII столетия Л . Эйлер (1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь Эйлер успел сделать в математике: он оставил свыше 800 работ, доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. (Несмотря на то что в 1776 г. Эйлер потерял зрение, он до последних дней продолжал диктовать все новые и новые работы.)

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Область применения тригонометрии охватывает самые разные сферы математики, некоторые разделы естествознания и техники.

Тригонометрия имеет несколько разновидностей:

    Сферическая тригонометрия занимается изучением сферических треугольников.

    Прямолинейная или плоская тригонометрия изучает обычнее треугольники.


Значительно развили тригонометрию древнегреческие и эллинистические ученые. Однако в работах Евклида и Архимеда тригонометрия представлена в геометрическом виде. Теоремы о длине хорд применяются в законах синусов. А теорема Архимеда для деления хорд соответствует формулам для синусов суммы и разности углов.

В настоящее время математики используют новую запись известных теорем, например, sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, тем самым, компенсируют недостатки таблиц хорд, времен Аристарха Самосского.

Предположительно первые тригонометрические таблицы были составлены Гиппархом Никейским , которого по праву считают «отцом тригонометрии». Ему принадлежит заслуга в создании сводной таблицы величин дуг и хорд для серии углов. Более того именно Гиппарх Никейский впервые стал использовать 360° окружности.

Клавдий Птолемей значительно развил и расширил учение Гиппарха. Теорема Птолемея гласит: сумма произведений противоположных сторон циклического четырехугольника равна произведению диагоналей. Следствием теоремы Птолемея стало понимание эквивалентности четырех формул суммы и разности для синуса и косинуса. Кроме того, Птолемей вывел формулу половинного угла. Все свои результаты Птолемей использовал при составлении тригонометрических таблиц. К сожалению, ни одной подлинной тригонометрической таблицы Гиппарха и Птолемея не сохранилось до наших дней.

Тригонометрические вычисления нашли свое применение почти во всех областях геометрии, физики и инженерного дела.
С помощью тригонометрии (техника триангуляции) можно измерять расстояния между звездами, между ориентирами в географии, производить контроль над системами навигации спутников.


Тригонометрия успешно применяется в технике навигации, теории музыки, акустике, оптике, при анализе финансовых рынков, электронике, теории вероятности, статистике, биологии и медицине, химии и теории чисел (криптографии), сейсмологии, метеорологии, океанологии, картографии, топографии и геодезии, архитектуре и фонетике, машиностроении и компьютерной график
е .

Словарь Ушакова

Тригонометрия

тригономе трия , тригонометрии, мн. нет, жен. (от греч. trigonos - треугольник и metreo - мерю) (мат. ). Отдел геометрии о соотношениях между сторонами и углами треугольника.

Энциклопедический словарь

Тригонометрия

(от греч. trigonon - треугольник и...метрия), раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии.

Словарь Ожегова

ТРИГОНОМЕ ТРИЯ, и, ж. Раздел математики, изучающий соотношения между сторонами и углами треугольника.

| прил. тригонометрический, ая, ое.

Словарь Ефремовой

Тригонометрия

ж.
Раздел математики, изучающий тригонометрические функции и их применение к
решению задач.

Энциклопедия Брокгауза и Ефрона

Тригонометрия

Соотношения между сторонами и углами треугольников (см.) выражаются при помощи особого рода функций, назыв. тригонометрическими. Этим функциям даны особые названия: синус, косинус, тангенс, котангенс, секанс и косеканс.

Предположим, что, приняв точку О за центр, радиусом ОА опишем дугу AB. Точка А наз. началом дуги AB, а точка В - концом дуги AB. Представим себе угол АОВ, вершина которого находится в точке О, а стороны проходят через точки А и В. При изменении радиуса ОА дуга AB, ограниченная сторонами данного угла, меняется, но отношение AB/OA остается неизменным. Это отношение служит мерою данного угла. Так как равные углы можно отложить по разные стороны прямой ОА, то, для того, чтобы отличить один угол от другого, согласились один из углов выражать числом положительным, а другой числом отрицательным. Если дуги AB и AB", описанные радиусом ОА равны, то и угол АОВ равен углу АОВ". Если напр. AB/OA = 1/3 , то согласимся говорить, что угол АОВ равен 1/3 и что угол АОВ" равен ( - 1/3) . Таким образом всякому отвлеченному числу (положительному или отрицательному) соответствует вполне определенный угол. Если мы из конца дуги В опустим перпендикуляры ВР и BQ на прямую ОА и на прямую ОС, перпендикулярную к ОА , то получим отрезки ОР и OQ (черт. 2), которые назыв. проекциями 0В на ОА и на ОС. Предположим, что угол АОВ не меняется, а изменяется радиус ОА ; в таком случае отношения ОР/OA и OQ/OA остаются неизменными.

Здесь возможны следующие частные случаи. Проекция на О А может быть направлена в ту же сторону, как и отрезок ОА или же в сторону противоположную (черт. 3).

Точно так же проекция на ОС может иметь направление ОС или направление противоположное (черт. 4).

Направление ОС выбрано так, чтобы прямой

угол А ОС был положительный. Если угол АОВ равен α , то синусом α (Sin α) назыв. отношение OQ/OA в случае, если OQ имеет одинаковое направление с ОС. Если же OQ направлено противоположно ОС, то

Sin α = - OQ/OA

Отношение OP/OA назыв. косинусом α, (Cos α) в случае, если ОР одинаково направлено с OA. Если же ОР имеет противоположное направление с ОА, то

Cos α = - OP/OA

В учебниках Т. можно найти доказательство следующих формул:

Sin ( - α) = - Sin α, Cos ( - α) = Cos α,

Sin (π /2 - α) = Cos α, Cos (π /2 - α) = Sin α,

Sin (π - α) = Sin α, Cos (π - α) = -Cos α,

Sin (π + α) = - Sin α, Cos (π + a) = -Cos α,

Sin (2 π - α) = - Sin α, Cos (2 π - α) = Cos α,

Sin (2 π + α) = Sin α, Cos (2 π + α) -Cos α.

При помощи этих формул вычисление Sinα и Cosα приводится к случаю, когда α число положительное, не превосходящее π /4

Из формул

Sin (α + β) = Sin α Cosß + Cos α Sinß,

Cos (α + ß) = Cos α Cosß - Sin α Sinß

Sina + Sinb = 2Sin[(a + b)/2] Cos[(a - b)/2],

Sina - Sinb = 2Sin[(a - b)/2] Cos[(a + b)/2],

Cosa + Cosb = 2Cos[(a + b)/2] Cos[(a - b)/2],

Cosa - Cosb = 2Sin[(a + b)/2] Sin[(a - b)/2].

Функции Sin2 α и Cos2 α выражаются через Sin α и Cos α следующим образом:

Sin2 α = 2Sin α Cos α,

Cos2 α = Cos 2 α - Sin 2 α.

Вследствие соотношения

Cos 2 α + Sin 2 α = 1

последняя формула принимает следующие виды;

Cos2a = 1 - 2Sin 2 α или Cos2a = SCos 2 α - 1.

Здесь для сокращения написано Sin 2 α и Cos 2 a вместо (Sin α) 2 и (Cos α) 2 . Тригонометри-ческие функции тангенс (tg), котангенс (ctg), секанс (sec) и косеканс (cosec) определяются следующим образом:

tg α = Sin α /Cos α, ctg α = Cos α /Sin α,

sec α = 1/Cos α, cosec α = 1/Sin α

Отметим некоторые свойства тангенса.

tg(α + β) = (tg α + tg β)/(1 - tg α tg β)

tg2 α = (2tg α)/(1 - tg 2 α)

tg α /2 = Sin α /(1 + Cos α) = (1 - Cos α)/Sin α

Функции обратные тригонометрическим наз. круговыми: арксинус (arc Sin), арккосинус (arc Cos), арктангенс (arc tg), арккотангенс (arc ctg), арксеканс (arc sec) и арккосеканс (arc cosec). Если напр. tg α = a, то α = arc tga. Так как данному числу a соответствует множество различных α , то для большей определенности согласились под arc tga понимать число, лежащее в промежутке (- π /2, π /2 ). В этом промежутке тангенс может иметь любое значение. Подобным же образом предполагается, что числа arc Sina, arc ctga и arc coseca лежат между - π /2 и π /2, а числа arc Cosa и arc seca между О и π . Тригонометрические функции имеют очень важное значение: они встречаются в очень многих вопросах анализа и геометрии. Так как вычисления облегчаются при помощи логарифмов, то в таблицах помещаются не самые тригонометрические функции, но их логарифмы (см.). Углы в таблицах выражены не числами, а градусами. Если данный угол равен α , то он содержит 180 α / π градусов; 60-ая часть градуса наз. минутой, а 60-ая часть минуты - секундой. Тригонометрические таблицы вычисляются при помощи рядов (см.).

Соотношения между сторонами и углами прямолинейного треугольника (см.) выражаются следующими формулами. Если обозначим углы треугольника через A, В и С, а противолежащие им стороны через a, b и с, то получим

А + B + С = π,

SinA/a = SmB/b = SinC/c

a 2 = b 2 + с 2 - 2bс.CosA,

a = b.CosC + c.CosB,

tg[(Α - Β)/2] = [(a - b)/(a + b)]Ctg(С/2)

Если периметр треугольника, т. е. а + b + c обозначим для краткости через 2р, то получим

В этих формулах корень квадратный имеет значение положительное. Если s обозначает площадь треугольника, то s = 1/2(ab).Sinc или s = √.

Если R радиус круга, описанного около треугольника, а r - радиус круга вписанного, то

R = a/(2SinA) = (abc)/(4s) и r = s/p.

Из перечисленных формул можно вывести другие при помощи перестановки букв. Напр., из формулы

а 2 = b 2 + с 2 - 2bс.CosA

b 2 = а 2 + с 2 - 2ас. CosB.

При помощи указанных формул по данным частям треугольника вычисляются остальные его части. Подобная задача, называемая решением треугольников, встречается во многих практических вопросах: при геодезических съемках, при определении высот, при нахождении расстояния между неприступными точками и т. д.

Переходим теперь к треугольникам сферическим. Решение этих треугольников составляет предмет сферической тригонометрии. Предположим, что на поверхности шара радиуса R начерчен треугольник, вершины которого суть A, В и С. Соединив центр шара О с точками A, В и С, получим трехгранный угол, содержащий три плоских угла и три двугранных угла. Величины двугранных углов, ребра которых суть ОА, ОВ и ОС, обозначим через А, В и С, а величины противоположных им плоских углов через а, b и с. Будем предполагать, что шесть чисел А, В, С, а, b, с выражены в градусах, и что ни одно из них не превосходит 180°. Между этими числами имеют место следующие основные соотношения:

Cosa = Cosb.Cosс + Sinb. Sinс. CosА,

SinA/Sina = SinB/Sinb = SinC/Sinc

Cosa.Sinb - Sina.Cosb.CosC = Sinc.CosA,

Cosa.SinB - Cosb.CosС.SinА = СоsA.Sin С,

Ctga. Sinb - CtgA.SinC = Cosb.CosC,

CosA = - CosB.CosC + SinB.SinC.Cosa.

Если a + b + c = 2p, то

Сумма углов сферического треугольника содержит более 180°. Число A + В + С - 180° наз. сферическими избытком данного треугольника и обозначается буквою ε . Для определения числа градусов, содержащихся в одной из сторон сферического треугольника, углы которого даны, служат формулы

Площадь сферического треугольника равна (π /180) ε.R 2 , где R радиус шара.

Формула Люилье (l"Huillier) дает возможность вычислить сферический избыток по сторонам треугольника.

Укажем еще на формулы Деламбра:

Sin[(A + B)/2]:Cos = Cos[(a - b)/2]:Cos

Sin[(A - B)/2]:Cos = Sin[(a - b)/2]:Sin

Cos[(A + B)/2]:Sin = Cos[(a + b)/2]:Cos

Cos[(A - B)/2]:Sin = Sin[(a + b)/2]:Sin

и на формулы Непера:

tg[(A + B)/2] = (ctg)(Cos[(a - b)/2]/Cos[(a + b)/2])

tg[(A - B)/2] = (ctg)(Sin[(a - b)/2]/Sin[(a + b)/2])

tg[(a + b)/2] = (tg)(Cos[(A - B)/2]/Cos[(A + B)/2])

tg[(a - b)/2] = (tg)(Sin[(A - B)/2]/Sin[(A + B)/2]) Из перечисленных формул получим новых при помощи перестановки букв.

Формулы сферической Т. очень часто применяются в астрономии.

Не перечисляя учебников тригонометрии, укажем на J. A. Serret, "Trait é de Trigonomé trie". Сведения по истории Т. можно найти в сочинении: Moritz Cantor, "Vorlesungen ü ber Geschichte der Mathematik", доведенном до 1759 г. (до года рождения Лагранжа). Кроме того, в 1900 г. появилась первая часть сочинения: A. von Braunm ühl, "Vorlesungen ü ber Geschichte der Trigonometrie", в которой история Т. доведена до половины XVII стол. (до изобретения логарифмов).

Д. С.

Словари русского языка

Тригонометрия - математическая дисциплина, изучающая зависимость между сторонами и углами треугольника.

Казалось бы, тригонометрию можно считать лишь частью геометрии, однако тригонометрические функции, с помощью которых связываются элементы треугольника, - это объект изучения математического анализа, а тригонометрические уравнения - уравнения, в которых неизвестные являются аргументами тригонометрических функций, - изучаются методами алгебры. Таким образом, тригонометрия - раздел математики, использующий достижения других важных ее разделов.

Основные формулы тригонометрии задаются теоремой синусов (см. Синусов теорема) и теоремой косинусов (см. Косинусов теорема). Кроме них часто применяются теорема тангенсов, открытая в XV в. немецким математиком И. Региомонтаном,

, , ,

и формулы К. Мольвейде (немецкого математика конца XVIII - начала XIX в.):

, .

Здесь через обозначены длины сторон треугольника, а через - соответственно величины противоположных им углов.

Помимо теоремы косинусов углы треугольника могут быть также выражены через его стороны с помощью формул:

, , ,

где - полупериметр треугольника.

Площадь треугольника помимо формулы Герона (см. Герона формула) может быть выражена с помощью тригонометрии через стороны и углы треугольника еще несколькими способами:

, , .

Тригонометрия возникла из практических нужд человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт.

Зачатки тригонометрических познаний зародились в древности. На раннем этапе тригонометрия развивалась в тесной связи с астрономией и являлась ее вспомогательным разделом.

Древнегреческие ученые разработали «тригонометрию хорд», изложенную выдающимся астрономом Птолемеем (II в.) в его работе «Альмагест». Птолемей вывел соотношения между хордами в круге (выражавшиеся словесно ввиду отсутствия в то время математической символики), которые равносильны современным формулам для синуса половинного и двойного угла, суммы и разности двух углов:

, , .

Важный шаг в развитии тригонометрии был сделан индийскими учеными, которые заменили хорды синусами. Это нововведение перешло в VIII в. в арабоязычную математику стран Ближнего и Среднего Востока, где тригонометрия постепенно превратилась из раздела астрономии в самостоятельную математическую дисциплину. Помимо синуса были введены и другие тригонометрические функции, и для них были составлены таблицы.

Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функций сформировались в процессе долгого исторического развития. Если, например, при введении основных тригонометрических понятий представляется естественным принимать радиус тригонометрического круга (рис. 1) равным единице, то эта, казалось бы, простая идея была усвоена только в Х-XI вв. Если мы понимаем под синусом угла в прямоугольном треугольнике отношение катета (линия синуса) к гипотенузе (т.е. радиусу единичной окружности), то в средние века термином «синус» обозначали саму линию синуса . То же относится к косинусу, под которым понималась линия косинуса , и другим тригонометрическим функциям.

Лишь постепенно, благодаря введению новых понятий, а также в результате разработки и усовершенствования математической символики, тригонометрия приобрела современный вид, наиболее удобный для решения вычислительных задач. Окончательный вид она приобрела в XVIII в. в трудах Л. Эйлера.

Существует также сферическая тригонометрия, рассматривающая соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов. Она является частью сферической геометрии и возникла исторически раньше тригонометрии на плоскости из потребностей практической астроном

Поделиться: