Источники техногенного риска. Техногенный риск

Зарождение и развитие жизни на Земле произошло в пределах природной оболочки планеты, именуемой биосферой.

Биосфера включает в себя атмо- и гидросферу, а также верхние слои литосферы (твердой оболочки). Полярные и материковые льды (криосферу) можно отнести к твердому фазному состоянию гидросферы. Биосфера - исторически естественная среда обитания человека. Эволюционные преобразования человека и измененной им природы (техногенез) привели к созданию техногенной сферы (техносферы).

Техносфера - это преобразованная человеком часть биосферы, в которой наряду с природными опасностями присутствуют опасности, связанные с деятельностью человека в интересах своих жизненных потребностей. Техносфера - среда обитания и жизнедеятельности человека. Техносферу составляют территории жилой, промышленной, сельскохозяйственной и рекреационной зон, ландшафт (тип рельефа местности, почв, растительный мир 1). История развития техносферы свидетельствует о прогрессирующем увеличении площадей преобразованных территорий. Техносфера в настоящее время стала фактически окружающей средой, представляя собой техноприродный комплекс. Вместе с тем биосфера и техносфера не имеют четких границ , существует и переходная (техноприродная) зона, испытывающая влияние техносферы.

Компонентами техносферы являются объекты:

  • ? природные (земля, недра, почвы, поверхностные и подземные воды, растительный и животный мир);
  • ? техногенные (все, что создано трудом и руками человека, включая простейшие орудия труда и созданные с их помощью антропогенные объекты).

Неизбежные природные опасности способствовали развитию и усложнению техники в целях борьбы за выживание, а затем - за качество жизни. Неожиданным результатом интенсификации технического прогресса в процессе развития общества явился значительный рост техногенных опасностей в техносфере и реальных техногенных аварий, в ряде случаев превосходящих уровень стихийных (природных) бедствий. Пример крупных техногенных катастроф показал неготовность общества предвидеть и предотвратить возможность их возникновения либо, по меньшей мере, предусмотреть меры снижения тяжести последствий.

Опасность - центральное понятие наук о безопасности и всей сферы деятельности в этой области. Опасности и, следовательно, риск (как производная от опасности) являются неотъемлемой частью жизнедеятельности каждого человека, общества, государства, био- и техносферы. Пространство, в котором постоянно существуют или периодически возникают опасности, получило название ноксо- сфера. Опасность является негативным свойством объекта-источника. Вместе с тем говорить об опасности безотносительно к объекту, ее воспринимающему (объекту-реципиенту), не имеет смысла. Опасность представляет угрозу только тогда, когда может причинить ущерб конкретному объекту. Следовательно, опасность существует только в системе, включающей как минимум два элемента: источник и реципиент, при совпадении факторов пространства и времени. Вне этой системы опасности (как и безопасности) не существует. Опасность, таким образом, является системообразующим понятием предметной области.

Если объект-источник (рис. 1.1), либо зона его опасности, затрагивают объект-реципиент, или область его интересов (жизненное пространство), происходит актуализация опасности. По характеру своего воздействия (в координатах времени) опасность может быть внезапно возникающей, периодически или постоянно действующей. Направление вектора опасности здесь вполне очевидно.

Опасности познаваемы. Большинство из них известно человеку. Новые - связанные с развитием возможностей человека (макро- и микромир, космос) и развитием технологий (вещество, виды энергии и информации) - требуют установления негативных свойств, степени их влияния на окружающую среду и контроля над ними. Идентификация опасностей (это и есть распознавание и параметрическое описание опасностей) обязательна также при выполнении процедуры оценки риска и является ответственным этапом существующих методик.

Рис. 1.1.

Реализация опасности ведет к возникновению аварий, катастроф, стихийных бедствий, ЧС. Неизбежность аварий в техносфере объясняется накоплением и концентрацией запасов энергии и опасных веществ. Вместе с тем достижение уровня необходимой безопасности является управляемым процессом. Универсальным критерием безопасности в техносфере является количественная оценка риска:

при этом величина оценки риска, например, в случае прогнозирования аварий определяется сочетанием двух составляющих: частоты возникновения аварии (X, год -1) и размера последствий, обычно в виде вреда или ущерба (У, руб.). Часто сочетание составляющих имеет вид произведения, и тогда размерностью риска является среднегодовой ущерб - руб./год.

Существующие концепции безопасности опираются на ряд принципов, среди которых особое место занимает принцип приоритета безопасности человека и сохранения здоровья людей по отношению к другим объектам безопасности и условиям, позволяющим повысить качество жизни. Риск аварий с угрозой для жизни человека называется индивидуальным риском. Вместе с тем при расчетах индивидуального риска могут возникать вопросы, связанные с оценкой стоимости жизни человека. Отождествление «высшей ценности» со стоимостью в денежном эквиваленте выглядит, по меньшей мере, негуманно. Однако экономическая оценка стоимости жизни человека необходима прежде всего в страховых расчетах, а также при определении компенсационных выплат. При определении величины индивидуального риска, когда последствия, к примеру, аварии предположены заранее в виде летального исхода, риск рассматривается как функция одной переменной

В настоящее время существует множество формулировок термина «риск», а сам термин обычно используется в сочетании с родовым признаком (относительным прилагательным), определяющим и объединяющим близкие виды. Для лучшего понимания ознакомимся с некоторыми характерными примерами. В большинстве определений термина «риск» указывается сфера его приложения (область ожидаемой опасности). Например, словосочетания «страховой риск», «инвестиционный риск», «социальный риск» указывают на область деятельности, которая рассматривает или в которой существуют определенные опасности (угрозы).

Часто риск связывают с объектом, воспринимающим риск (реципиентом риска): индивидуальный риск - т. е. риск для жизни человека, экологический риск - риск для компонентов природной среды, медико-биологический риск - риск для населения, обусловленный качеством окружающей среды.

В основу классификации рисков положены два разнородных главенствующих типа: природный риск и техногенный риск. Здесь уже определяющее родовое слово использовано для пояснения источника или происхождения опасности, будь то природные явления и процессы в первом случае либо технические объекты и технологии - во втором.

Поскольку величина риска может быть определена количественно (риск, как мы установили, является измеряемой величиной), то все поле его возможных значений принято условно делить на три области (рис. 1.2). Названия этих областей качественно (или лингвистически) характеризуют степень риска (пренебрежимый, приемлемый, чрезмерный риск), а границы областей являются уровнями риска.

В соответствии с концепцией приемлемого риска, принятой развитыми странами начиная с 70-80-х гг. XX в., именно уровень приемлемого (допустимого) риска лежит в основе представлений общества о соотношении качества жизни и безопасности. Величина этого уровня устанавливается государствами законодательно с учетом социальных и экономических факторов. В целях исключения чрезмерного риска для отдельных категорий граждан вводятся ограничения на деятельность. Это происходит, к примеру, при работе персонала на объектах с источниками повышенной опасности (профессиональный или вынужденный риск). Ограничения риска для здоровья населения выглядят в виде создания санитарно-защитных зон промышленных объектов, что позволяет исключить или снизить воздействие вредных факторов техногенного риска при нормальной эксплуатации объекта и поражающих факторов - в случае потенциальных аварий.


Рис. 1.2.

Одним из парадоксов современного общества являются особенности восприятия риска населением. Так, ежегодно в автоавариях на российских дорогах гибнет около 30 тыс. человек и более 1,2 млн в мире. Тем не менее количество автомобилей возрастает с каждым годом, что может являться свидетельством приемлемости обществом данного вида риска.

Термин «безопасность» (другое центральное понятие предметной области) в широком понимании означает защищенность от какого-либо негативного события, явления: пожара, взрыва, урагана, наводнения и т.д. Однако «безопасность» и «защищенность» не следует безоговорочно считать синонимами. При переходе к частным случаям понимание безопасности объекта может быть затруднено, так как термин не раскрывает направления воздействия опасности относительно объекта. На самом деле опасность может исходить от объекта либо угрожать ему. Поясним это на примерах. Выражение «безопасное удаление человека от места аварии» характеризует состояние объекта-человека, определенное в данном случае его расположением, в котором человеку не угрожает опасность. Вектор потенциальной опасности направлен к объекту-реципиенту (человеку), о безопасности которого идет речь. Характеристика «безопасная бритва» определяет безопасность бритвы уже как свойство объекта-источника. При этом вектор опасности направлен от объекта (бритвы), безопасность которой рассматривается в данном случае.

Поскольку общепринятый термин «безопасность» не является исчерпывающим и содержит признаки двух понятий (состояние и свойство), то при его использовании следует учитывать вектор опасности, имея в виду, что опасность может угрожать объекту не только извне, но и в результате воздействия внутренних процессов. В англоязычной литературе ситуация несколько иная. Безопасность как состояние объекта, в котором ему не может быть нанесен существенный ущерб или вред, соответствует термину security. Безопасность - свойство объекта не причинять другим объектам существенный ущерб или вред, является аналогом термина safety.

Из поля внимания специалистов не должны исключаться непрерывно происходящие процессы взаимного влияния объектов на окружающую среду и обратного влияния среды на объект. На рисунке 1.3 приведено расположение элементов «источник» и «реципиент» опасности в схеме, поясняющей содержание термина «безопасность». Объект, о безопасности которого идет речь, - это предприятие, завод, промышленная установка, т.е. потенциально опасный (для окружающей среды) объект, который в свою очередь также может быть подвержен опасности, например, природной. Таким образом, рис. 1.3 а иллюстрирует понимание безопасности промышленного объекта как его свойства, а рис. 1.3 б - безопасности того же объекта как его состояния.

Безопасность как свойство объекта мог бы заменить ее синоним «безвредность», более точно отражающий участие вектора опасности, однако он мало распространен в технической литературе. Безвредность, как и безопасность, не является абсолютной категорией. К примеру, ртутный медицинский термометр считается безопасным, поскольку за длительное время широкого использования в медицинской практике и в быту доказал незначительность риска воздействия. Вместе с тем, в термометре содержится ртуть - вещество первого класса опасности, и вряд ли он может быть признан безвредным. ГОСТ Р 51898-2002 «Аспекты безопасности. Правила включения в стандарты» рекомендует не употреблять слова «безопасность» и «безопасный» в качестве описательного прилагательного объекта, так как они не передают полезной информации. Следует всюду, где возможно, эти слова заменять признаками объекта, например: «защитный шлем» вместо «безопасный шлем», «нескользкое покрытие для пола» вместо «безопасное покрытие».

Безопасность как состояние объекта часто заменяется понятием «уязвимость» для того, чтобы охарактеризовать реакцию рассматриваемого объекта на экстремальное воздействие. Как правило, под уязвимостью понимают открытость объекта к различным внутренним и внешним событиям (воздействиям), которые способствуют развитию аварийного процесса. Понятие «уязвимость» часто определяют через связанные с ним характеристики объекта. Например, под уязвимостью системы понимают совокупность свойств, являющихся противоположными устойчивости и живучести системы, а также ее способности выполнять заданные функции в случае частичного повреждения.

Рис. 1.3. Безопасность объекта (объект - предприятие): а - безопасность - свойство объекта; б - безопасность - состояние объекта

Несмотря на широкую популярность в наши дни термина «безопасность», в законодательстве, нормативной документации и современной литературе нет его однозначной трактовки. Это можно объяснить невостребованностью представлений о безопасности, существовавшей еще 25-30 лет назад, и резким изменением ситуации сейчас; междисциплинарным характером безопасности (сейчас ею оперируют многие науки и области знаний) и спецификой дедуктивного метода познания

  • (от общего к частному), необходимого при исследованиях безопасности в конкретных случаях. Однако все многообразие существующих формулировок можно сгруппировать в два вида, в пределах которых они существенно не отличаются:
    • 1) безопасность - состояние защищенности жизненно важных интересов личности, общества и государства;
    • 2) безопасность - состояние, при котором отсутствует недопустимый риск, связанный с причинением вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни животных и растений.

В формулировках первого вида безопасность объекта обоснована принятием мер по его защите. Вместе с тем неопределенный уровень этих мер (организационных и (или) технических) не позволяет оценить саму целевую функцию - безопасность как состояние объекта. Иначе говоря, если приняты меры по защите объекта, то его состояние следует считать относительно безопасным. Несмотря на внешнюю расплывчатость формулировок первого вида, отсутствие в них привязки к степени защищенности (полная, частичная, достаточная), их использование на практике зачастую являются оправданными. Прежде всего это касается тех случаев, когда для обоснования безопасности невозможно или же не требуется выполнения оценки риска.

Формулировки второго вида сводят понятие безопасности к понятию допустимого (приемлемого) риска. Поскольку безопасность (как свойство или состояние объекта) не имеет шкалы измерения, такой подход позволяет обосновать безопасность путем количественной оценки ее уровня. В этом случае мера (критерий, степень) безопасности характеризуется величиной риска. Риск при этом является контрольно-измерительным инструментом для определения уровня безопасности. Управление процессом обеспечения безопасности также осуществляется с использованием этого инструмента - оценки риска. Обеспечение требуемого уровня безопасности за счет снижения величины риска возможно различными методами, в том числе инженерной защиты.

В дальнейшем мы будем использовать формулировки, общий и краткий вид которых представлен ниже.

Опасность - источник потенциального ущерба (вреда) или ситуация с потенциальной возможностью нанесения ущерба (вреда).

Безопасность - состояние (или свойство) объекта, при котором отсутствует недопустимый риск.

Техногенный риск - мера безопасности (или опасности), порожденной техническими объектами.

Важный вывод заключается в том, что все ключевые понятия данной области знаний и деятельности - «опасность», «риск», «безопасность» - являются взаимосвязанными. Они относятся, существуют и востребованы лишь в пределах системы, включающей два обязательных элемента - источник опасности и объект, на который этот источник может негативно воздействовать. Использование какого-либо из данных ключевых понятий в каждом конкретном случае требует присутствия (в явной или неявной форме) обоих элементов указанной системы.

  • Считается, что в настоящее время около половины территории суши занимаютантропогенные ландшафты.
  • Понятие границ здесь весьма условно. Так, ударная волна ядерного взрыва при испытаниях в районе Новой Земли (1961 г.) три раза обогнула Земной шар.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

9. Системы контроля и диагностирования оборудования добычи нефти и газа, магистральных газонефтепроводов

10. Анализ риска

11. Оценка риска

12. Основной метододический инструментарий

13. Управление риском

14. Критерии управления риском

1. Особенности рисков, связанных с техногенными объектами

Быстрое развитие техногенных объектов является неотъемлемой чертой современного этапа развития человечества. Их эксплуатация позволяет решать многочисленные задачи повышения уровня и качества жизни людей, обеспечения безопасности индивидуумов, сообществ и государств. В то же время сооружение, эксплуатация и демонтаж техногенных объектов в свою очередь порождают факторы опасности, обусловливающие возможность негативного воздействия на людей и окружающую природную среду. Многие экологические проблемы современности связаны с резким ростом производства и потребления энергии, использованием ядерной энергии, экстенсивным использованием вредных химический веществ.

Бурное развитие промышленности во второй половине двадцатого века, повлекшее за собой очевидное загрязнение окружающей среды, а также ряд катастроф на техногенных объектах, приведших к человеческим жертвам, выдвинули вопросы техногенной безопасности на передний план, привлекая внимание как законодательных и регулирующих органов, так и широкой общественности и чутко реагирующих на изменения общественного мнения политиков.

Первым и очевидным побуждением было требование сделать техногенные объекты "настолько безопасными, насколько это практически достижимо" (в западной литературе это получило название принципа ALAPA.

Это требование нашло отражение в законодательных и нормативных документах многих промышленных стран (в том числе и СССР). При этом снижение опасности достигалось главным образом экстенсивным путем, за счет введения специальных систем безопасности, что вело к повышению уровня затрат на техногенные объекты.

Постепенно становилось все более ясно, что принцип "чем больше, тем лучше" применительно к системам промышленной безопасности отнюдь не является оптимальным. Действительно, чем больше тратится средств на технические системы безопасности, тем меньше их остается (в силу ограниченности ресурсов общества) на здравоохранение и повышение качества жизни. Снижение техногенной опасности до нуля вообще невозможно, так как это предполагало бы прекращение всей промышленной и сельскохозяйственной деятельности. Поэтому в современных условиях все большее предпочтение отдается принципу разумной оптимизации затрат на промышленную безопасность, известному также как принцип ALARA, в соответствии с которым следует стремиться к обеспечению уровня воздействия на население и окружающую среду "настолько низкого, насколько это разумно достижимо" с учетом экономических и социальных факторов. При этом обеспечивается распределение затрат, обеспечивающее наибольший выигрыш общества.

Эффективным инструментом оптимизации затрат в обеспечение безопасности является анализ риска и установление уровня приемлемого риска. В этой связи следует отметить, что впервые вопросы приемлемого риска применительно к космонавтике были разработаны и нашли практическое применение в России (Советском Союзе). Один из наиболее перспективных методов анализа риска -- вероятностный анализ безопасности (ВАБ). ВАБ давно уже с успехом применяется при разработке отечественных космических систем (космические аппараты и пусковые системы). В США методы ВАБ в космонавтике стали широко использовать только после гибели американского космического корабля "Челленджер".

Техногенная деятельность порождает целый спектр опасностей различного вида, дифференцируемых по типу опасных факторов и характеру наносимых их действием повреждений: химические, пожарные, радиационные и т.д. Кроме того, деятельность техногенных объектов порождает экологические и социально-психологические опасности. Поскольку техногенные объекты являются элементами экономики, их деятельность (или прекращение оной) связана с вопросами экономической безопасности.

Для значительной части членов общества риск, связанный с деятельностью техногенных объектов, является вынужденным, обусловленным решениями, принятыми без их участия и прямого согласия.

Высокая концентрация техногенных объектов на ограниченной территории усугубляет опасность аварий, так как усиливает синергетические эффекты вредных воздействий.

Проблемы, возникающие в связи с использованием техногенных объектов, обусловлены как их непосредственным и постоянным воздействием на людей и окружающую среду, так и с наличием вероятности усиления имеющихся негативных воздействий и появления новых вредных факторов в результате нарушения правильных условий эксплуатации или возникновением аварийных ситуаций. В связи с этим возникают критические вопросы:

2 - до какого уровня целесообразно снижать риск, который считается условно допустимым, и как сбалансировать это снижение с точки зрения получаемых выгод и сделанных затрат.

Ряд государств ввели или намерены ввести политику управления риском в рамках общей политики в сфере безопасности. Такая политика осуществляется по двум направлениям: политика, ориентированная на воздействие, и политика, ориентированная на источник.

Политика, ориентированная на воздействие, должна исходить из целей, сформулированных по отношению к качеству окружающей среды. Ее конечная цель -- такое состояние окружающей среды, когда нельзя ожидать никаких вредных воздействий на людей, животных, растительность и продукты, вызванных порожденными техногенной деятельностью загрязнением или физическими воздействиями. Эта цель слишком абстрактна, чтобы служить руководством для управления риском и, особенно, чтобы успешно противостоять направленной на максимальный экономический результат техногенной деятельности. Поэтому необходимо сделать этот требуемый уровень безопасности понятным, количественно оценив концентрации вредных веществ в воде, почве и воздухе, или уровень воздействия на организмы, или результаты действия шума, радиации, тяжелого запаха, или уровень опасности, которая считается незначительной с точки зрения экологии. Этот тем или иным образом оцененный и выраженный уровень принимают за целевое значение.

В большинстве случаев (концентрации веществ и т.д.) целевое значение представляется достижимым только в далекой перспективе. В такой ситуации к целевому значению следует двигаться постепенно, в несколько стадий. Это можно делать с помощью стандартов безопасности, которые можно реализовать в краткосрочной или ближнесрочной перспективе, и которые обоснованно гарантируют, что риск остается ниже максимально допустимого уровня. Такие стандарты безопасности -- результат компромисса между желательными значениями и тем, что реально достижимо технически, экономически или в каком-либо другом отношении (например, с точки зрения перспективы использования земли). Диапазон значений риска, в котором может иметь место этот компромисс, ограничен, с одной стороны, уровнем, при котором риск для людей, животных, растений, продуктов и т. д. максимально допустимый, а с другой стороны -- уровнем, при котором риск пренебрежимо мал. Таким образом, политика, ориентированная на воздействие, должна определить предел, до которого должны быть снижены полная эмиссия вредных газов в атмосферу, захоронение вредных веществ и другие виды потенциально опасных проявлений техногенной деятельности.

Формулируя политику, ориентированную на источник, следует определить, какие категории источников вредных факторов могут создавать нежелательные воздействия, и насколько велик вклад каждой из этих категорий. Целью является наиболее целесообразное распределение усилий по снижению этих воздействий, основанное на учете вклада каждого загрязнения в полную опасность. Распределение усилий по контролю загрязнения атмосферы нефтеперерабатывающими заводами, электростанциями, сельским хозяйством и транспортом -- пример этого.

2. Основные типы природно-техногенных аварий и катастроф

На основе анализа последствий и периодичности природно-техногенных аварий и катастроф можно выделить их следующие классы: планетарные, глобальные, национальные, региональные, местные, объектовые (табл. 1.1.8.). По мере развития человечества и его возможностей в промышленной и военной сферах все больше возрастают риски переходов к наиболее тяжелым авариям и катастрофам.

Планетарные катастрофы с возможностью гибели жизни на Земле связываются с такими катастрофическими природными явлениями, как столкновение Земли с крупными астероидами, имеющими скорости движения до 80 км/сек, а также с полномасштабными военными действиями с применением современного ядерного, термоядерного и химического оружия массового поражения. В табл. 1.1.9. показаны основные характеристики глобальных, национальных, региональных, местных и объектовых катастроф.

Глобальные катастрофы могут затрагивать территории ряда сопредельных стран; периодичность таких катастроф оценивается в 30 - 40 лет и более, число пострадавших в них достигает более 100 тыс., а экономический ущерб может превышать 100 млрд. долл. Такие последствия связываются с крупномасштабными техногенными катастрофами на ядерных реакторах гражданского и военного назначения с расплавлением активной зоны, на предприятиях ядерного цикла, на ядерных боеголовках, на мощных ракетах-носителях, на атомных подводных лодках и надводных судах, на складах с химическим оружием и на крупных химических предприятиях с большими запасами сильнодействующих ядовитых отравляющих веществ. К природным катастрофам с глобальными последствиями можно отнести крупнейшие землетрясения, извержения вулканов, цунами, ураганы.

Национальные катастрофы затрагивают территории отдельных стран; их периодичность составляет 15-20 лет; при этом число жертв и пострадавших не менее 10 тыс. человек, а экономические ущербы достигают 10 млрд долл. и более. Такие катастрофы могут возникать на указанных выше объектах, а также при транспортировках больших масс людей и опасных грузов, на пересечениях магистральных трубопроводных систем с транспортными линиями и линиями электропередач, при пожарах на крупнейших промышленных и гражданских комплексах, при падениях самолетов на опасные объекты, при разрушениях крупных плотин и дамб. К опасным природным процессам с последствиями национального масштаба относятся землетрясения, ураганы, наводнения, лесные пожары, селевые потоки и др..

Природные и техногенные катастрофы регионального масштаба захватывают территории целых республик, краев и областей; их периодичность составляет 10-15 лет. Число жертв и пострадавших в них может превышать 1000 человек, а экономический ущерб - 1,0 млрд. долл. Такого рода катастрофы вызываются теми же причинами и приводят к тем же последствиям, что и национальные катастрофы. Дополнительно к ним можно отнести взрывы и пожары на объектах с опасными веществами, при крушениях поездов, судов и самолетов, при взрывах на металлургических комплексах, элеваторах, шахтах. Дополнительными опасными природными процессами являются обвалы, ливни, оползни, снежные лавины, горные удары.

Локальные (местные) аварии и катастрофы создают ущербы для городов и районов. Частота их возникновения существенно выше - менее одного года; пострадавшими в них оказываются сотни людей, а экономический ущерб достигает 100 млн. долл. Спектр основных причин и источников локальных аварий и катастроф дополняется обрушениями и пожарами на промышленных и гражданских сооружениях, при локальных выбросах радиоактивных и отравляющих веществ.

Объектовые аварии и катастрофы ограничиваются территориями санитарно-защитных зон объекта; частота таких аварий и катастроф характеризуется временем до одного месяца; число жертв и пострадавших находится на уровне десятков, а экономический ущерб - на уровне миллиона долл. Наиболее частыми здесь являются пожары, взрывы, столкновения и крушения транспортных средств, обрушения, провалы.

Такая классификация аварий и катастроф в природно-техногенной сфере позволяет более ориентированно вести разработку методов и систем их анализа, прогнозирования и предотвращения.

3. Источники техногенных рисков

Источниками техногенных рисков принято называть различные опасности, приводящие к нештатному функционированию технических систем или к ошибкам операторов. Различают внутренние и внешние источники для каждого технического устройства и каждой технической системы.

К внешним источникам обычно относятся:

· природные воздействия, связанные с опасными явлениями природы;

· внешние пожары, взрывы;

· внешние техногенные воздействия (столкновения, аварии и катастрофы на др. техногенных объектах и т.п.);

· внешние бытовые воздействия (отключение питания, водоснабжения, протесты населения);

· диверсии, акты терроризма;

· военные действия;

К внутренним источникам обычно относятся:

· ошибки собственных операторов;

· внутренних саботаж;

· отказы технических устройств, в составе технической системы;

· разрушения несущих конструкция вследствие дефектов или усталости конструкционных материалов;

· внутренние аварии, вызванные отключением питания, водоснабжения, перерывом технологических процессов и т.п.;

· внутренние пожары, взрывы;

· структура технической системы, наличие узлов и цепочек инцидентов;

Для технических объектов характерно накопление определенных запасов энергии, концентрация энергии на ограниченных пространствах.

Важно отметить, что для каждой технической системы существует свой набор источников опасности, как направленных на нее, так и исходящие от нее. По мере усложнения технической системы количество источников опасности увеличивается. Обычно источники опасности объединяются в различные группы, которые служат основой для факторного анализа техногенных рисков.

4. Риски при техногенных и природных катастрофах

Проблемы оценки рисков при возникновении катастроф природного и техногенного характера приобрели особую актуальность на рубеже XX и XXI веков. Если принять, что история человеческого существования измеряется протяженностью 1,5 - 2,5 млн. лет, то для человека потенциальные опасности природного происхождения характеризуются выраженным наложением цикличности на медленно (на протяжении сотен миллионов и миллиардов лет) и монотонно протекающие процессы на Земле и в Космосе. Глобальные изменения состояния земной поверхности, Мирового океана и климата на Земле в связи с гелио-геопроцессами характеризуются большими циклами - от 10 - 20 тыс. лет до 500 - 1100 тыс. лет и более. Они вызывают глобальные потепления и похолодания, вариации положения земной оси, магнитного поля, состояния атмосферы, стратосферы и ионосферы.

На эти монотонные и циклические процессы могут накладываться случайные (с чрезвычайно малой вероятностью до 10" 8 -10~ 9 и менее в год) планетарные природные катастрофы, обусловленные весьма большими (близкими к взрывным) изменениями активности Солнца, прохождениями планет через астероидные и метеоритные пояса с возможными их столкновениями.

Указанные выше монотонные, циклические и случайные процессы земного и космического масштаба приводят к кардинальным изменениям условий жизни на Земле. Несмотря на неизмеримо возросшие возможности человека противостоять природным и техногенным угрозам, закономерности и параметры этих процессов очень сложны в исследовании и количественном описании. В связи с этим такого рода глобальные катастрофы, затрагивающие все человечество и все живое на Земле, должны быть пока отнесены к гипотетическим, а степень реально прогнозируемой защищенности от них чрезвычайно мала. Последствия такого рода общепланетарных катастроф могут оцениваться как предельные, когда вероятность уничтожения жизни на Земле приближается к 100%. В этом случае риск летального исхода, обычно измеряемый числом смертей на 1000 человек, также составит 10 3 . При общем числе жителей на Земле в настоящее время порядка 5-Ю 9 и вероятности возникновения общепланетарных природных катастроф в 10" 6 -10~ 9 1/год, риск летального исхода для человека при такой катастрофе составляет 5-10°-5-10 3 , а риск уничтожения жизни будет 10 6 -10 9 1/год.

Глобальные природные катастрофы, обусловленные природными процессами на Земле и затрагивающие территории ряда стран и континентов (землетрясения, извержения вулканов, цунами, ураганы), зарегистрированы за период 10 3 -10 4 лет с человеческими жертвами до 10 6 чел. При средней численности населения на период таких катастроф до 5-10 8 риск летального исхода для одного жителя Земли составляет от 2-Ю 6 до 2-Ю 7 1/год, или 2-10° на одну тысячу. Необратимый ущерб живому при этих катастрофах возникал на ограниченных территориях -- до 5-10~ 6 -10 7 от поверхности Земли. Тогда риск уничтожения жизни на Земле при таких катастрофах можно оценить, как (2-5)-10 10 1/год. Риск уничтожения жизни на 1-2 порядка меньше, чем при общепланетарных природных катастрофах; риск летального исхода при этом меньше в 5-10 2 раза.

Можно принять, что реальные техногенные угрозы для человека (пожары, взрывы, обрушения) на протяжении последних 10 4 -10 3 лет стали значительными только в последние столетия, когда началось интенсивное гражданское строительство поселений, плотин, акведуков, дамб. Крупные пожары в древнеримских и средневековых городах возникали с периодичностью 50 - 100 лет и гибелью в них до 10 3 человек и более. В этом случае риск летального исхода составлял (1-2)-10* 7 1/год или 2-10 2 на 1000 жителей. В последние десятилетия риск летального исхода при техногенных катастрофах в силу ускоренного развития техногенной сферы и неподготовленностью человечества к защите от них резко возрос и стал достигать (2-3)-10" 1 на 1000 жителей. Эти риски становятся сопоставимыми или превосходят риски гибели людей при всех видах природных катастроф, составляющих (0,3-0,5)-10 1 на 1000 жителей.

В табл. 1.1.10. Приведены данные о вероятности летального исхода в быту и в профессиональной деятельности (6 человек/час). Летальность на транспорте, в горных работах и в строительстве может превышать бытовую в 3 -- 5 раз и более. В России в последнее десятилетие многие из показателей индивидуального риска повысились в 1,5 -- 2 раза.

Глобальными антропогенными катастрофами по своим последствиям можно считать крупнейшие войны. Если до начала XX столетия в этих войнах вероятность смертей достигала 0,3 - 0,5 на 1000 жителей, то в первой мировой войне этот показатель достиг 5, а во второй -- 25 на 1000 жителей.

Появление оружия массового поражения -- ядерного, химического и бактериологического -- и угроза третьей мировой термоядерной войны сопряжены с возможностью антропогенной общепланетной катастрофы с вероятностью летального исхода 5-10°-Ы0 1 . Это означает возможность многократного уничтожения всего человечества. При этом, как и при природных общепланетарных катастрофах, возможно уничтожение жизни на Земле с риском, превышающим указанный выше на много порядков.

Возможность и необходимость исключения такой войны в последнее десятилетие была показана расчетами и крупномасштабными экспериментами.

Таким образом, на протяжении последнего столетия резко изменились соотношения между рисками природных и техногенных катастроф. Человечеству необходима разработка новой концепции резкого уменьшения рисков и предотвращения чрезвычайных ситуаций от техногенных катастроф и снижения ущерба от природных катастроф.

5. Концепция физико-химических основ идентификации потенциальных источников опасности

Процессы производства, хранения, транспортировки, переработки и применения различных химических соединений являются неотъемлемой основой современного народного хозяйства во всех его формах. Ряд из упомянутых веществ и способы их переработки являются потенциально опасными ввиду горючести, токсичности или склонности к взрывному превращению, а также в связи с повышенными уровнями параметров технологических операций (в первую очередь с особыми значениями температуры и давления). Широкий спектр химических веществ, вовлеченных в обращение при хозяйственной деятельности, разнообразие технологических схем предопределяет возможное разнообразие вариантов аварийных техногенных ситуаций и их последствий. Дополнительное осложнение сопряжено с сосуществованием сложных технических систем с конкретными природными факторами риска, порождаемыми стихийными явлениями, становящимися в ряде случаев спусковым механизмом для последующей техногенной катастрофы.

Накопленная статистика о техногенных катастрофах и анализ основных причин гибели людей и разрушения производственных помещений и жилых комплексов позволяет сделать определенные концептуальные выводы об основных факторах опасности, сопровождающих промышленные аварии и природные катастрофы, обусловленные физическими и химическими процессами, происходящими с веществами и соединениями, вовлеченными в аварию. Основными причинами гибели персонала аварийного технического объекта и людей на территории, прилегающей к нему, являются:

Разрушение зданий и сооружений;

Различные формы пожара (преимущественный фактор поражения - тепловое);

Разлетающиеся осколки и фрагменты оборудования (осколочное поражение);

Падение, столкновение или удар биообъектов с неподвижными элементами конструкций;

Отравление (удушение) газообразными продуктами выброса либо исходных соединений, либо соединений, образовавшихся при химическом превращении в процессе аварии (токсическое поражение);

Прямое поражение ударными или взрывными волнами давления (фугасное поражение).

Примерная диаграмма распределения несчастных случаев, обусловленных перечисленными причинами, представлена на рис. 3.1.

Представляет практический интерес экспертное заключение о вероятности и частоте появления перечисленных факторов поражения при свершившейся промышленной аварии.

При особо крупномасштабных авариях замечалось дополнительное сотрясение почвы. На современном этапе этим фактором аварий пока пренебрегают из-за неизученности.

Кроме того, на основе анализа последствий крупнейшей физико-химической аварии на продуктопроводе (Башкирия, июнь 1989 г.) сделан новый вывод ещё об одном последствии быстрого выгорания значительной массы углеводородного горючего вблизи неровной земной поверхности, покрытой порослями кустарника и низкорослого леса. Оказывается, что выгорание приземного слоя углеводородовоздушной смеси при центральном или периферийном поджигании способно вызвать мощный ураганный порыв движения атмосферы. В упомянутой аварии в Башкирии именно этот порыв воздуха вызвал ориентированный повал леса в направлении смещения воздушного вихря, образованного перемещением фронта пламени.

В связи с тем, что разрушение зданий и сооружений в основном вызывается фугасным действием наружных взрывных превращений или действием внутренних взрывов опасность вызывающих их физико-химических процессов сводится к следующим основным факторам:

Фугасный;

Тепловой;

Осколочный;

Токсический.

Сделанный вывод подтверждается также статистическими данными по авариям на газопроводах Средняя Азия - Центр. Распределение аварий по времени представлено на диаграмме (рис. 3.3.).

Избранная концепция физико-химических основ идентификации потенциальных источников опасности позволяет избежать ненужной детализации и сформулировать методические подходы к анализу вероятной аварийной ситуации на произвольном промышленном объекте. Все эти подходы обоснованы на многочисленных исследованиях разнообразных химических и физических явлений, которые здесь не рассматриваются.

После того как на основе фундаментально-прикладных теоретических и экспериментальных исследований, а также данных расследований аварий, установлены основные факторы, характеризующие различные виды поражения при химико-термических авариях, и найдена их связь с параметрами источников опасности, состоянием окружающей среды и относительным расположением донора и акцептора фактора опасности, имеется реальная возможность оценить ожидаемый уровень ущерба для акцептора опасности. Акцепторами факторов поражения выступают различные биообъекты (в том числе и человек), объекты промышленной и жилой застройки, элементы конструкций, объекты растительного происхождения и сама окружающая среда. Каждый из акцепторов факторов поражения (фугасное, осколочное, тепловое, токсическое) испытывает как правило комбинированное влияние нескольких типов воздействия. На данном этапе понимания уровней, степени и особенностей поражения от комплексных источников опасности нет надежных критериев и методов оценки комбинированного воздействия. Поэтому приходится вынужденно рассматривать отдельные факторы опасности как изолированные и исключать эффекты аддитивности или синергетичности одновременного действия нескольких факторов поражения.

Имеется ряд исторических причин, затрудняющих внедрение современных способов оценки и использование новых критериев ожидаемого ущерба. В связи с анализом ущерба от оружия массового поражения сложилась практика пренебрежения эффектами конечного времени действия источников опасности при многих типичных авариях на предприятиях химической, топливо-энергетической, горнорудной и иных отраслей промышленности. Пренебрежение конечностью временного периода действия ранее было оправдано недостаточным уровнем понимания реального динамического отклика любых акцепторов поражения. В итоге многие нормативные документы существенно завышают ожидаемые отрицательные последствия аварии, приводят к неразумным дорогостоящим мерам противодействия, дезориентируют персонал при проведении профилактических, ликвидационных или защитных мероприятий. Ряд ошибок при оценках опасности обусловлен неполным осознанием вероятностного характера наступления определенного уровня поражения при известном уровне параметров анализируемого фактора воздействия (амплитуда волны давления, уровень температуры, величина теплового потока, уровень скоростей движения атмосферы и т.п.). Обычно считается, что достижение некоего критического уровня воздействия однозначно ведёт к 100% -ной вероятности реализации соответствующего ущерба. В действительности такой детерминизм никогда не реализуется и реальные разрушения оказываются намного менее значительны.

При анализе аварий необходимо установить типичные случаи утраты герметичности в элементах технологического оборудования с описанием наиболее вероятных мест разрушения и их масштабов. Другим важным аспектом при оценке опасности является определение соответствующих химических и физических свойств веществ, используемых в технологическом процессе и находящихся на промышленной площадке. Такие свойства желательно знать как при штатных режимах работы, так и при экстремальных аварийных обстоятельствах. Особо следует выделить вероятность выброса токсичных и (или) реакционноспособных (горючих) веществ. При этом возможность выхода какого-либо химического процесса из-под контроля уместно предусмотреть на самых ранних стадиях предполагаемого сценария аварии. На основе выводов, полученных после реализации описанных этапов, определяется последовательность физико-химических явлений, возникающих при аварии, и оцениваются условия возможного контроля над их развитием с учётом потенциальных способов подавления. Как правило сценарий аварии и её последствия заданы свойствами веществ, используемых в элементах оборудования, среди которых наиболее важными являются: фазовое состояние (жидкость, газ, двухфазная система); давление; температура; способность к воспламенению и горению; токсичность.

При выбросе токсичного и горючего соединения необходимо рассматривать оба последствия развития аварийной ситуации, обусловленного горением и заражением атмосферы, почвы и воды. Специально отметим, что при горении некоторых веществ образуются высокотоксичные продукты горения. Опасные вещества и соединения могут быть сгруппированы по следующим категориям:

Жидкости, хранимые при атмосферных условиях или при давлении и температуре окружающей среды;

Сжиженный газ, хранимый под давлением, но при температуре окружающей среды;

Сжиженный газ, хранимый при атмосферном давлении, но при пониженной температуре;

Сжиженный газ, хранимый под давлением и при пониженной температуре. Выброс такого газа сопровождается импульсной фазой быстрого испарения;

Сжатый газ, смесь пара с газом.

Следует различать три типа взрывов: физические, химические и взрывы типа "BLEVE".

Физические взрывы не сопровождаются химическими превращениями с выделением тепла и образованием продуктов сгорания. Типичный пример физического взрыва - разрыв сосудов высокого давления, наполненных негорючими газами, паром или многофазными сжимаемыми системами (пыль, пена).

Химические взрывы сопровождаются химическими превращениями с выделением тепла и продуктов горения (газообразных, конденсированных). Типичные примеры химических взрывов - взрывы газовоздушных облаков, взрывы конденсированных ВВ, пылевые взрывы.

"BLEVE" (взрыв паров вскипающей жидкости) - особый тип физико-химического взрыва, характерного для емкостей под давлением, наполненных легкокипящей жидкостью (чаще всего - сжиженным горючим газом) и подвергаемых внешнему нагреву. В процессе нагрева отмечается быстрый рост внутреннего давления, разрыв емкости с малым фугасным эффектом, выброс горючего в атмосферу с последующим воспламенением и образованием огненного шара. Главный фактор поражения при "BLEVE" - мощное импульсное тепловое излучение. Отметим, что при разрыве емкости образуются высокоскоростные осколки оболочки, способные вызвать значительные повреждения соседнего оборудования в случае, когда отсутствуют специальные заградительные сооружения.

Строгий анализ аварийной ситуации особенно сложен в случаях, когда в инциденте участвует смесь опасных веществ. Здесь при анализе следует опираться на физико-химические свойства основного компонента смеси. Возможно ещё одно полезное упрощение, если один из компонентов смеси является токсичным. В этом случае свойства токсичности этого вещества распространяются на всю смесь. Например, в случае утечки углеводорода с примесями сероводорода всю смесь можно рассматривать как вещество с физическими свойствами углеводорода (при анализе формирования облака и его последующего горения или взрыва) и с токсичностью сероводорода. Одновременное наличие смеси горючего газа и токсичной примеси с воздухом предполагает параллельный анализ взрывных эффектов и токсического поражения.

При выбросе токсичной жидкости, не кипящей при атмосферном давлении, несмотря на незначительное испарение, облако паров как правило не образуется. Основная опасность от таких проливов сконцентрирована вблизи места утечки продукта. Дополнительно следует принять во внимание возможность стоков в реки, море или другие бассейны. Подобные соображения служат базой для создания обваловок, поддонов в местах вероятных проливов.

Особое внимание следует уделить тому факту, что при проливе сжиженного или охлажденного компонента сначала образуется бассейн с жидкостью, постепенно переходящий в парогазовое облако. Поэтому случайное или преднамеренное воспламенение на ранних стадиях завершается только пожаром, тогда как запаздывающее воспламенение требует рассмотрения модели газового взрыва.

При изучении последствий выбросов токсичных веществ чаще всего используется модель рассеяния тяжелых газов в облаках небольшой толщины, отслеживающих профиль окружающей место утечки местности. Это обусловлено физическим состоянием облака, как правило имеющего температуру ниже, чем окружающая атмосфера.

При анализе любого сценария аварии необходимо учитывать возможность вовлечения в процесс других источников опасности. Таковыми могут быть соседние хранилища опасных веществ, коммуникации, разрушение которых сопровождается дополнительными очагами поражения. Здесь существенен контроль над плотностью опасных веществ, который задает тип распространения облака в атмосфере: всплывание, осаждение или нейтральное смешение с воздухом. Подобная информация вместе с данными о вероятных источниках поджигания позволяет оценить массу вещества, вовлекаемого во взрывное превращение. На многих технологических установках безопасность обеспечивается установкой клапанов, вентилей, систем аварийного сброса давления и т.п.. При этом места наиболее вероятных разрывов достаточно просто идентифицировать. Чаще всего здесь устанавливаются системы сброса давления с учетом того, что горючие вещества не должны истекать через вентиляционные приспособления. Например, при аварийном погасании дежурного факела на башне дожигания попутных горючих продуктов, в атмосферу не должны поступать опасные количества горючего или токсичного продукта. При реализации конкретного технологического процесса необходимо исключить или сделать маловероятным развитие нежелательных химических реакций, способных вызвать неконтролируемое повышение давления и температуры.

При утечке опасных веществ из больших резервуаров важно правильно оценить время, в течение которого удается реально изолировать емкость от внешней среды с помощью отсечной аппаратуры. Этот период времени зависит от следующих факторов:

Возможности обнаружения утечки с помощью газовых, температурных и иных детекторов с учетом их размещения и времени быстродействия;

Инерционности действия систем отсечки и изоляции, связанной с наличием автоматизированных или ручных устройств и включающей время активации соответствующих устройств;

Надежности и скорости срабатывания отсечных клапанов и запорных регуляторов.

Можно предполагать, что масштабные разрывы и выбросы опасных веществ обнаруживаются немедленно либо детекторами, либо персоналом. На объектах с неавтоматизированными системами управления время устранения аварийных выбросов зависит от действий операторов, надежности систем оповещения и тренированности персонала и составляет от 3 до 15 минут (с учётом факторов паники, стресса и потенциальных ошибок). Для автоматизированных систем время срабатывания зависит от размеров клапанов и уровня рабочих параметров (в основном - давления). Считается, что характерное время срабатывания больших клапанов при высоком давлении составляет около 30 секунд.

В любом случае анализ последствий аварии или построение ее вероятного сценария могут быть существенно упрощены при использовании базы данных по уже случившимся промышленным катастрофам, подвергнутым достаточной экспертизе и описанию. При выборе аналогов самой существенной является общность природы и физико-химических свойств опасного вещества и способов его переработки и хранения. Существующая информация о типичных авариях на продуктопроводах, системах хранения и раздачи горючих веществ позволяет сделать ряд важных практических выводов:

Основные факторы поражения биообъектов и оборудования обусловлены фугасными и тепловыми эффектами при сгорании парогазовоздушных систем;

В незагроможденном пространстве отсутствует фугасный фактор поражения, и вся опасность связана с тепловыми потоками при горении, в основном длительностью и интенсивностью теплового излучения;

В загромождённом пространстве с размерами более м 3 можно ожидать быстрые режимы горения с серьезными последствиями от фугасного действия волн давления;

Погодные условия (температура окружающей среды, сила ветра и т.п.) несущественно влияют на взрывоопасность газовых смесей.

6. Риски при аварийных состояниях

При штатном функционировании объекта техногенной сферы имеет место ситуация, тем или иным образом предусмотренная и проанализированная проектировщиками и регулирующими органами, выдавшими разрешение (лицензию) на строительство, эксплуатацию (или на снятие с эксплуатации) данного предприятия. Как правило, при этом должен обеспечиваться достаточный уровень безопасности, хотя, как мы знаем, исторически сложилось так, что для целого ряда предприятий этот уровень недостаточно высок с точки зрения населения и ввиду растущих требований к охране окружающей природной среды. Но существенно, что хотя при этом и могут происходить сбросы вредных веществ за пределы предприятия (в том числе эмиссия загрязняющих атмосферу газов), эти сбросы имеют известную (или лежащую в известных пределах) величину и поэтому к ним можно, так или иначе, приспособиться.

При этом воздействие опасных факторов имеет прогнозируемый характер, и общество, в принципе, имеет достаточно информации и времени, чтобы адекватно отреагировать на наличие такого рода рисков. Неопределенность, связанная с эмиссией загрязняющих атмосферу веществ и влиянием других вредных факторов, вообще говоря, невелика (в предположении надлежащего состояния регулирования).

Иное положение возникает при отходе от штатной ситуации, особенно если этот отход ведет к развитию аварийного процесса. Следует иметь в виду, что при значительном отклонении от штатных режимов работы многие технические системы попадают в сложные условия работы, и резко возрастает вероятность различного рода отказов, а персонал находится в условиях дефицита времени на принятие решений и высокой нервной нагрузки. При этом возможны различные цепочки событий развития аварийного процесса и значительно возрастают различного рода неопределенности.

Если при штатном функционировании характер и величина рисков, вообще говоря, известны, то в аварийных условиях эти риски, как правило, резко возрастают, и, кроме того, возможно появление новых факторов опасности. Усиливается синергетический эффект их проявления.

Как уже говорилось, развитие аварии носит вариантный характер: при этом реализуется одна из множества возможных цепочек событий. На течение аварийного процесса влияют как состояние оборудования, изменение условий его работы из-за аварийной обстановки и связанные с этим отказы, так и действия персонала и еще ряд факторов, вплоть до метеорологической обстановки в зоне аварии. Ряд возможных цепочек событий развития аварии можно предугадать при проектировании нового предприятия или анализе деятельности уже работающего предприятия. В таком случае говорят о проектной аварии. Для проектных аварий разрабатывают специальные меры предупреждения их возникновения или/и смягчения их последствий.

Однако развитие событий может пойти по непредусмотренному пути и привести к тяжелым последствиям, как для самого предприятия, так и для окружающей среды (окрестного населения и окружающей природной среды). Такие аварии называют запроектными. В особо неблагоприятных случаях авария может перерасти в катастрофу локального, регионального или даже глобального характера. Особое значение приобретает управление аварией с тем, чтобы направить ход ее развития по возможности в менее опасное русло и тем самым смягчить неблагоприятные последствия.

7. Ресурс и безопасность несущих конструкций по критериям прочности, долговечности и механики разрушения

Проблемы продления ресурса безопасной эксплуатации машин и конструкций приобрели исключительную актуальность во всех промышленно развитых странах в последние десятилетия. Для нас важность их решения обусловлена снижением объемов производства для восполнения выводимых из эксплуатации машин и конструкции. Это в первую очередь касается объектов тепловой и ядерной энергетики, нефтегазопроводов, химической промышленности, наземного, надводного и воздушного транспорта, промышленного и гражданского строительства. Такого же характера проблемы имеют место и в оборонном комплексе: ракетно-космической технике, авиации, надводном и подводном флоте с ядерными силовыми установками.

Во многих странах мира и в международном научном сообществе проблемы продления ресурса стали ведущими для научно-исследовательских, конструкторских и технологических организаций, служб надзора и эксплуатации потенциально опасных объектов. В этой связи следует упомянуть программы США, ФРГ, Франции по развитию работ в области продления ресурса гражданских самолетов и атомных энергетических реакторов. В нашей стране указанные работы ведутся не только на ведомственном (Минатом, Минстрой, Минтранспорт, Госгортех-надзор, Госатомнадзор, Госавианадзор, РАО "Газпром" и ЕЭС, Минобороны), но и на федеральном уровне. В 1991 г. они вошли составным элементом, а с 1996 г. -- специальным проектом в государственную научно-техническую программу "Безопасность населения и народно-хозяйственных объектов с учетом риска возникновения природных и техногенных катастроф".

При этом в комплексе должны быть решены следующие методические вопросы:

Численный анализ исходного, использованного и остаточного ресурсов как отдельных объектов, так и систем объектов;

Обоснование проектного, фактического и остаточного ресурсов;

Оценка состояния конструкционных материалов несущих элементов с учетом исходной технологической наследственности и возникающих эксплуатационных повреждений;

Определение характера, параметров, дислокации и размеров макро- и микродефектов в несущих элементах;

Расчетный и экспериментальный анализ деформированных состояний несущих элементов;

Исследование механизмов естественного и ускоренного старения;

Оценка живучести материалов и элементов конструкций на разных стадиях повреждений;

Комплексная диагностика ресурса;

Предварительное и уточненное расчетно-экспериментальное определение остаточного ресурса.

Указанные выше методические разработки могут иметь как ведомственно-объектовый, так и унифицированный характер. При этом принципиально важно, что остаточный ресурс должен определяться с более высокой научно-методической точностью, чем проектный и исходный.

Для вновь проектируемых машин и конструкций расчеты прочности проводят применительно ко всему спектру эксплуатационных режимов нагружения, включая предпусковые и периодические испытания, пуски

Остановы, регулирование рабочих параметров и срабатывание систем аварийной защиты.

Для надлежащего обоснования прочности, ресурса и трещиностойкости требуется комплекс расчетов напряженно-деформированного состояния несущих элементов, включающий определение номинальных а э н и максимальных а э тах к напряжений, амплитуд этих напряжений, максимальных 7 ъ тах и минимальных Р min температур эксплуатации, чисел циклов N* и времени т э эксплуатации. Эти расчеты для сложных многоэлементных узлов дополняют испытаниями моделей из оптически активных (фотоупругость) и низкомодульных материалов и из соответствующих конструкционных материалов. Испытания проводят при имитации эксплуатационных режимов нагружения, а номинальные и локальные напряжения, деформации, температуры измеряют тензорезисторами, оптически активными и хрупкими тензочувствительными покрытиями, средствами муара, голографии, термовидения.

Для подтверждения критериальных характеристик прочности, ресурса и трещиностойкости проводят комплекс аттестационных испытаний на стандартных, унифицированных или специальных лабораторных образцах. В тех случаях, когда создаются новые и ответственные конструкции, проводят испытания моделей с доведением их до предельного состояния

Развитие недопустимой деформации, вязкое или хрупкое разрушение, образование и развитие трещин. При этом широко используют методы и средства дефектоскопии -- ультразвуковой, рентгеновской, оптической, акустической и акустоэмиссионной, электромагнитной, термовизионной, голографической.

По результатам указанных испытаний решают две важные практические задачи:

Обоснование принятых расчетных схем, расчетных случаев, предельных состояний и запасов прочности;

Переход на новые, обычно пониженные, запасы прочности.

8. Диагностика и контроль запроектных аварий на АЭС

Мировой опыт эксплуатации АЭС, составляющий примерно 5000 реакторолет, показывает, что проблема безопасности -- проблема потенциально возможных маловероятных аварий по причине отказа технических систем, ошибок персонала и внешних воздействий. Объекты атомной промышленности (АЭС, промышленные и исследовательские реакторы, предприятия ядерного топливного цикла, атомные подводные лодки и пр.) относятся к потенциально радиационно-опасным объектам (РОО) при аварии и разрушениях которых могут произойти массовые поражения людей, животных, растений. Сила воздействия поражающих факторов определяется степенью тяжести аварии. Оценка степени тяжести аварии определяется по Международной шкале оценки опасности событий на АЭС.

Основными поражающими факторами в ходе запроектной аварии, связанной с разрушением активной зоны реактора при создании условий возникновения теплового или парового взрыва, будут ударная волна, тепловой и световой потоки, проникающая радиация. Эти факторы сопровождают разрушение активной зоны, и их действие проявляется в течение относительно короткого времени после аварии, и они локализованы вокруг места взрыва. Вторичными факторами аварии будут пожары, разрушения, затопления и радиоактивное заражение окружающей среды, которое может быть опасным на протяжении суток, недель и лет после аварии.

При эксплуатации АЭС рассматриваются следующие режимы функционирования: нормальная эксплуатация, нарушение нормальной эксплуатации, аварийная ситуация, авария. В свою очередь аварии подразделяются на проектные, максимально-проектные, тяжелые запроектные, запроектные и ядерные аварии.

Главная цель ядерной безопасности заключается в том, чтобы обезопасить от вредных воздействий отдельных лиц, общество и окружающую среду путем создания и поддержания на АЭС эффективной защиты от радиологической опасности. Такая защита, достигаемая техническими средствами и организационными мероприятиями, реализуется на основе последовательных уровней безопасности -- "принципа защиты в глубину". В рамках этого принципа задача первого уровня безопасности -- предотвращение аварий и инцидентов, поддержания эксплуатации АЭС в пределах, исключающих возникновение аварии, обеспечивается гарантиями качества работ, обработанностью конструкций установки, надежностью систем и квалификацией персонала. Задачей второго уровня является защита от проектных аварий, т.е. перевод реакторной установки в безопасное состояние и предотвращение развития аварии, которая должна подавляться на ранней стадии. Этот уровень обеспечивается системами безопасности. Задачей третьего уровня безопасности является защита от маловероятных и гипотетических аварий, ограничение их последствий.

Для достижения главной цели безопасности -- предотвращения выхода радиоактивных продуктов за пределы физических барьеров предусматривается выполнение следующих фундаментальных функций безопасности:

Контроль и управление реактивностью, обеспечение охлаждения активной зоны реактора, локализация и надежное удержание радиоактивных продуктов.

Эти функции реализуются в соответствии с принципом защиты в глубину во всех проектах АЭС. При эксплуатации требуется выполнение этих фундаментальных функций одновременно и постоянно. Для реализации выполнения этих фундаментальных функций служат системы нормальной эксплуатации, важные для безопасности, и системы безопасности, которые по характеру выполняемых ими функций разделяются на защитные СБ, локализующие СБ, управляющие СБ, обеспечивающие СБ.

Согласно требованиям ПН АЭС все системы, оборудование и трубопроводы АЭС (элементы АЭС), предназначенные для выполнения фундаментальных функций, подлежат ранжированию на классы по влиянию элементов и систем на безопасность, и группы безопасности по степени влияния систем, составной частью которых они являются, на безопасность.

Еще на стадии проектирования АЭС в вероятностном анализе безопасности (ВАБ) проекта реакторной установки проводится анализ безопасности. В нем для всего спектра исходных событий проектных и запроектных аварий (отказов тех или иных систем) рассматриваются сценарии развития аварии, строятся "деревья событий", выявляются наиболее слабые узлы и системы оборудования АЭС, отказ которых способствует развитию аварийных процессов, и принимаются решения по введению дополнительных мер безопасности. Это позволяет уже на первом уровне ВАБ выявить наиболее существенные меры по повышению безопасности АЭС и снижению вероятности тяжелой аварии, произвести ранжирование систем и элементов систем АЭС.

Основное техническое решение, обеспечивающее радиационную безопасность АЭС, состоит в принципе эшелонированной защиты, включающей последовательный ряд независимых преград на пути от места образования радиоактивности до окружающей среды. Такими барьерами, предотвращающими распространение радиоактивности, являются топливная матрица, оболочка твэлов, корпус реактора или металлоконструкции реактора, системы оборудования и трубопроводов, прочноплотные боксы, конфтайнменты и контайменты и др.

Для повышения самозащищенности систем безопасности и барьеров АЭС разрабатываются и совершенствуются средства диагностики этих систем. Поэтому среди мероприятий, направленных на обеспечение надежной и безопасной работы АЭС, предотвращение и локализацию аварийных ситуаций и аварий, восстановление нормального состояния технологического оборудования важное место принадлежит технической диагностике. Глубина диагностирования каждого элемента зависит от класса и группы системы безопасности, к которой он относится, и осуществляется на основе критерия влияния отказа элемента на безопасность реакторной установки. Диагностирование систем безопасности и барьеров проводят на всех этапах жизненного цикла АЭС.

Согласно требованиям ОПБ-88/97 ядерный объект отвечает требованиям безопасности, если его радиационное воздействие на персонал, население, окружающую среду при нормальной эксплуатации и проектных авариях не приводит к превышению установленных доз облучения персонала и населения и нормативов по выбросам и содержанию радиоактивных веществ в окружающей среде, а также ограничивает это воздействие при запроектных авариях. Однако эксплуатация АЭС показала реальность возникновения аварийных ситуаций, поэтому в ОПБ-88/97 включены понятия проектных, запроектных, ядерных аварий и управления запроектной аварией. Запроектная авария -- авария, вызванная не учитываемыми для проектных аварий исходными событиями или сопровождающаяся дополнительными по сравнению с проектными авариями отказами систем безопасности сверх единичного отказа, реализацией ошибочных действий персонала, которые могут привести к тяжелым повреждениям или к расплавлению активной зоны. Уменьшение последствий запроектной аварии достигается управлением аварией и/или реализацией планов мероприятий по защите персонала и населения. Для этих действий используют любые имеющиеся в работоспособном состоянии технические средства, предназначенные для нормальной эксплуатации, для обеспечения безопасности при проектных авариях или специально предназначенные для уменьшения последствий запроектных аварий.

Подобные документы

    Особенности моделирования процессов в природно-техногенных комплексах. Модель передвижения тяжёлых металлов и легких нефтепродуктов. Прогнозирование функционирования природно-техногенных комплексов. Минерализация грунтовых вод на мелиоративных системах.

    реферат , добавлен 07.01.2014

    Географо-экономическая характеристика района. Основные источники техногенных нагрузок и виды природных опасностей, оценка негативных экологических влияний. Сущность антропогенного воздействия субъектов хозяйственной деятельности на окружающую среду.

    курсовая работа , добавлен 17.05.2011

    Понятие и источники риска. Географо-экономическая характеристика Кирилловского района Вологодской области. Основные источники техногенных нагрузок на окружающую среду в районе. Характеристика техногенных и природных опасностей в исследуемом регионе.

    курсовая работа , добавлен 04.06.2011

    Понятие экологического риска. Географо-экономическая характеристика района. Виды методов исследований. Выявление основных источников техногенных нагрузок в исследуемом районе. Анализ техногенных и природных опасностей, динамика техногенного воздействия.

    курсовая работа , добавлен 08.12.2011

    Отличительная особенность геоэкологического взгляда на природно-техногенные системы. Основные непосредственные причины роста численности городского населения. Степень антропогенных преобразований городских территорий. Крупнейшие конурбации мира.

    статья , добавлен 05.10.2017

    История создания географических информационных систем, их классификация и функции. Сущность геохимической оценки техногенных аномалий. Применение геоинформационной системы ArcView 9 для оценки загрязнения тяжелыми металлами атмосферного воздуха г. Ялты.

    дипломная работа , добавлен 19.12.2012

    Экологический риск, биогеохимические и антропогенные источники его возникновения. Классификация чрезвычайных ситуаций техногенного характера. Причины таких катастроф в России. Медицинские и экологические последствия ядерной аварии на Чернобыльской АЭС.

    реферат , добавлен 19.12.2014

    Разработка и внедрение принципов и технологий изготовления строительных материалов, изделий и конструкций на основе крупнотоннажных отходов промышленности. Пути повышения заинтересованности инвесторов и производителей в переработке техногенных отходов.

    контрольная работа , добавлен 27.02.2016

    Нефть и газ – осадочные полезные ископаемые. Нефтеперерабатывающая и газоперерабатывающая промышленность Ханты-Мансийского Автономного Округа. Экологические проблемы, связанные с добычей нефти и газа в округе. Пути решения экологических проблем в ХМАО.

    реферат , добавлен 17.10.2007

    Характерные условия возникновения экологических катастроф и аварий. Концепции абсолютной безопасности и приемлемого риска. Принципы обеспечения экологической безопасности производств. Устойчивость работы промышленных объектов в чрезвычайных ситуациях.

обобщенная характеристика возможности реализации опасности в техногенной сфере, определяемая через вероятность возникновения техногенной аварии или катастрофы и математическое ожидание негативных последствий от них. Количественное определение Р.т. осуществляется соответствующими методами анализа риска для основных стадий жизненного цикла объекта техносферы - проектирование, изготовление, испытания, эксплуатация, вывод из эксплуатации. При определении показателей техногенного риска используют критерии прочности, ресурса, надежности, живучести, а также данные по ущербам - людям, объектам техносферы и окружающей среде Источниками Р.т. являются отказы технических систем, ошибки операторов и персонала (человеческий фактор), опасные природные процессы. Для снижения Р.т. применяются комплексные методы - построение систем защит и барьеров для развития техногенных аварий и катастроф, проведение диагностики и мониторинга технических систем и операторов, применение сил и средств предупреждения и локализации чрезвычайных ситуаций техногенного характера.


  • - формы поверхности, возникающие в результате производственной деятельности человека - выемки, карьеры, тоннели, каналы, насыпи, отвалы и...

    Словарь геологических терминов

  • - technogenic mudflow ----- см. антропогенный...

    Селевые явления. Терминологический словарь

  • - связанный с технической и технологической деятельностью людей...

    Экологический словарь

  • - влияние, оказываемое промышленной деятельностью на организмы, биогеоценоз, ландшафт, биосферу. Т.ф. обуславливают возникновение и развитие техногенеза...

    Экологический словарь

  • - см. Риск техногенный и экологический...
  • - см. Фактор техногенный...

    Словарь терминов черезвычайных ситуаций

  • - причина, движущая сила техносферы, определяющая возможность как повышения, так и понижения техногенной безопасности...

    Словарь терминов черезвычайных ситуаций

  • - доза излучения, создаваемая источниками ионизирующего излучения, используемыми в различных сферах человеческой деятельности или образующимися в результате этой деятельности...

    Словарь терминов черезвычайных ситуаций

  • - рельеф, созданный производственной деятельностью человека, как фактор от прямого воздействия на поверхность Земли, а также рельеф “возбужденный” , возникновение которого вызвано человеком, косвенно изменившим...

    Геологическая энциклопедия

  • - антропоэкосистема - разновидность ландшафта, где человек выступает центральным элементом, определяющим функционирование и структуру ландшафта. См. также Ландшафт антропогенный...

    Экологический словарь

  • - "...Техногенные грунты - естественные грунты, измененные и перемещенные в результате производственной и хозяйственной деятельности человека, и антропогенные образования..." Источник: " ГОСТ 25100-95. Грунты...

    Официальная терминология

  • - ...

    Орфографический словарь русского языка

  • - техноге́нный прил. Являющийся следствием развития техники, результатом применения различных технологий производства...

    Толковый словарь Ефремовой

  • - ...

    Орфографический словарь-справочник

  • - техног"...

    Русский орфографический словарь

  • - ая, ое...

    Словарь иностранных слов русского языка

"Риск техногенный" в книгах

ИДУ НА РИСК

Из книги О чём шепчут колосья автора Борин Константин Александрович

ИДУ НА РИСК С начала уборки Безверхий шёл впереди, хотя косить озимую пшеницу мы начали с ним в одно время. Максим работал на старой машине, которую получил в прошлом году, я - на новой. Новый комбайн требовал обкатки, и поэтому первые два дня мы даже нормы не выполняли. Это

Риск

Из книги У стен столицы автора Кувшинов Семен Филиппович

Риск Выдался однажды тихий денек. Немцы молчали, да и у моряков не было особой нужды их тревожить - копили силы. Мы сидели в землянке артиллерийских разведчиков возле деревни Суворово, отдыхали, говорили о прошедших боях.- Недавно я познакомился с одним моряком, -

РИСК

Из книги автора

РИСК Может быть, и вам, читатель, приходилось бывать в двадцатипятиэтажном доме, который воздвигнут у Красных ворот, в Москве. Или останавливались перед его простыми и строгими гранями, облицованными естественным белым камнем. Когда-то этим камнем украшали соборы, церкви

РИСК

Из книги Сотрудник уголовного розыска автора Яковлев Геннадий Павлович

РИСК Некто Андрей Кишинский в Харькове совершил квартирную кражу. Харьковские работники милиции пытались его задержать. Но это не удалось. Кишинский, детина более чем двухметрового роста, обладал могучей физической силой. При задержании он ранил сержанта милиции и

В чем риск?

Из книги Несправедливое преимущество. Сила финансового образования автора Кийосаки Роберт Тору

В чем риск? Р и С считают инвестирование рискованным делом, потому что имеют очень низкое образование в отношении активов. Но рискованно не инвестирование само по себе, а недостаток финансового образования.Сосредоточенность Б и И на активах приучает их должным образом

Существенный риск инвестирования в высокодоходные облигации – риск банкротства эмитента

Из книги Победить финансовый рынок: как зарабатывать каждый квартал. «Короткие» инвестиционные стратегии автора Аппель Джеральд

Существенный риск инвестирования в высокодоходные облигации – риск банкротства эмитента С формальной точки зрения, можно говорить о банкротстве, когда эмитент облигации более чем на 30 дней задерживает оговоренную выплату купона или основного долга. В действительности

Риск

Из книги Финансовый менеджмент – это просто [Базовый курс для руководителей и начинающих специалистов] автора Герасименко Алексей

Риск Предположим, у вас есть 100 000 руб. Вы можете: положить их на депозит в Сбербанк под 12 % годовых; купить лотерейные билеты.Очевидно, что вы можете принять решение купить на эти деньги лотерейные билеты. Но в этом случае вы рассчитываете, что ваш выигрыш будет в тысячи

Риск

Из книги Том 3. Домология автора Вронский Сергей Алексеевич

Риск Сильные планеты: Марс, Уран, Плутон, Солнце, Юпитер, Сатурн.Слабые планеты: Луна, Нептун.Акцентированные знаки: Овен, Скорпион, Водолей, Стрелец, Козерог, Лев.Акцентированные поля: I, VIII, XI, IX, X, V.Аспекты: Марс – Сатурн, Марс – Уран, Марс – Солнце – Плутон, Сатурн – Плутон

РИСК.О!

Из книги Рок-энциклопедия. Популярная музыка в Ленинграде-Петербурге, 1965–2005. Том 3 автора Бурлака Андрей Петрович

РИСК.О! Одно из многочисленных ответвлений на генеалогическом древе легендарного САНКТ-ПЕТЕРБУРГА, группа РИСК.О! появилась на свет в марте 1978 года. Двое из ее участников, Николай Корзинин и Виктор Ковалев, впервые встретились на сцене еще летом 1972-го в рядах

РИСК

Из книги Русская литература сегодня. Новый путеводитель автора Чупринин Сергей Иванович

РИСК Литературный журнал. Издавался ТОО «Арго-Риск» в 1995–1996 годах. Объем - 104–112 полос с илл. Тираж не указывался. Подчеркивая, что «перед вами не журнал для голубых, тем более не журнал голубых и даже не журнал о голубых», редакция определяла свою задачу так - «предъявить,

Риск

Из книги Как тестируют в Google автора Уиттакер Джеймс

Риск Риски повсюду. Дома, на дорогах, на работе. Все, что мы делаем, включает в себя элемент риска, и разработка ПО ­- не исключение. Чтобы обезопасить свою жизнь, мы покупаем безопасные автомобили и водим осторожно. На совещаниях мы следим за своими словами и стараемся

Вопрос 314. Обоснованный риск: понятие, условия правомерности, ответственность за необоснованный риск.

Из книги Экзамен на адвоката автора

Вопрос 314. Обоснованный риск: понятие, условия правомерности, ответственность за необоснованный риск. Обоснованный риск – это правомерное создание опасности наступления последствий, предусмотренных уголовным законом, в целях достижения общественно полезного

3.1. Риск как категория безопасности жизнедеятельности. Приемлемый риск

Из книги Чрезвычайные ситуации социального характера и защита от них автора Губанов Вячеслав Михайлович

3.1. Риск как категория безопасности жизнедеятельности. Приемлемый риск Социальные опасности, как и любые другие, формируются в результате накопления факторов риска. В связи с этим целесообразно выяснить, что такое риск, каковы механизмы его возникновения и как он влияет

Риск

Из книги Как оказывать влияние. Новый стиль управления автора Оуэн Джо

Риск Риск – это ржавчина на доверии. Он разъедает способность доверять людям. Чем выше риск, тем меньше мы склонны доверять незнакомцам. Как показывают результаты исследований, упомянутых выше, большинство из нас считают, что незнакомые люди скажут нам правду. Однако мы

Принцип 4. Медикаменты можно принимать только в том случае, если риск отказа от них превышает риск от возможных побочных эффектов

Из книги 10 шагов на пути к управлению своей эмоциональной жизнью. Преодоление тревоги, страха и депрессии благодаря исцелению личности человека автора Вуд Ева А.

Принцип 4. Медикаменты можно принимать только в том случае, если риск отказа от них превышает риск от возможных побочных эффектов Другими словами, вам необходимо взвесить соотношение между риском и выгодой. Каждое лекарство может оказаться для вас не только полезным и

Опасность делает серьезным. Ее минование разрешается смехом. Необходимость серьезна, свобода смеется.

Бахтин М. М. 1

В результате изучения главы 8 студенты должны: знать

Основные термины, определения, элементы, относящиеся к риску и безопасности;

уметь

  • анализировать и оценивать риск при декларировании безопасности объекта; владеть
  • методологией анализа и оценки риска.

Понятие техногенного риска

«В литературе встречается весьма различное понимание термина “риск”», - пишут Э. Мушик и П. Мюллер в своей книге . И поясняют, что общим во всех представлениях о риске является внутренняя неуверенность человека в возникновении нежелательного событияили состояния. Такой недостаток информации роднит понятие риска с необходимостью принятия решения в условиях неопределенности ситуации и давно существует в системах оценки воздушной обстановки на экранах радаров как гражданских, так и военных организаций .

При решении комплексных вопросов безопасности в различных странах широко применяется методология оценки риска, в основе которой лежит определение возможных последствий текущей ситуации и вероятности возникновения нежелательных событий. В принципе можно, конечно, попытаться предвидеть потенциальную опасность, сравнить различные возможные опасности, используя, например, количественные показатели риска, принимая при этом в качестве показателей опасности индивидуальный и(или) социальный риск гибели людей или же причинения определенного ущерба.

В широком понимании в понятии риск выражается возможная опасность, которая может быть охарактеризована вероятностью нежелательного события . Применительно к сфере жизнедеятельности такими событиями могут быть ухудшение здоровья или смерть людей, авария или катастрофа системы или технических устройств, загрязнение (деградация) или разрушение (вплоть до тотального) системы (экологической, экономической, социальной, медицинского обслуживания населения и др.), внезапная гибель группы людей или быстрое возрастание смертности населения. Со всеми перечисленными событиями связан обязательный материальный ущерб от реализовавшихся опасностей и (или) увеличения затрат на обеспечение безопасности.

Риск выражает частоту реализации опасностей по отношению к возможному их числу. Запишем соответствующее выражение:

где R - риск; N- количественный показатель частоты нежелательных событий в единицу времени t, Q - общее число объектов, подверженных риску.

Как и всякая вероятность, вероятность возникновения опасности - величина, меньшая единицы, причем в данном случае существенно.

Ожидаемый (или прогнозируемый) риск R определяется как произведение частоты / реализации конкретной опасности на произведение вероятностей нахождения человека в зоне риска при различном регламенте технологического процесса:

где / - число несчастных случаев (смертей) от данной опасности в год, чел. год -1 . Для России / = К ч 10 -3 , это число соответствует значению

коэффициента частоты несчастного случая K 4f деленного на 1000); п р,

произведение вероятностей нахождения работника в зоне риска.

Формирование опасных и чрезвычайных ситуаций происходит в результате действия определенных факторов риска, имеющие свои источники. Соотношение между числом объектов, подвергающихся риску, и числом возможных нежелательных событий позволяет различить такие разновидности риска, как индивидуальный, экономический, экологический, техногенный, социальный. Для каждого из перечисленных видов риска имеются свои собственные характерные источники и факторы.

Техногенный риск - комплексный показатель надежности для объектов техносферы, он характеризует вероятность аварии (катастрофы) при эксплуатации технических устройств (систем), механизмов, реализации технологических процессов, в строительстве и эксплуатации зданий и сооружений и т.и.: где R T - техногенный риск; T(t ) - число аварий за единицу времени t на одинаковых (идентичных) ТС и объектах; T(f) - число идентичных ТС и объектов, подверженных фактору риска /.

Источниками техногенного (технического) риска являются многие факторы, в их числе низкий уровень научно-исследовательских (НИР), опытно-конструкторских работ (ОКР); неотработанное (опытное) производство новой техники; серийный выпуск небезопасной техники; нарушение правил безопасной эксплуатации и (или) технического обслуживания технических систем и др. .

Наиболее распространенными факторами технического риска являются:

  • ошибочный выбор с точки зрения соблюдения критериев безопасности направлений развития техники и технологий;
  • использование потенциально опасных принципов построения и конструкторско-технологических решений устройств, ТС;
  • ошибки в определении допустимого уровня эксплуатационных нагрузок;
  • неправильный выбор конструкционных материалов для устройств, ТС;
  • недостаточный запас прочности устройств, ТС;
  • отсутствие в проектах технических устройств, систем проблематики, касающейся обеспечения их безопасности;
  • некачественная доводка, доработка конструкции, технологии, технической документации по критериям безопасности;
  • отклонения от заданного состава и физико-химических свойств используемых в составе изделий и систем конструкционных материалов;
  • недостаточная точность конструктивных размеров;
  • нарушение режимов технологии обработки материалов, деталей, сборочных единиц;
  • нарушение регламентов сборки и монтажа, регулировки и настройки изделий, систем;
  • использование технических устройств, систем не по назначению;
  • нарушение проектных режимов эксплуатации, технического обслуживания;
  • несвоевременно выполняемые профилактические осмотры, ремонты, техническое обслуживание;
  • нарушение требований транспортирования и хранения.

Транскрипт

1 Н.Н. Чура Техногенный риск Под редакцией В.А. Девисилова Рекомендовано УМО вузов по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям «Безопасность жизнедеятельности», «Защита окружающей среды» КНОРУС МОСКВА 2017

2 УДК (075.8) ББК Ч-93 Рецензенты: В. А. Акимов, вице-президент Общероссийской общественной организации «Российское научное общество анализа риска», заведующий кафедрой «Природная и техногенная безопасность и управление риском» МАТИ РГТУ им. К. Э. Циолковского, д-р техн. наук, проф., В. А. Туркин, нач. кафедры «Химия и экология» МГА им. адм. Ф. Ф. Ушакова, д-р техн. наук, проф. Чура Н.Н. Ч-93 Техногенный риск: учебное пособие / Н.Н. Чура; под ред. В. А. Девисилова. М. : КНОРУС, с. ISBN Рассмотрены и проанализированы вопросы опасностей и безопасности в техносфере, а также техногенного риска. Выполнен анализ структуры оценки риска и его составляющих вероятностной (частоты возникновения аварий) и последствий. Учтены изменения и дополнения существующих законодательных и нормативных положений в области техносферной безопасности и оценки риска. Основное внимание уделено методам количественных оценок техногенного риска и его показателей: индивидуального, потенциального, коллективного, социального, технического и экологического риска. Приводятся краткие (упрощенные) методики расчета показателей техногенного риска и примеры расчета. Для студентов бакалавриата по направлению подготовки «Техносферная безопасность», а также студентов специальности «Инженерная защита окружающей среды» и других специальностей политехнического университетского образования. Может быть полезно специалистам, занимающимся вопросами промышленной безопасности, риск-анализа и управления в кризисных ситуациях. УДК (075.8) ББК Чура Николай Николаевич техногенный риск Сертификат соответствия РОСС RU.АГ51.Н03820 от Изд Формат 60 90/16. Гарнитура «NewtonC». Печать офсетная. Усл. печ. л. 17,5. Уч.-изд. л. 12,9. ООО «Издательство «КноРус» , г. Москва, ул. Кедрова, д. 14, корп. 2. Тел.: Отпечатано в ООО «Контакт» , г. Москва, проезд Подбельского 4-й, дом 3. ISBN Чура Н.Н., 2017 ООО «Издательство «КноРус», 2017

3 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ Глава 1. БЕЗОПАСНОСТЬ В ТЕХНОСФЕРЕ И ТЕХНОГЕННЫЙ РИСК 1.1. Основные понятия и определения теории безопасности и риска Безопасность и развитие общества в концепциях риска Характеристики и классификация опасностей Характеристики безопасности Реализация опасностей в техносфере. Опасные техногенные события (аварии, катастрофы, чрезвычайные ситуации) Методы оценки уровня безопасности Основные положения государственного регулирования в области техносферной безопасности Контрольные вопросы и задания Глава 2. ПОНЯТИЕ ОБ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ И ЭКОЛОГИЧЕСКОМ РИСКЕ 2.1. Общие сведения Экология как объект изучения и субъект безопасности Безопасность экосистем Основные техногенные угрозы экологической безопасности в России Оценка риска для здоровья человека и экологического риска Последствия (ущерб, вред) как составляющая экологического риска Контрольные вопросы и задания Глава 3. СТРУКТУРА И КРИТЕРИИ РИСКА 3.1. Понятие, происхождение и назначение риска Общее содержание и структура риска Стохастический характер риска Вероятностные показатели в структуре оценки риска Связь вероятности и частоты в структуре оценки риска Классификация рисков Контрольные вопросы и задания Глава 4. РАСЧЕТНЫЕ ПОКАЗАТЕЛИ РИСКА 4.1. Общие сведения Индивидуальный и потенциальный риски Индивидуальный риск

4 4 ОГЛАВЛЕНИЕ Потенциальный риск Приемлемый индивидуальный риск Коллективный риск Социальный риск Признаки социального риска Показатели социального риска Приемлемый социальный риск Технический (материальный) риск Экологический риск Контрольные вопросы и задания Глава 5. ОСНОВЫ МЕТОДОЛОГИИ ОЦЕНКИ И АНАЛИЗА РИСКА 5.1. Общие сведения Основные этапы методологии и методики анализа риска Концепции и характеристики методов оценки рисков Методы экспертных оценок. Метод Делфи Методы проверочного листа, контрольных карт и «Что будет, если. » Анализ опасности и работоспособности Анализ вида и последствий отказа Анализ вида, последствий и критичности отказа Дерево отказов Дерево событий Контрольные вопросы и задания Глава 6. МОДЕЛИРОВАНИЕ И РАСЧЕТ ПОСЛЕДСТВИЙ АВАРИЙ ПРИ ОЦЕНКЕ РИСКА 6.1. Общие сведения Механизм определения последствий аварии Определение последствий воздействия поражающих факторов вероятностными методами (пробит-функция) Методы оценки ущерба Виды и классификация ущерба Структура определения ущерба Обоснование мер, направленных на снижение ущерба (меры инженерной защиты окружающей среды) Оценка эколого-экономических последствий загрязнения природной среды нефтью и нефтепродуктами (методика и пример расчета) Оценка количества нефти, вылившейся вследствие аварии Оценка масштаба и степени загрязнения

5 Оглавление Критерии оценки экологических последствий и предварительные рекомендации по выбору мероприятий по восстановлению земель Анализ эколого-экономических последствий загрязнения компонентов природной среды Обоснование целесообразности и оптимальных решений по проведению рекультивации земель Оценка количества пострадавших при авариях и чрезвычайных ситуациях техногенного характера (методика и пример расчета) Контрольные вопросы и задания ЗАКЛЮЧЕНИЕ СПИСОК ЛИТЕРАТУРЫ

6 ВВЕДЕНИЕ Все то, что достигнуто человечеством, связано с его развитием, а темпы роста полученных результатов в новейшей истории, безусловно, впечатляют. Колоссальные потоки материальных ресурсов, энергии и информации изменили среду обитания, создав полуискусственную техносферу, незаметно и постоянно отклоняя ее от естественных для человека условий. Новая среда жизнедеятельности (более активного поведения), удобно обустроенная за счет использования и изменения природного компонента, принесла и новые опасности. Мощный природоизменяющий потенциал развития человечества (сырье, энергия, продукты переработки), созданный в исторически кратчайшие сроки, имея высокие локальные концентрации и не имея при этом надежной изоляции от окружающей среды и адекватных мер противодействия сопутствующим опасностям, превратил их в угрозы, реализованные в конкретные аварии, и аварии, перерастающие в катастрофы. В соответствии с принятой классификацией и согласно статистике МЧС России, девять из десяти чрезвычайных ситуаций (ЧС), происходящих в последние годы, составляют техногенные, т. е. порожденные техникой. За 2009 г. в результате техногенных ЧС на территории Российской Федерации погибло 684 человека, что составляет 93 % от общего числа жертв ЧС всех видов и источников, включая природные, биолого-социальные и теракты. Результат ускоренных темпов развития техноприродных комплексов и созданных на их базе высоких технологий, с учетом его оборотной (отрицательной) стороны, показал существенное отставание в развитии социальной сферы. Социосфера здесь представляется как согласованное поведение людей, их социальная организация, которая реализуется через нормы поведения (правила, законы, традиции), приобретенные и умноженные знания (науку), практику поведения (политику). Кроме своей организации человек ничего или почти ничего не может противопоставить катастрофам и стихийным бедствиям . Развитие общества потребовало и требует внедрения инноваций, объем которых стал угрозой безопасности. Обострение дилеммы «безопасность развитие» как ситуации, при которой выбор одного из двух, по своей сути, противоположных решений одинаково затруднителен, пока не принесло ощутимых ограничений в развитии и потреблении общества. В то же время количество техногенных аварий и катастроф

7 Введение 7 остается высоким. При этом в основе их также социальные причины: коллективы конструкторов, изготовителей и управленцев технических систем, являющихся частью общества; нехватка значительных материальных и общественных ресурсов для ускоренной замены большей части основных фондов производства, транспорта и коммунального хозяйства, имеющих критический износ; разумные, казалось бы, цели развития решение социально значимых задач. Последствия происходящих техногенных аварий и катастроф при этом возрастают, приобретая новые формы и представляя угрозу все большему количеству людей, инфраструктуре и природной среде. В обиходе появились новые понятия: «социальная медицина», «медицина катастроф», «центр оказания психологической помощи», за которыми стоят организации, призванные оказывать помощь пострадавшим. Таким образом, ситуация, сложившаяся на современном этапе развития, потребовала принятия эффективных мер управления процессом обеспечения безопасности человека, общества и природы (ключевая проблема), одной из организационных форм решения которой явилась концепция приемлемого риска. Сразу же постараемся акцентировать внимание читателя на верном понимании проблемы. Безопасность является желаемым состоянием человека или желаемым свойством объекта, от которого исходит (может исходить) опасность. Риск же служит мерой этого состояния (или свойства), разумеется, в своем количественном или ином выражении. Приемлемость риска, т. е. непревышение его расчетной величиной допустимых значений, может являться подтверждением достаточности уровня безопасности (она всегда относительна). Важным на этом этапе является установление допустимых значений показателей риска, что получило название «нормирование риска». На данной основе сопоставлением расчетных значений риска с нормативами выполняется процедура анализа риска. Уже имеются показатели допустимого индивидуального и социального пожарного риска одного из видов техногенного риска, установленные на законодательном уровне. Этимология (происхождение) понятия «риск», о котором речь идет дальше, это не только пояснение его первоначального смысла, но и его сущность, и исторически предназначенная роль. Таким образом, роль риска обусловлена социальным заказом и может быть кратко сформулирована в виде «предвидеть и предотвратить» или, по крайней мере, предупредить общество о возможных последствиях его деятельности.

8 8 ВВЕДЕНИЕ В первой части дисциплины «Надежность технических систем и техногенный риск» рассматриваются положения теории надежности, которая имеет в настоящее время достаточно хорошо отлаженный понятийный и исследовательский аппарат. В теоретических основах надежности разработаны способы ее количественного измерения, позволяющие решать практические задачи определения вероятности безотказной работы, наработки на отказ, интенсивности отказов и других показателей надежности. В прикладных целях рассматриваются свойства и эффективность различных методов расчета, испытаний и повышения надежности простых объектов и технических систем сложной структуры, восстанавливаемых и невосстанавливаемых, резервируемых и нерезервируемых. Основная категория, рассматриваемая во второй части учебной дисциплины и в данном учебном пособии, безопасность (риск лишь ее мера), является тесно связанной с надежностью. Однако центральное понятие, которым оперирует теория надежности, отказ (переход объекта из работоспособного состояния в неработоспособное), не учитывает дальнейшего развития событий, т. е. последствий отказов, с точки зрения их опасности для окружающей среды. Теория вероятностей и математическая статистика, составляющие основу математического аппарата теории надежности, а также основные свойства и показатели надежности имеют большое значение и широко используются в методологии оценки и анализа риска. В исследованиях техносферной безопасности и техногенного риска, а также в практической деятельности в области техносферной безопасности основным событием является событие-авария, имеющее различные отраслевые определения. Возможными причинами возникновения аварий могут быть не только отказы технических или иных систем, включая человеческий фактор, но и внешние воздействия. Анализ источников произошедших ЧС, а также статистики аварийности технических объектов различных конструкций и назначения позволяет в целом классифицировать основные группы причин возникновения аварий: внешние причины ошибки проекта, его привязки к территории; низкий уровень организации работ; человеческий фактор (ошибки обслуживающего персонала); воздействия извне не только техногенного, но и природного характера, способные инициировать крупные катастрофы; воздействия, источники которых носят социальный характер (несанкционированные действия и теракты);

9 Введение 9 внутренние причины отказы оборудования (его элементов и систем) вследствие физического износа, коррозии, механических повреждений, температурных деформаций, усталости материалов; неконтролируемые отклонения технологического процесса; дефекты конструкций (раковины, дефекты в сварных соединениях); прекращения подачи энергоресурсов; некачественные строительно-монтажные, ремонтные работы и т. д. Оценка техногенного риска (называемого так по источнику возникновения) состоит в нахождении частоты (или вероятности) возникновения события-аварии и его последствий, определяемых воздействием поражающих факторов на объекты окружающей среды. При прогнозировании риска, т. е. определении будущих состояний объектов защиты существующими методами, уровень последствий расчетных событий в общем случае также имеет вероятностный характер. Математическое ожидание ущерба (потерь) это одно из универсальных определений термина «риск», которое можно встретить в различных сферах его приложения. Негативные последствия имеют не только аварии, но и, к примеру, загрязнения окружающей среды неаварийного, т. е. постоянного или систематического характера в результате «нормальной» эксплуатации технических объектов. Риск воздействия такого рода загрязнений также подлежит оценке. Фактор последствий воздействия на человека и компоненты среды обитания природной среды (воздух, земли, водные объекты и биоресурсы) и технические объекты (здания, сооружения и т. д.) оценивается показателями риска, такими, как индивидуальный риск, социальный, экологический, технический и др. В каждом из случаев оценка последствий является сложной задачей ввиду значительного их разнообразия, сложности математического описания (формализации) и недостаточности информации о реакции на воздействия. Знания и компетенции в области техногенного риска: определение источников опасностей и возможных последствий, идентификация и ранжирование рисков, методов расчета, анализа и менеджмента рисков, определение зон повышенного техногенного риска востребованы в различных сферах практической и научной деятельности, основными из которых являются: область техносферной безопасности, в том числе промышленной, пожарной и безопасности в ЧС, а также профессиональный риск и риск с последствиями для персонала предприятий, населения и территорий; это центральная область (включая военнопромышленный комплекс и объекты использования атомной

10 10 ВВЕДЕНИЕ энергии), где идеология и методология техногенного риска получила свое первоначальное обоснование и развитие; оценка влияния на здоровье человека различных факторов окружающей, в том числе производственной среды, включая расчеты, соответствующие нормативным и методическим документам системы здравоохранения и жизнеобеспечения населения; страхование рисков, цель которого заключается в защите прав и интересов граждан и юридических лиц и достигается за счет перераспределения рисков (финансовое обеспечение ответственности); величина риска в этом случае переходит из разряда случайных событий в юридически обоснованное условие, составляющее норму договорно-страхового права; экологическая деятельность, предметная направленность и пер- спективы которой напрямую связаны и зависят от риска техногенного воздействия на природные сообщества и компоненты. В молодой и интенсивно развивающейся науке о рисках (иногда ее называют рискологией) много нерешенных вопросов, а также интересных и перспективных задач. Часть из них связана с оценкой и прогнозированием экологического риска, где объектом воздействия (и защиты) является природная среда. Здесь риск как инструмент исследования и как мера оценки уровня безопасности направлен на анализ техногенных воздействий, которым подвергается самый уязвимый и поэтому труднопрогнозируемый живой компонент. Аспекты этой проблемы, от которой зависит безопасность жизни человека и мира природы, ждут своей очереди для решения профессионально подготовленными специалистами нового поколения.

Риск техногенный

EdwART. Словарь терминов МЧС, 2010

Смотреть что такое «Риск техногенный» в других словарях:

Техногенный и экологический риск - см. Риск техногенный и экологический. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

Риск природный - вероятная мера соответствующей природной опасности, установленная для определенного объекта в виде возможных потерь за определенное времяили потенциальная возможность такого протекания природных процессов, которые оказывают негативное влияние на… … Словарь черезвычайных ситуаций

Проблемы анализа риска - «Проблемы анализа риска» Обложка журнала Специализация: Научно практический журнал … Википедия

источник - 3.18 источник (source): Объект или деятельность с потенциальными последствиями. Примечание Применительно к безопасности источник представляет собой опасность (см. ИСО/МЭК Руководство 51). [ИСО/МЭК Руководство 73:2002, пункт 3.1.5] Источник … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52551-2006: Системы охраны и безопасности. Термины и определения - Терминология ГОСТ Р 52551 2006: Системы охраны и безопасности. Термины и определения оригинал документа: 2.2.1 безопасность: Состояние защищенности жизненно важных интересов личности, общества и государства от внутренних и внешних угроз (по… … Словарь-справочник терминов нормативно-технической документации

СП 2.6.1.799-99: Основные санитарные правила обеспечения радиационной безопасности - Терминология СП 2.6.1.799 99: Основные санитарные правила обеспечения радиационной безопасности: 3.1. Авария радиационная проектная авария, для которой проектом определены исходные и конечные состояния радиационной обстановки и предусмотрены… … Словарь-справочник терминов нормативно-технической документации

Рекомендации: Рекомендации по оценке геологического риска на территории г. Москвы - Терминология Рекомендации: Рекомендации по оценке геологического риска на территории г. Москвы: Износ физический Свойство строительного объекта и его элементов (конструкций, систем) утрачивать в процессе эксплуатации способность к выполнению… … Словарь-справочник терминов нормативно-технической документации

НРБ 99/2009: Нормы радиационной безопасности - Терминология НРБ 99/2009: Нормы радиационной безопасности: 1. Авария радиационная потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями… … Словарь-справочник терминов нормативно-технической документации

СанПиН 2.6.1.2523-09: Нормы радиационной безопасности (НРБ-99/2009) - Терминология СанПиН 2.6.1.2523 09: Нормы радиационной безопасности (НРБ 99/2009): 1. Авария радиационная потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала) … Словарь-справочник терминов нормативно-технической документации

Р 2.2./2.6.1.1195-03: - Терминология Р 2.2./2.6.1.1195 03: : 1. Доза максимальная потенциальная максимальная индивидуальная эффективная (эквивалентная) доза облучения, которая может быть получена за календарный год при работе с источниками ионизирующих излучений в… … Словарь-справочник терминов нормативно-технической документации

Надежность и безопасность технических систем. Учебное пособие

Министерство образования Российской Федерации

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

НАДЕЖНОСТЬ И БЕЗОПАСНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ

Ветошкин А.Г., Марунин В.И. НАДЕЖНОСТЬ И БЕЗОПАСНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ. /Под ред. доктора технических наук, профессора, академика МАНЭБ А.Г.Ветошкина – Пенза: Изд-во Пенз. гос. ун-та, 2002. — 129 с.: ил., библиогр.

Рассмотрены основные положения теории надежности технических систем и техногенного риска. Приведены математические формулировки, используемые при оценке и расчете основных свойств и параметров надежности технических объектов, рассмотрены элементы физики отказов, структурные схемы надежности технических систем и их расчет, сформулированы основные методы повышения надежности и примеры использования теории надежности для оценки безопасности человеко-машинных систем.

Рассмотрена методология анализа и оценки техногенного риска, приведены основные качественные и количественные методы оценки риска, методология оценки надежности, безопасности и риска с использованием логико-графических методов анализа, критерии приемлемого риска, принципы управления риском, рассмотрены примеры использования концепции риска в инженерной практике.

Учебное пособие подготовлено на кафедре «Экология и безопасность жизнедеятельности» Пензенского государственного университета и предназначено для студентов специальности 330200 «Инженерная защита окружающей среды» и для студентов инженерных специальностей, изучающих дисциплину «Безопасность жизнедеятельности».

Кафедра «Инженерная экология» Пензенской государственной архитектурностроительной академии (зав. кафедрой доктор технических наук, профессор О.П.Сидельникова.).

Кандидат технических наук, профессор, академик МАНЭБ В.В.Арбузов (Пензенский филиал Международного независимого эколого-политологического университета.)

Издательство ПГУ А.Г.Ветошкин, В.И.Марунин

Государственная политика в области экологической и промышленной безопасности и новые концепции обеспечения безопасности и безаварийности производственных процессов на объектах экономики, диктуемые Федеральным законом «О промышленной безопасности опасных производственных объектов» от 21.07.97 №116-ФЗ, Федеральным законом «О радиационной безопасности населения» от 09.01.96 г. №3-ФЗ, Федеральным законом «О санитарно-эпидемиологическом благополучии населения» от 30.03.99 г. №52-ФЗ, Федеральным законом «Об использовании атомной энергии» от 21.11.95 г. №170-ФЗ, Федеральным законом «Об охране окружающей среды» от 10.01.02 г. №7-ФЗ, предусматривают, в первую очередь, объективную оценку опасностей и позволяют наметить пути борьбы с ними.

Экологическая и техногенная безопасность – состояние действительности, при котором с определенной вероятностью исключено проявление опасности.

Опасная ситуация возникает при нахождении человека в опасной зоне, т.е. в пространстве, где постоянно, периодически или эпизодически возникают опасности, обусловленные опасными или вредными факторами. Опасные ситуации реализуются вследствие совокупности причин, обусловливающих воздействие опасных или (и) вредных факторов на человека, что приводит к постепенному или мгновенному повреждению его здоровья.

По данным Генерального секретаря ООН, за последние 30 лет ущерб, нанесенный техногенными катастрофами, увеличился в три раза и достигает 200 млрд. долл. США в год. В России совокупный годовой материальный ущерб от техногенных аварий, включая затраты на их ликвидацию, превышает 40 млрд. руб.

Чрезвычайная ситуация (ЧС) – это совокупность событий и опасностей, внезапно нарушающих сложившиеся условия жизнедеятельности, создающих угрозу жизни и здоровью людей, среде их обитания, элементам техносферы. Техногенная чрезвычайная ситуация (техногенная ЧС) — состояние, при котором в результате возникновения источника техногенной чрезвычайной ситуации на объекте, определенной территории или акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, народному хозяйству и окружающей природной среде.

Каждую чрезвычайную ситуацию можно рассматривать как крупномасштабную опасную ситуацию, создающую угрозу одновременно большому числу людей и объектам техносферы. Стадии зарождения и развития чрезвычайной ситуации протекают, как правило, скрытно и связаны с накоплением разрушительного потенциала. На кульминационной стадии образуется множество опасных и вредных факторов, объединяемых в один или несколько поражающих факторов.

Чрезвычайные ситуации (ЧС) возникают как при стихийных явлениях природного характера, так и при техногенных авариях. В наибольшей степени аварийность свойственна угольной, горнорудной, химической, нефтегазовой и металлургической отраслям промышленности, транспорту.

Возникновение ЧС в промышленных условиях и в быту часто связано с разгерметизацией систем повышенного давления (баллонов и емкостей для хранения или перевозки сжатых, сжиженных и растворенных газов, газо- и водопроводов, систем теплоснабжения и т.п.).

ЧС возникают также в результате нерегламентированного хранения и транспортирования взрывчатых веществ, легковоспламеняющихся жидкостей, химических и радиоактивных веществ, нагретых жидкостей. Следствием этих нарушений являются взрывы, пожары, проливы химически активных жидкостей, выбросы газовых смесей.

Основными причинами крупных техногенных аварий являются:

— отказы технических систем из-за дефектов изготовления и нарушений режимов эксплуатации;

— ошибочные действия операторов технических систем;

— концентрации различных производств в промышленных зонах;

— высокий энергетический уровень технических систем;

— внешние негативные воздействия на объекты энергетики, транспорта и др.

Анализ совокупности негативных факторов, действующих в техносфере, показывает, что приоритетное влияние имеют антропогенные негативные воздействия, среди которых преобладают техногенные. Они сформировались в результате преобразующей деятельности человека и изменений в биосферных процессах, обусловленных этой деятельностью.

Под термином “опасность” понимается ситуация в окружающей природной или производственной среде, в которой при определённых условиях возможно возникновение нежелательных событий или процессов (опасных факторов), воздействие которых на окружающую среду и человека может привести к одному или совокупности из следующих последствий:

— аварии или катастрофы в техносфере;

— ухудшение состояния окружающей среды;

— отклонение здоровья человека от среднестатистического значения.

Оценка опасности различных производственных объектов заключается в определении возникновения возможных чрезвычайных ситуаций, разрушительных воздействий пожаров и взрывов на эти объекты, а также воздействия опасных факторов пожаров и взрывов на людей. Оценка этих опасных воздействий на стадии проектирования объектов осуществляется на основе нормативных требований, разработанных с учетом наиболее опасных условий протекания чрезвычайных ситуаций и проявления их негативных факторов, утечек и проливов опасных химических веществ, пожаров и взрывов, т.е. с учетом аварийной ситуации.

Как естественные, так и техногенные опасности носят потенциальный, т.е. скрытый характер. Количественной мерой опасности является риск, т.е. частота реализации опасности. Риск выражает возможную опасность, вероятность нежелательного события.

Оценка риска включает в себя анализ частоты, анализ последствий и их сочетание. В случае, когда последствия неизвестны, то под риском понимают вероятность наступления определенного сочетания нежелательных событий. Техногенный риск включает как вероятность чрезвычайной ситуации, так и величину ее последствий, оцениваемых величиной ущерба.

Таким образом, термин “опасность” описывает возможность осуществления некоторых условий технического, природного и социального характера, при наличии которых могут наступить интересующие нас неблагоприятные события и процессы, например, природные катастрофы или бедствия, аварии на промышленных предприятиях,

экономические или социальные кризисы. Следовательно, “опасность” – это ситуация, постоянно присутствующая в окружающей среде и способная при определённых условиях привести к реализации в окружающей среде нежелательного события – возникновению опасного фактора. Соответственно реализация опасности – это обычно случайное явление, и возникновение опасного фактора характеризуется вероятностью явления.

Безопасность – состояние защищённости отдельных лиц, общества и природной среды от чрезмерной опасности.

В качестве единиц измерения безопасности предлагается использовать показатели, характеризующие состояние здоровья человека и состояние (качество) окружающей среды. Соответственно, целью процесса обеспечения безопасности является достижение максимально благоприятных показателей здоровья человека и высокого качества окружающей среды.

1. Основные понятия надежности технических систем

Термины надежность, безопасность, опасность и риск часто смешивают, при этом их значения перекрываются. Часто термины анализ безопасности или анализ опасности используются как равнозначные понятия. Наряду с термином анализ надежности они относятся к исследованию как работоспособности, отказов оборудования, потери работоспособности, так и процесса их возникновения.

Обеспечение надежности систем охватывает самые различные аспекты человеческой деятельности. Надежность является одной из важнейших характеристик, учитываемых на этапах разработки, проектирования и эксплуатации самых различных технических систем.

С развитием и усложнением техники углубилась и развивалась проблема ее надежности. Изучение причин, вызывающих отказы объектов, определение закономерностей, которым они подчиняются, разработка метода проверки надежности изделий и способов контроля надежности, методов расчетов и испытаний, изыскание путей и средств повышения надежности – являются предметом исследований надежности.

Если в результате анализа требуется определить параметры, характеризующие безопасность, необходимо в дополнение к отказам оборудования и нарушениям работоспособности системы рассмотреть возможность повреждений самого оборудования или вызываемых ими других повреждений. Если на этой стадии анализа безопасности предполагается возможность отказов в системе, то проводится анализ риска для того, чтобы определить последствия отказов в смысле ущерба, наносимого оборудованию, и последствий для людей, находящихся вблизи него.

Наука о надежности является комплексной наукой и развивается в тесном взаимодействии с другими науками, такими как физика, химия, математика и др., что особенно наглядно проявляется при определении надежности систем большого масштаба и сложности.

При изучении вопросов надежности рассматривают самые разнообразные объекты - изделия, сооружения, системы с их подсистемами. Надежность изделия зависит от надежности его элементов, и чем выше их надежность, тем выше надежность всего изделия.

Надежность - свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Недостаточная надежность объекта приводит к огромным затратам на его ремонт, простою машин, прекращению снабжения населения электроэнергией, водой, газом, транспортными средствами, невыполнению ответственных задач, иногда к авариям, связанным с большими экономическими потерями, разрушением крупных объектов и с человеческими жертвами. Чем меньше надежность машин, тем большие партии их приходится изготовлять, что приводит к перерасходу металла, росту производственных мощностей, завышению расходов на ремонт и эксплуатацию.

Надежность объекта является комплексным свойством, ее оценивают по четырем показателям - безотказности, долговечности, ремонтопригодности и сохраняемости или по сочетанию этих свойств.

Безотказность - свойство объекта сохранять работоспособность непрерывно в течение некоторого времени или некоторой наработки. Это свойство особенно важно

для машин, отказ в работе которых связан с опасностью для жизни людей. Безотказность свойственна объекту в любом из возможных режимов его существования, в том числе, при хранении и транспортировке.

Долговечность - свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

В отличие от безотказности долговечность характеризуется продолжительностью работы объекта по суммарной наработке, прерываемой периодами для восстановления его работоспособности в плановых и неплановых ремонтах и при техническом обслуживании.

Предельное состояние - состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно.

Ремонтопригодность - свойство объекта, заключающееся в его приспособленности к поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонта. Важность ремонтопригодности технических систем определяется огромными затратами на ремонт машин.

Сохраняемость - свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования. Практическая роль этого свойства велика для деталей, узлов и механизмов, находящихся на хранении в комплекте запасных принадлежностей.

Объекты подразделяют на невосстанавливаемые, которые не могут быть восстановлены потребителем и подлежат замене (например, электрические лампочки, подшипники, резисторы и т.д.), и восстанавливаемые, которые могут быть восстановлены потребителем (например, телевизор, автомобиль, трактор, станок и т.д.).

Надежность объекта характеризуется следующими состояниями: исправное, неисправное, работоспособное, неработоспособное.

Исправное состояние - такое состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации. Исправное изделие обязательно работоспособно.

Неисправное состояние - такое состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации. Различают неисправности, не приводящие к отказам, и неисправности, приводящие к отказам. Например, повреждение окраски автомобиля означает его неисправное состояние, но такой автомобиль работоспособен.

Работоспособным состоянием называют такое состояние объекта, при котором он способен выполнять заданные функции, соответствующие требованиям нормативнотехнической и (или) конструкторской (проектной) документации.

Неработоспособное изделие является одновременно неисправным.

Отказ - событие, заключающееся в нарушении работоспособного состояния объекта.

Отказы по характеру возникновения подразделяют на случайные и неслучайные (систематические).

Случайные отказы вызваны непредусмотренными нагрузками, скрытыми дефектами материалов, погрешностями изготовления, ошибками обслуживающего персонала.

Неслучайные отказы - это закономерные явления, вызывающие постепенное накопление повреждений, связанные с влиянием среды, времени, температуры, облучения и т. п.

В зависимости от возможности прогнозировать момент наступления отказа все отказы подразделяют на внезапные (поломки, заедания, отключения) и постепенные (износ, старение, коррозия).

По причинам возникновения отказы классифицируют на конструктивные (вызванные недостатками конструкции), производственные (вызванные нарушениями технологии изготовления) и эксплуатационные (вызванные неправильной эксплуатацией).

2. Показатели надежности технических систем

Показателями надежности называют количественные характеристики одного или нескольких свойств объекта, составляющих его надежность. К таким характеристикам относят, например, временные понятия - наработку, наработку до отказа, наработку между отказами, ресурс, срок службы, время восстановления. Значения этих показателей получают по результатам испытаний или эксплуатации.

По восстанавливаемости изделий показатели надежности подразделяют на пока-

затели для восстанавливаемых изделий и показатели невосстанавливаемых изделий.

Применяются также комплексные показатели. Надежность изделий, в зависимости от их назначения, можно оценивать, используя либо часть показателей надежности, либо все показатели.

— вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает;

— средняя наработка до отказа - математическое ожидание наработки объекта до первого отказа;

— средняя наработка на отказ - отношение суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки;

— интенсивность отказов - условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливаемым изделиям.

Количественные показатели долговечности восстанавливаемых изделий делятся на 2 группы.

1. Показатели, связанные со сроком службы изделия:

— срок службы - календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновление после ремонта до перехода в предельное состояние;

— средний срок службы - математическое ожидание срока службы;

— срок службы до первого капитального ремонта агрегата или узла – это про-

должительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;

— срок службы между капитальными ремонтами, зависящий преимущественно от качества ремонта, т.е. от того, в какой степени восстановлен их ресурс;

— суммарный срок службы – это календарная продолжительность работы технической системы от начала эксплуатации до выбраковки с учетом времени работы после ремонта;

— гамма-процентный срок службы - календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью γ , выраженной в процентах.

Показатели долговечности, выраженные в календарном времени работы, позволяют непосредственно использовать их в планировании сроков организации ремонтов, поставки запасных частей, сроков замены оборудования. Недостаток этих показателей заключается в том, что они не позволяют учитывать интенсивность использования оборудования.

2. Показатели, связанные с ресурсом изделия:

— ресурс - суммарная наработка объекта от начала его эксплуатации или ее возобновление после ремонта до перехода в предельное состояние.

— средний ресурс - математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;

— назначенный ресурс – суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния;

— гамма-процентный ресурс - суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью γ , выраженной в процентах.

Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно. В качестве меры продолжительности эксплуатации может быть выбран любой неубывающий параметр, характеризующий продолжительность эксплуатации объекта (для самолетов и авиационных двигателей естественной мерой ресурса служит налет в часах, для автомобилей – пробег в километрах, для прокатных станов – масса прокатанного металл в тоннах. Если наработку измерять числом производственных циклов, то ресурс будет принимать дискретные значения.

Комплексные показатели надежности.

Показателем, определяющим долговечность системы, объекта, машины, может служить коэффициент технического использования.

Коэффициент технического использования - отношение математического ожи-

дания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и всех простоев для ремонта и технического обслуживания:

Коэффициент технического использования, взятый за период между плановыми ремонтами и техническим обслуживанием, называется коэффициентом готовности, ко-

торый оценивает непредусмотренные остановки машины и что плановые ремонты и мероприятия по техническому обслуживанию не полностью выполняют свою роль.

Коэффициент готовности - вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается. Физический смысл коэффициента готовности — это вероятность того, что в прогнозируемый момент времени изделие будет исправно, т.е. оно не будет находиться во внеплановом ремонте.

Коэффициент оперативной готовности - вероятность того, что объект ока-

жется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

Классификация показателей. В зависимости от способа получения показатели подразделяют на расчетные, получаемые расчетными методами; экспериментальные, определяемые по данным испытаний; эксплуатационные, получаемые по данным эксплуатации.

В зависимости от области использования различают показатели надежности нормативные и оценочные.

Нормативными называют показатели надежности, регламентированные в нор- мативно-технической или конструкторской документации.

К оценочным относят фактические значения показателей надежности опытных образцов и серийной продукции, получаемые по результатам испытаний или эксплуатации.

3. Математические зависимости для оценки надежности

3.1. Функциональные зависимости надежности

Отказы, возникающие в процессе испытаний или эксплуатации, могут быть вызваны неблагоприятным сочетанием различных факторов - рассеянием действующих нагрузок, отклонением от номинального значения механических характеристик материалов, неблагоприятным сочетанием допусков в местах сопряжения и т. п. Поэтому в расчетах надежности различные параметры рассматривают как случайные величины, которые могут принимать то или иное значение, неизвестное заранее.

  • Ст 583 закона n 212-фз Лицам, имеющим право как на ежемесячное пособие по уходу за ребенком, так и на пособие по безработице, предоставляется право выбора получения пособия по одному из […]
  • Порядок расчета пенсии мвд Порядок расчета пенсии мвд Данный расчет основан на: 1. Федеральном Законе "О социальных гарантиях сотрудникам органов внутренних дел" 2. Постановлении Правительства РФ от 03.11.2011 г. N […]
  • Статья 30. Участие субъектов малого предпринимательства, социально ориентированных некоммерческих организаций в закупках Ст. 30 44-ФЗ в последней действующей редакции от 1 июля 2018 […]
Поделиться: