Алгебраические. Фракталы в простых числах

Я обнаружил этот фрактал, когда разглядывал интерференцию волн на поверхности речки. Волна движется к берегу, отражается и накладывается сама на себя. Есть ли порядок в тех узорах, которые создаются волнами? Попробуем найти его. Рассмотрим не всю волну, а только вектор ее движения. «Берега» сделаем гладкими, для простоты эксперимента.

Эксперимент можно провести на обычном листке в клеточку из школьной тетради.

Или используя JavaScript реализацию алгоритма.

Возьмем прямоугольник со сторонами q и p. Отправим луч (вектор) из угла в угол. Луч двигается к одной из сторон прямоугольника, отражается и продолжает движение к следующей стороне. Это продолжается до тех пор, пока луч не попадет в один из оставшихся углов. Если размер стороны q и p - взаимно просты числа, то получается узор (как мы увидим позже - фрактал).

На картинке мы ясно видим, как работает этот алгоритм.

Gif-анимация:

Самое удивительное то, что с разными сторонами прямоугольника - получаем разные узоры.




Почему я называю эти узоры фракталами? Как известно, «фрактал» - это геометрическая фигура, обладающая свойствами самоподобия. Часть картинки повторяет всю картинку в целом. Если значительно увеличить размеры сторон Q и P - ясно, что эти узоры обладают свойствами самоподобия.

Попробуем увеличить. Увеличивать будем хитрым способом. Возьмем, например, узор 17x29. Следующие узоры будут: 29x(17+29=46), 46x(29+46=75)…
Одна сторона: F(n);
Вторая сторона: F(n+1)=F(n)+F(n-1);
17, 29, 46, 75, 121, 196, 317, 513, 830, 1343
Как числа Фибоначчи, только с другими первым и вторым членом последовательности: F(0)=17, F(1)=29.

Если большая сторона четная, получается такой узор:

Если меньшая сторона четная:

Если обе стороны нечетные - получаем симметрический узор:

В зависимости от того, как начинается луч:

или

Попробую объяснить, что происходит в этих прямоугольниках.

Отделим от прямоугольника квадрат, и посмотрим, что происходит на границе.

Луч выходит в той-же точке, откуда зашел.

При этом, количество квадратиков, которые проходит луч - всегда четное число.

Поэтому, если отрезать от прямоугольника квадрат - останется не измененная часть фрактала.

Если отделять от фрактала квадраты столько раз, сколько это возможно - можно добраться до «начала» фрактала.

Похоже на спираль Фибоначчи?

Из чисел Фибоначчи тоже можно получить фракталы.

В математике числами Фибоначчи (ряд Фибоначчи, последовательность Фибоначчи) называют числа:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…
По определению, первые две цифры в последовательности Фибоначчи 0 и 1, а каждое последующее число равно сумме двух предыдущих.
F(n)=F(n-1)+F(n-2)
F(0)=0, F(1)=1

Поехали:

Как мы видим, чем ближе отношение сторон приближается к золотому сечению - тем больше детализация фрактала.

При этом фрактал повторяет часть фрактала, увеличенного на .

Вместо чисел Фибоначчи можно использовать иррациональные размеры сторон:

Получим тот-же фрактал.

Те-же фракталы можно получить и в квадрате, если пускать луч под другим углом:

Что можно сказать в заключении?
Хаос - это тоже порядок. Со своими закономерностями. Порядок этот не изученный, но вполне поддающийся изучению. А все стремление науки - обнаружить эти закономерности. И в конечном итоге соединить детали головоломки, чтобы увидеть общую картину.
Давайте посмотрим на поверхность речки. Если бросить в нее камень - пойдут волны. Круги, вполне поддающиеся изучению. Скорость, период, длину волны - все это можно подсчитать. Но до тех пор, пока волна не дойдет до берега, не отразиться и не начнет накладываться на саму себя. Получим хаос (интерференцию), который уже трудно поддается изучению.
Что если двигаться от обратного? Упростить поведение волны на столько, на сколько это возможно. Упростить, найти закономерность и после этого попробовать описать уже полную картину происходящего.
Что можно упростить? Очевидно, что сделать отражающую поверхность прямой, без изгибов. Далее, вместо самой волны, использовать только вектор движения волны. В принципе, этого достаточно, чтобы построить простой алгоритм и смоделировать процесс на компьютере. И даже вполне достаточно, чтобы сделать «модель» поведения волны на обычном листке в клеточку.
Что имеем в результате? В результате видим, что в волновых процессах (та-же рябь на поверхности речки) имеем не хаос, а наложение фракталов (самоподобных структур) друг на друга.

Рассмотрим другой вид волн. Как известно, электромагнитная волна состоит из трех векторов - волновой вектор и вектора напряженности электрического и магнитного поля. Как видим, если «словить» такую волну в замкнутой области – там, где пересекаются эти вектора, получаем вполне четкие замкнутые структуры. Быть может, элементарные частицы – это такие-же фракталы?

Все фрактальчики в прямоугольниках от 1 до 80 (6723х6723 px):

Замкнутые области во фракталах (6723х6723 px):

Просто красивый фрактал (4078x2518 px):

Содержание

Введение

    Понятие фрактала.........................................................................................4

    История появления фракталов………………………………………........6

    Алгебраические фракталы………………..……………………………….8

    1. Множество Мальдеброда……………………………………………...9

      Множество Жюлиа……………………………………………………11

      Бассейны (фракталы) Ньютона………………………………………13

      Фрактал (пузыри) Галлея……………………………………………..14

    Практическое применение фракталов…………………………………...15

Заключение……………………………………………………………………….19

Список используемой литературы…………………………………………...…20

Введение

Язык науки стремительно меняется в современном мире. История развития физики насчитывает уже не одно столетие. За это время изучено огромное количество разнообразных явлений природы, открыты фундаментальные законы физики, объясняющие различные экспериментальные факты.

Большинство систем в природе сочетают два свойства: во-первых, они очень велики, часто многогранны, многообразны и сложны, а во- вторых они формируются под действием очень небольшого количества простых закономерностей, и далее развиваются, подчиняясь этим простым закономерностям. Это самые разные системы, начиная от кристаллов и просто кластеров (различного рода скоплений, таких как облака, реки, горы, материки, звёзды), заканчивая экосистемами и биологическими объектами (от листа папоротника до человеческого мозга). Фракталы являются как раз такими объектами: с одной стороны - сложные (содержащие бесконечно много элементов), с другой стороны - построенные по очень простым законам. Благодаря этому свойству, фракталы обнаруживают много общего со многими природными объектами. Но фрактал выгодно отличается от природного объекта тем, что фрактал имеет строгое математическое определение и поддаётся строгому описанию и анализу. Поэтому теория фракталов позволяет предсказать скорость роста корневых систем растений, трудозатраты на осушение болот, зависимость массы соломы от высоты побегов и многое другое. Это новое направление в математике, совершившее в научной парадигме переворот, сравнимый по значимости с теорией относительности и квантовой механикой. Объекты фрактальной геометрии по своему внешнему виду резко отличаются от привычных нам "правильных" геометрических фигур. Фактически, это прорыв в математическом описании систем, которые на протяжении долгого времени такому описанию не поддавались.

Фрактальная геометрия не есть "чистая" геометрическая теория. Это скорее концепция, новый взгляд на хорошо известные вещи, перестройка восприятия, заставляющая исследователя по новому видеть мир.

Целью моей работы является ознакомление с понятием «фрактал» и его разновидностью «алгебраический фрактал».

    Понятие фрактала

Сравнительно недавно в математике возник образ объекта, более объемистого, но тем не менее сходного с линией. Некоторым ученым было трудно примириться с понятием линии, не имеющей ширины, поэтому постепенно ими стали изучаться геометрические формы и структуры, имеющие дробную пространственную размерность. На смену непрерывным кривым, обладающим всеми своими производными, пришли ломаные или очень изрезанные кривые. Ярким примером такой кривой является траектория броуновской частицы. Так в науке возникло понятие фрактала.

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком (рис. 1). В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность.

Рис. 1
Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими – либо из перечисленных ниже свойств:

    Обладает нетривиальной структурой на всех шкалах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной.

    Обладает дробной метрической размерностью.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

    История появления фракталов

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс построил пример непрерывной функции, которая нигде не дифференцируема, то есть не имеет касательной ни в одной своей точке. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал такую непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».
Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал – С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.
Другой класс – динамические (алгебраические) фракталы, к которым относится множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году была опубликована работа Жулиа, посвященная итерациям комплексных рациональных функций, в которой описаны множества Жулиа – целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно

Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. (Рис. 2)


Рис. 2

Пеано нарисовал особый вид линии.(Рис. 3)


Рис. 3

Для ее рисования Пеано использовал следующий алгоритм.

На первом шаге он брал прямую линию и заменял ее на 9 отрезков длиной в 3 раза меньшей, чем длина исходной линии (часть 1 и 2 рисунка). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Уникальность линии в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано.

Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции).

Вплоть до 20 века шло накопление данных о таких странных объектах, без какой - либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт – отец современной фрактальной геометрии и слова фрактал. Постепенно сопоставив факты, он пришел к открытию нового направления в математике – фрактальной геометрии.

Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта “The Fractal Geometry of Nature” (“Фрактальная геометрия природы”) ставший классическим – “Какова длина берега Британии?”. Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым пользуются. Померив берег с помощью километровой линейки полуают какую-то длину. Однако пропускают много небольших заливчиков и полуостровков, которые по размеру намного меньше измеряемой линейки. Уменьшая размер линейки до 1 метра – получается, что длина берега станет больше. Измеряя длину берега с помощью миллиметровой линейки, учитывая детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно – длина берега Британии бесконечна.

    Алгебраические фракталы

Свое название алгебраические фракталы получили за то, что их строят, на основе алгебраических формул. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный расчет функции, где z - комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка. При этом значения функции для разных точек комплексной плоскости может иметь разное поведение:

с течением времени стремится к бесконечности;

стремится к 0;
принимает несколько фиксированных значений и не выходит за их пределы;
поведение хаотично, без каких либо тенденций.

3.1 Множество Мандельброта

Множество Мандельброта (один из самых известных фрактальных объектов) впервые было построено (визуально с применением ЭВМ) Бенуа Мандельбротом весной 1980 г. в исследовательском центре фирмы IBM им. Томаса Дж. Уотсона. И хотя исследования подобных объектов начались ещё в прошлом веке, именно открытие этого множества и совершенствование аппаратных средств машинной графики в решающей степени повлияли на развитие фрактальной геометрии и теории хаоса. Итак, что же такое множество Мандельброта.

Рассмотрим функцию комплексного переменного . Положим и рассмотрим последовательность , где для любого . Такая последовательность может быть ограниченной (т.е. может существовать такое r, что для любого ) либо "убегать в бесконечность" (т.е. для любого r > 0существует ). Множество Мандельброта можно определить как множество комплексных чисел c, для которых указанная последовательность является ограниченной. К сожалению, не известно аналитического выражения, которое позволяло бы по данному c определить, принадлежит ли оно множеству Мандельброта или нет. Поэтому для построения множества используют компьютерный эксперимент: просматривают с некоторым шагом множество точек на комплексной плоскости, для каждой точки проводят определённое число итераций (находят определённое число членов последовательности) и смотрят за её "поведением". (Рис. 4).

Доказано, что множество Мандельброта размещается в круге радиуса r=2 с центром в начале координат. Таким образом, если на некотором шаге модуль очередного члена последовательности превышает 2, можно сразу сделать вывод, что точка, соответствующая c, определяющему данную последовательность, не принадлежит множеству Мандельброта.

Уменьшая шаг, с которым просматриваются комплексные числа, и увеличивая количество итераций, мы можем получать сколь угодно подробные, но всегда лишь приближённые изображения множества.

Пусть в нашем распоряжении имеется N цветов, занумерованных для определённости от 0 до N-1. Будем считать, опять же для определённости, что черный цвет имеет номер 0. Если для данного c после N-1 итераций точка не вышла за круг радиуса 2, будем считать, что c принадлежит множеству Мандельброта, и покрасим эту точку c в чёрный цвет. Иначе, если на некотором шаге k (k Є ) очередная точка вышла за круг радиуса 2 (т.е. на k-ом шаге мы поняли, что она "убегает"), покрасим её в цвет k.

Красивые изображения получаются при удачном выборе палитры и окрестности множества (а именно вне множества мы и получим "цветные точки). (Рис. 5, 6).

Рис. 4

Рис. 5 Рис. 6

3.2 Множество Жюлиа

Множества Жюлиа, тесно связанные с множеством Мандельброта, были исследованы ещё в начале XX века математиками Гастоном Жюлиа и Пьером Фату (см. ). В 1917-1919 гг. ими были получены основополагающие результаты, связанные с итерированием функций комплексного переменного. Вообще говоря, этот факт заслуживает отдельного обсуждения и является впечатляющим примером математического исследования, на многие десятилетия опередившего время (учёные могли лишь приблизительно представлять, как выглядят исследуемые ими объекты!), но мы опишем лишь способ построения множеств Жюлиа для функции комплексного переменного . Говоря более точно, мы будем строить т.н. "заполняющие множества Жюлиа".

Рассмотрим прямоугольник (x 1 ;y 1 )-(x 2 ;y 2 ). Зафиксируем константу c и станем просматривать точки выбранного прямоугольника с некоторым шагом. Для каждой точки, как и при построении множества Мандельброта, проведём серию итераций (чем больше число итераций, тем точнее будет получено множество). Если после серии итераций точка не "убежала" за границу круга радиуса 2, поставим её чёрным цветом, иначе цветом из палитры. (Рис. 7, 8, 9, 10).


Рис. 7

Рис.8 Рис. 9

Рис. 10

3.3 Бассейны (фракталы) Ньютона

Еще один тип динамических фракталов составляют фракталы (так называемые бассейны) Ньютона. (Рис. 11). Формулы для их построения основаны на методе решения нелинейных уравнений, который был придуман великим математиком еще в XVII веке. Применяя общую формулу метода Ньютона zn+1 = zn - f (zn)/f"(zn), n=0, 1, 2… для решения уравнения f (x)=0 к многочлену zk-a, получим последовательность точек: zn+1 = (k-1)znk/kznk-1, n=0, 1, 2… Выбирая в качестве начальных приближений различные комплексные числа z0, будем получать последовательности, которые сходятся к корням этого многочлена. Поскольку корней у него ровно k, то вся плоскость разбивается на k частей - областей притяжения корней. Границы этих частей имеют фрактальную структуру.

Рис. 11

3.4 Фрактал (пузыри) Галлея

Такие фракталы получаются, если в качестве правила для построения динамического фрактала использовать формулу Галлея для поиска приближенных значений корней функции. (Рис. 12).

Метод состоит из последовательности итераций:

Идея метода почти та же, что используется для рисования динамических фракталов: берем какое-нибудь начальное значение (как обычно, здесь речь идет о значениях переменных и функций) и применяем к нему много раз формулу, получая последовательность чисел. Почти всегда она сходится к одному из нулей функции (то есть значению переменной, при котором функция принимает значение 0). Метод Галлея, несмотря на громоздкость формулы, работает эффективнее метода : последовательность сходится к нулю функции быстрее.

Рис. 12

    Практическое применение фракталов

Фракталы находят всё большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров.

Компьютерные системы

Cреди всех картинок, которые может создавать компьютер, лишь немногие могут поспорить с фрактальными изображениями, когда идет речь о подлинной красоте.

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами(такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.


Механика жидкостей

Изучение турбулентности в потоках очень хорошо подстраивается под

фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков.

При помощи фракталов также можно смоделировать языки пламени.

Пористые материалы хорошо представляются во фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

Телекоммуникации

Для передачи данных на расстоянии используются антенны, имеющие

фрактальные формы, что сильно уменьшает их размеры и вес. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.
Медицина

Биосенсорные взаимодействия. Биение сердца.
Биология

Моделирование хаотических процессов, в частности при описании моделей популяции.
Нанотехнологии

В случае нанотехнологии фракталы тоже играют важную роль, поскольку из-за своей иерархической самоорганизации многие наносистемы обладают нецелочисленной размерностью, то есть являются по своей геометрической, физико-химической или функциональной природе фракталами. Например, ярким примером химических фрактальных систем являются молекулы « дендримеров » . (Рис. 13)


Рис. 13

Литература

Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстовых фракталах потенциально бесконечно повторяются элементы текста («У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…» и тексты с наращениями («Дом, который построил Джек»)

В структурных фракталах схема текста потенциально фрактальна: венок сонетов (15 стихотворений), венок венков сонетов (211 стихотворений), венок венков венков сонетов (2455 стихотворений).

Заключение

Фрактал - объект, обладающий бесконечной сложностью, позволяющий рассмотреть столько же своих деталей вблизи, как и издалека. Земля -классический пример фрактального объекта. Из космоса она выглядит как шаp. Если приближаться к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Будем рассматривать горы ближе - станут видны еще более мелкие детали: кусочек земли на поверхности горы в своем масштабе столь же сложный и неровный, как сама гора. И даже еще более сильное увеличение покажет крошечные частички грунта, каждая из которых сама является фрактальным объектом.

В заключении хочется сказать, что после того как были открыты фракталы, для многих учёных стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы. В настоящие время фракталы стремительно вторгаются во многие области физики, биологии, медицины, социологии, экономики. Методы обработки изображений и распознавания образов, использующие новые понятия, дают возможность исследователям применить этот математический аппарат для количественного описания огромного количества природных объектов и структур.

Список используемой литературы

1. Bведение во фракталы,

2. Жиков В. В. О множествах Жюлиа. // Современное естествознание: Энциклопедия: В 10 т. Т.1: Математика. Механика. М., 2000.

3. Жиков В. В. Фракталы. // Современное естествознание: Энциклопедия: В 10 т. Т.1: Математика. Механика. М., 2000.

4. Мандельброт Б. Фрактальная геометрия природы. – М: Институт компьютерных исследований, 2002.

5. Морозов А.Д. Введение в теорию фракталов.-Москва-Ижевск: Институт компьютерных исследований, 2002, 160стр.

6. Динамические (алгебраические) фракталы // Элементы. . URL: http :// elementy . ru / posters / fractals / dynamic

7. Динамические (алгебраические) фракталы // Элементы. . URL: http :// elementy.ru/posters/fractals/Mandelbrot#nop

8. Алгебраические фракталы // Фракталы. . URL: http://rusproject.narod.ru/article/fractals.htm

Экология познания. Познавательно: Открытая Бенуа Мандельбротом фрактальная геометрия описывает упорядоченный хаос природы и демонстрирует принцип бесконечного вложения самоподобных структур друг в друга на основе простых математических соотношений. Фрактал (от лат. fractus, «сломанный, разбитый») – это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Открытая Бенуа Мандельбротом фрактальная геометрия описывает упорядоченный хаос природы и демонстрирует принцип бесконечного вложения самоподобных структур друг в друга на основе простых математических соотношений. Фрактал (от лат. fractus, «сломанный, разбитый») – это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Действительно ли Вселенная бесконечна или просто очень велика? Есть ли у Вселенной центр? Есть ли у неё границы? Их нет, так же, как нет центра и границ у фрактала. Представьте себе, что всё вокруг – фрактал. И мы тоже часть этого фрактала.Бесконечное самоподобие.

Расширяющаяся вокруг нас Вселенная – не единственная, нас могут окружать миллиарды других вселенных. Возможно, наш мир представляет собой лишь часть Мультимира -гипотетического множества всех возможных параллельных вселенных. Существуют гипотезы, что вселенные Мультимира могут быть с разными законами физики и разным количеством пространственных измерений.

Большинство учёных признают, что Вселенная имеет фрактальную структуру: планетарные системы объединены в галактики, галактики в кластеры, кластеры всуперкластеры и так далее. Ранее учёные полагали, что распределение материи можно считать непрерывным, начиная с объектов размером около 200 миллионов световых лет. Данные о более чем 900 тысячах галактик и квазаров показали, что непрерывность отсутствует и при масштабе в 300 миллионов световых лет.

Полученные выводы противоречат основам теории Большого Взрыва, согласно которой в первые моменты после рождения Вселенной материя была распределена равномерно и непрерывно.

Ряд учёных полагают, что за время, прошедшее с момента Большого Взрыва, под действием гравитации фрактальные структуры вселенского масштаба не могли успеть образоваться.

Сегодня не существует одной математической модели или теории, которая могла бы описать каждый аспект Вселенной. Теория бесконечной вложенности материи - фрактальная теория – это альтернативная философская и космологическая теория, не входящая в стандартные академические области науки. В настоящее время теории фрактальной Вселенной не существует. Как считают исследователи, опираясь на теорию относительности Эйнштейна, создание такой теории возможно. Если академическая наука признает, что материя во Вселенной распределена в виде фрактала, потребуется пересмотр практически всех существующих моделей Вселенной.

Фракталы воплощают принцип повторения – копий, в изобилии присутствующих в природе. Это геометрические формы, которые выглядят одинаково при любой степени приближения. Фрактальная геометрия не есть «чистая» геометрическая теория. Это концепция, новый взгляд на хорошо известные вещи, перестройка восприятия, заставляющая исследователя по-новому видеть мир.

То, что материя делится до бесконечности, утверждали ещё Аристотель, Декарт иЛейбниц. В каждой частице, какой бы малой она ни была, «есть города, населённые людьми, обработанные поля, и светит солнце, луна и другие звёзды, как у нас» – утверждал греческий философ Анаксагор в своём труде о гомеомериях в V веке до нашей эры.

Основной постулат легендарной «Изумрудной Скрижали» Гермеса Трисмегиста гласит:«То, что находится внизу, аналогично тому, что находится вверху». Этот принцип принят за аксиому последователями герметической философии, которые утверждали аналогию между микро и макро мирами.

Сакральные учения всех древних цивилизаций пронизывает идея существования гармоничной Вселенной. Египетская богиня истины и порядка Маат представляла собой воплощение принципа естественного порядка вещей. Греки, учившиеся у египтян, связали с цивилизацией слово «космос», переводимое как «вышивка» и выражающее гармонию и красоту «самоподобия». Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же элементы. Все они могут быть описаны в виде математических уравнений.

Принципы сакральной геометрии, в основе которой лежат фракталы, «платоновы тела», спираль Золотого сечения, числоФи, в равной мере присущи и человеку, и цветку, и звёздам. Всё, что существует в реальном мире, является фракталом: кровеносная система, кроны и листья деревьев, облака и молекула кислорода.

Исследования, связанные с фракталами, меняют привычные представления об окружающем нас мире. Фракталы заставляют пересмотреть наши взгляды на геометрические свойства объектов. Фракталы описывают реальный мир иногда даже лучше, чем традиционная физика или математика.

Мы не можем описать камень, участок ландшафта, поверхность моря, скалу или границы острова с помощью прямых линий, кругов и треугольников. Здесь нам приходят на помощь фракталы. С помощью фракталов эти структуры можно моделировать, создавать, что и используется в различных компьютерных программах.


Когда мы всматриваемся во фрактальную форму, то видим одну и ту же структуру независимо от степени увеличения. Такое подобие можно увидеть в природе, рассматривая при разном приближении горы, облака, береговые линии. Природа есть неразрывная паутина.

Фрактальная геометрия – геометрия природы. Сама природа пользуется её достижениями и примеры этого можно найти повсюду: от спиралей раковины и цветков маргаритки до симметрии шестиугольных пчелиных сот. «Самоподобие» можно встретить, исследуя формы молекул или галактик. Все объекты во Вселенной взаимопроникают друг в друга.

Фрактальная геометрия предопределяет формы молекул и кристаллов, которые составляют наши тела и Космос. Фактически она есть ключ к пониманию Вселенной.

Фрактальная структура – это генетический код Вселенной. опубликовано

Присоединяйтесь к нам в

При слове «геометрия» у нас из глубин памяти всплывают цилиндры, треугольники, гипотенузы, биссектрисы углов, «найдите площадь фигуры», грифельные доски и ломающийся мел. Проблема в том, что все, приходящее на ум, - это язык для описания крайне узкого набора явлений окружающего мира. Дома, может быть, иногда и близки к параллелепипеду, но деревья - не цилиндры, горы - не конусы, а форму облака непонятно с чем и сравнить.

Если мы приглядимся внимательно, то в окружающем нас мире эта школьная геометрия (мы будем называть ее евклидовой) описывает не столь уж и многое. И в большинстве своем описывает формы, созданные человеком (оцените круговую логику - неудивительно, что дом, построенный с помощью евклидовой геометрии, успешно можно этой геометрией описать). Но как быть со всем остальным миром, как можно описать форму дерева или очертания острова, форму комка земли или ветвящуюся структуру бронхов?

Этим вопросом ученые задавались давно, но, поскольку не находили убедительного ответа, записывали эти формы в «неупорядоченные», «монструозные», «неисследуемые». Глобальный перелом произошел только в 1960–1970-х годах, когда французский математик Бенуа Мандельброт придумал и развил свою теорию фракталов. Это была новая, фрактальная геометрия, взявшая за объект исследования все то неровное, изломанное и шершавое, что нас окружает (то есть почти все). И Мандельброт нашел в сложных формах природы свой удивительный порядок.

На фото красным отмечены формы, описываемые фрактальной геометрией.
Синим, описываемые эвклидовой геометрией.

То же разделение работает
 и для пары рукотворный/нерукотворный.

Бенуа Мандельброт
(1924–2010)


Французский математик. Основатель фрактальной геометрии. Во время войны уехал из Франции в Америку и остался там. Долгое время был изгоем и не признавался широкими научными кругами, но в конце 1970-х годов обрел признание и славу одного из самых оригинальных математиков. В 1977 году выпустил книгу «Фракталы: форма, случай и размерность», в 1982 году вышло переиздание - культовая книга «Фрактальная геометрия природы». В течение 35 лет работал в компании IBM.

Впервые о том, что не стоит записывать в неупорядоченное то, что мы не можем описать евклидовой геометрией, высказался еще Ричард Бентли, британский ученый XVII века:

«Вся красота относительна... Мы не должны думать, что берега океана искажены и деформированы, потому что они не похожи на ровную стену; и мы не должны думать, что горы имеют неправильную форму, потому что они не являются правильными пирамидами или конусами; и мы не должны думать, что звезды неумело расположены на небе, раз они находятся на разном расстоянии от нас. Это не природные неточности - они кажутся такими только по нашему капризу».

Примеры фрактального построения растений

Мандельброт вводит термин «фрактал»

Бенуа Мандельброт, наш главный герой, придумал и впервые употребил термин «фрактал» (от лат. fractus - изломанный) совсем недавно - в 1975 году. Nomen est numen, вспоминает Мандельброт латинское выражение: «назвать - значит понять». С этого момента можно вести отсчет современной фрактальной геометрии.
Приблизительное определение фрактала таково: это самоподобная фигура (часть похожа на целое), чье фрактальное измерение больше топологического.
Что такое фрактальное измерение и чем оно отличается от топологического (это обычное, евклидово измерение, где 0 - точка, 1 - линия, 2 - плоскость, 3 - объемная фигура), мы разберемся позже. Сейчас нам важно только то, что любая часть фрактала похожа на весь фрактал в целом. Так, отдельная ветка на дереве напоминает по строению все дерево, а часть листа папоротника - весь лист.
Похожие объекты многократно всплывали в истории математики, но именно Мандельброт объединил разрозненные события в одну стройную систему - теорию неровностей и шероховатостей. Она описывала некоторый порядок в формах, до того считавшихся неупорядоченными. В форме облака, в строении дерева или очертании береговой линии Мандельброт находит измеряемые параметры - законы упорядоченности в хаосе.

Историческое отступление: любовь
к целым числам

Причина, по которой фрактальная геометрия возникла так поздно, конечно, заключается, среди прочего, в отсутствии до 70-х годов ХХ века нормальных вычислительных мощностей. Также она может быть обусловлена историческим и околорелигиозным наследием евклидовой геометрии.Ключевыми фигурами в геометрии еще со времен Платона, считавшего их строительным материалом этого мира, считались пять фигур: тетраэдр (четыре грани, рис. 1), куб (шесть), октаэдр (восемь), додекаэдр (12, рис. 2) и икосаэдр (20). Другие формы находились вне плоскости изучения геометрии. В лучшем случае они считались тенями - неточными воплощениями идеальных божественных фигур. В худшем - просто отбрасывались как патологические.
В простых пропорциях целых чисел искали отблески небесной гармонии и строители готических соборов, считая, что «музыка сфер» крайне гармонична, так как использует именно простые пропорции. При таком взгляде иррациональные пропорции дерева, например, не обладали божественной гармонией - только ее отблесками.
Это последствия антропоцентричного мышления. Простые музыкальные аккорды, приятные нашему слуху, имеют простые пропорции -> значит, и небеса построены на этих пропорциях, ведь это отражение высшей гармонии, -> значит, и все остальное надо измерять, отталкиваясь от этих пропорций.
К сожалению, эти пропорции отражают разве что устройство человеческого уха и психики. Шум листвы - это не кварта, а песня соловья строится не по нами определенным нотам. Открытие Мандельброта понадобилось, чтобы показать, что в изломанных формах природы есть значительно более сложный и интересный порядок.
Самый близкий его пример - прямо у вас в груди. Сердечный ритм имеет ярко фрактальную структуру. В нас отблеск не божественной простоты и гармонии, которую мы выдумали сами, а изначального хаоса этой вселенной.

Открытие Мандельброта: бесконечные острова

Одно из самых ранних открытий ученого - бесконечная длина береговой линии любого острова. Именно так. Но как же так, спросим мы? Что за глупость? Давайте успокоимся
и посмотрим на наши измерительные приборы, говорит нам наш герой:
Оказывается, если наша линейка длиной в 100 м - вокруг острова поместятся 19 штук,
и длина его береговой линии будет 1900 м. Если наша линейка длиной в 10 м, она сможет промерить более мелкие впадины и бухты - на береговой линии поместятся 242 штуки,
а длина береговой линии составит 2420 м. Если мы возьмем линейку в 1 мм, то сможем промерить каждый камушек - длина береговой линии при таком измерении будет
5423 м - втрое больше первой величины.

