Классификация тестов по разным основаниям. Разработка программного продукта для прохождения тестов

Интеграционное тестирование - это тестирование части системы, состоящей из двух и более модулей. Основная задача интеграционного тестирования - поиск дефектов, связанных с ошибками в реализации и интерпретации интерфейсного взаимодействия между модулями.

С технологической точки зрения интеграционное тестирование является количественным развитием модульного, поскольку так же, как и модульное тестирование, оперирует интерфейсами модулей и подсистем и требует создания тестового окружения, включая заглушки (Stub) на месте отсутствующих модулей. Основная разница между модульным и интеграционным тестированием состоит в целях, то есть в типах обнаруживаемых дефектов, которые, в свою очередь, определяют стратегию выбора входных данных и методов анализа. В частности, на уровне интеграционного тестирования часто применяются ме тоды, связанные с покрытием интерфейсов, например, вызовы функций или методов, или анализ использования интерфейсных объектов таких, как глобальные ресурсы, средства коммуникаций, предоставляемые операционной системой.

На Рис. 15 приведена структура комплекса программ K, состоящего из оттестированных на этапе модульного тестирования модулей M1, M2, M11, M12, M21, M22. Задача, решаемая методом интеграционного тестирования, - тестирование межмодульных связей, реализующихся при исполнении программного обеспечения комплекса K.

Рис. 15. Пример структуры комплекса программ

Интеграционное тестирование использует модель «белого ящика» на модульном уровне. Поскольку тестировщику текст программы известен с детальностью до вызова всех модулей, входящих в тестируемый комплекс, применение структурных критериев на данном этапе возможно и оправдано.

Интеграционное тестирование применяется на этапе сборки модульно оттестированных модулей в единый комплекс. Известны два метода сборки модулей:

Монолитный, характеризующийся одновременным объединением всех модулей в тестируемый комплекс;

Инкрементальный, характеризующийся пошаговым (помодульным) наращиванием комплекса программ с пошаговым тестированием собираемого комплекса.

В инкрементальном методе выделяют две стратегии добавления модулей:

1) «Сверху вниз» и соответствующее ему восходящее тестирование.

2) «Снизу вверх» и соответственно нисходящее тестирование.

Особенности монолитного тестирования заключаются в следующем: для замены неразработанных к моменту тестирования модулей, кроме самого верхнего (модуль К на Рис. 15), необходимо дополнительно разрабатывать драйверы (test driver) и/или заглушки (stub), замещающие отсутствующие на момент сеанса тестирования модули нижних уровней.

Сравнение монолитного и интегрального подхода дает следующее.

1. Монолитное тестирование требует больших трудозатрат, связанных с дополнительной разработкой драйверов и заглушек и со сложностью идентификации ошибок, проявляющихся в пространстве собранного кода.

2. Пошаговое тестирование связано с меньшей трудоемкостью идентификации ошибок за счет постепенного наращивания объема тестируемого кода и соответственно локализации добавленной области тестируемого кода.

Особенности нисходящего тестирования заключаются в следующем: организация среды для исполняемой очередности вызовов оттестированными модулями тестируемых модулей, постоянная разработка и использование заглушек, организация приоритетного тестирования модулей, содержащих операции обмена с окружением, или модулей, критичных для тестируемого алгоритма