Условные измерительные линейки длинной

в 100м, 10м и 1мм.

Какая же длина правильная, спросим мы? «Никакая, длина береговой линии бесконечна», - усмехнется Бенуа. Чем меньше будет наша линейка, тем больше будет длина. При линейке, стремящейся к нулю, длина линии будет бесконечной для любого острова, хоть для Цейлона, хоть для крошечного острова Сипадан.
Мандельброт задался вопросом, как сравнить два острова, если очевидно, что они разные. И ввел новую величину - фрактальную размерность (на самом деле это переосмысленная им размерность Хаусдорфа).
Фрактальная размерность - мера детализации, изломанности, неровности фрактального объекта. Размерность у фрактального объекта всегда больше топологической (обычной) размерности и может быть (чаще всего и является) дробной.

Еще один важный сдвиг (для меня - самый важный) происходит в наших представлениях о том, что такое простые вещи, а что такое сложные.

Пример кривой Пеано.
Здесь показан порядок обхода квадратиков 1-6 уровня.

О простом и сложном в природе.
Почему папоротник проще сферы

В нашем повседневном представлении самыми простыми кажутся вещи, наиболее просто описываемые евклидовой геометрией. Стол - это просто. Бетонный куб - еще проще. Стальной шар кажется самой воплощенной простотой (есть даже анекдот про «один сломал, другой потерял», в массовом сознании металлический шар - неделимый предмет).
Но тогда зададимся вопросом, почему большинство простых вещей сделаны человеком? Почему деревья, рыбы, грибы или легкие человека - не правильные сферы или кубы, ведь природа, идеальный оптимизатор, должна была найти максимально простую форму.
На самом деле формы живой природы действительно довольно простые, надо только взглянуть на них совсем с другой стороны - развернуться на 180°.
Чтобы совсем запутаться и забыть о наших привычных представлениях о простом и сложном, давайте рассмотрим самую известную из фрактальных форм - множество Мандельброта. Оно задается крошечной формулой:

Даже капли дождя -
не идеальные сферы. Они даже
не «каплевидной формы» - скорее похожи на пельмени.
Нас снова обманули, как
с кедровыми орехами, которые
на самом деле сосновые семечки.

Но вот в чем подвох: если мы проделаем эту операцию бесконечное количество раз -
мы получим бесконечно сложное множество. То есть мы получим объект, части которого можно приближать и приближать, в нем будут все новые и новые формы. В каждой точке этого объекта содержится целый мир причудливых форм, и в каждой точке этих миров
те же бесконечности.
Как с этим разобраться? Формула проще некуда (удовлетворяет наше евклидово представление о простоте), а сам объект - бесконечно сложный. Мандельброт предлагает взглянуть на это скорее со стороны алгоритма, чем со стороны конечного объекта (ведь его и нет как такового во фрактале, он бесконечно строится), - описывать не сложность объекта, а сложность процесса построения.


И тут оказывается, что причудливые природные формы крайне просты. Снова возьмем папоротник - он растет из споры, в каждой клетке которой должно быть записано, какой формы должно быть готовое растение.
Представьте себе, какой длинной будет формула, описывающая финальную форму папоротника со всеми его изломами и разветвлениями - со стороны формы папоротник очень сложен.
Но для его построения не обязательно знать, что должно получиться - достаточно знать простой алгоритм ветвления.
И только это простое правило и записать, с двумя маркерами - сейчас включить, сейчас выключить.


Дело даже не в сложности описания. Форму финального растения в принципе нельзя описать - она подвержена вариации, мы никогда не знаем, каким в точности вырастет наш папоротник, подход со стороны алгоритмов - единственно возможный.
Со стороны описания алгоритма построения оказалось возможным изучать, описывать и моделировать (!) формы гор, бронхов, кровеносной системы и излучин рек. Формы, к которым раньше было даже не подступиться, благодаря Мандельброту оказались вполне понимаемыми.

В пример понимания простоты / сложности с точки зрения алгоритмов Мандельброт приводит фрактальную кривую Коха.
Притом что она выглядит сложной, алгоритм ее построения, как пишет Мандельброт, на самом деле проще, чем алгоритм построения окружности. Со стороны алгоритмов (с той стороны, с которой на это дело смотрит природа вокруг нас) эта кривая - более простая форма.

Кривая Коха

Мне всегда помогает аналогия с кулинарным рецептом. Представьте, что в кулинарной книге перечислено все, что должно быть в супе: 234 кусочка картошки (и размер каждого из них), 134 кусочка лука (и размеры), 23 кусочка мяса. Вот так же нам бы пришлось описывать финальную форму папоротника. Вместо этого мы описываем алгоритм - порежьте, нарубите, покрошите. И у нас все равно получается суп, пусть и с вариациями - в одной кастрюле 234 куска, в другой - 219 кусков картошки. Высчитывая алгоритм ветвления папоротника, можно получить слегка разные, но все же папоротники.
Тому, как с помощью цепей обратных связей и градиентов концентрации создаются законы развития жизни, посвящена книга прекрасного русского биолога Александра Маркова «Рождение сложности» , которую я настоятельно рекомендую прочесть.

Заключение

Мы совсем немного углубились в тему фрактальной геометрии - основной геометрии живой природы. Я буду считать свою работу успешно выполненной, если при взгляде на дерево перед домом вы вспомните, что дерево и дом описываются разной геометрией. Дерево - снизу вверх, геометрией фракталов и алгоритмов, описывающей как сделать. Дом - сверху вниз, сперва он был вычерчен в финальном своем виде архитектором. Такая геометрия описывает, что сделать, а не как.
Чем больше я смотрю на это, тем больше мне хочется говорить и узнавать про фрактальную геометрию, про которую я толком еще ничего не знаю, а теперь, надеюсь, толком ничего не знаете и вы. Ведь это язык, на котором говорит живой мир, благодаря которому мои легкие наполняются кислородом, а кровеносные сосуды несут кровь к рукам.
И чем больше я об этом узнаю, тем сложнее и многограннее кажется мне этот мир.
В одной книге про бабочек автор сравнивал увлечение ими с добавлением себе в жизнь еще одного измерения. Могу подтвердить - так и есть. Параллельно с жизнью городской улицы со снующими людьми у вас добавляется измерение, в котором вон та свежевылупившаяся боярышница летит над крышами машин вот к той рябине - откладывать на свое кормовое растение яйца. Точно так же шрифтовые дизайнеры погружаются в измерение городских шрифтов, а профессиональный электрик наверняка видит отдельное измерение в системе проводов, опутывающих здание.
Также и фрактальная геометрия, открытая Бенуа Мандельбротом, добавляет в наш мир еще одно измерение - типизируемых, описываемых, сложных ломаных форм, которые до этого были не названы и сливались с окружающей действительностью. Теперь же, названные и описанные, они отделились от общей массы, чтобы мы могли разглядеть их во всей красе. Чудеса там, куда ты пристально вгляделся.
Спасибо Мандельброту, открывшему для нас новый, прекрасный и подвижный мир фракталов, по которому мы делаем только первые шаги. Действительно, nomen est numen, назвать - значит узнать.



Постскриптум

Надо признать, что не везде в мире господствует евклидова геометрия. Рон Эглэш, исследуя африканскую архитектуру и обычаи, обнаружил там огромное количество скрытых ранее фракталов. Сперва в очевидных местах - в узорах. Потом в чуть менее в очевидных - в прическах. А потом и в совсем неочевидных - даже в построении деревень он обнаружил самоподобие.
Так, структура деревень некоторых африканских племен представляет собой круг, в котором находятся маленькие круги - дома, внутри которых еще маленькие круги - дома духов.
Я могу предположить, что это последствия близости жителей этих племен к природе - они переняли именно ее законы. Так, для жителя этой деревни ветка с дерева, я думаю, будет казаться более простым предметом, чем стальной шар. «Ветка - она вот, пошел, сломал, а шар где я достану и как сделаю?» - может подумать он.

Некоторые типы

фрактальной

организации

поселений

Материалы по теме

Бенуа Мандельброт
«Фрактальная геометрия природы»
Первое, что я рекомендовал бы прочесть незамедлительно, - классическая книга основоположника фрактальной геометрии, вышедшая в 1982 году. Она до сих пор остается центральным ознакомительным трудом по теме.
Сложность: ⅘
Требуемая математическая подготовка:
выше среднего.

Глейк Д. Хаос 
«Создание новой науки»
Еще одна классическая книга по теме, рассказывающая, как в 70-е годы медленно зарождается новая наука - теория хаоса. Главные герои - молодые ученые Лоренц, Фейгенбаум, Мандельброт, поглощенные и очарованные новым миром хаоса, который перед ними открывается. Это книга, после чтения которой я понял, что же такое эффект бабочки, открытый Лоренцом и, соответственно, почему так сильно врут прогнозы погоды (виноваты не синоптики, они стараются, виновата сильная зависимость от начальных условий). Великая книга.
Сложность: ⅗

ФИЛЬМЫ
NOVA «Фракталы. Поиски новых размерностей»
Неплохой документальный фильм - обзорная экскурсия по миру фракталов, от прически Мандельброта до антенны в вашем мобильном.
Сложность: ⅕
Требуемая математическая подготовка:
не требуется.

BBC «Тайный код жизни»
Трехсерийная документалка BBC про математические законы нашего мира. Почему соты - шестигранники (эффективное заполнение пространства), а периодические цикады появляются каждые 17 лет (важно, что это простое число). Немного про нормальное распределение и про форму вирусов. Не блестяще, но можно посмотреть.
Сложность: ⅕

ЛЕКЦИИ
Лекция Бенуа Мандельброта на TED
Великий мастер фракталов, похожий на Йоду, за год до своей смерти рассказывает, как ему открылась фрактальная геометрия.
Есть русские субтитры.
Сложность: ⅕
Требуемая математическая подготовка: 
не требуется.
Лекция Рона Эглэша про фракталы в Африке
Эглэш объясняет, как он открыл фрактальные структуры в строении африканских деревень, узоров племен и устройств дворцов знати. Есть русские субтитры.
Сложность: ⅕
Требуемая математическая подготовка:
не требуется.

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

Поделиться: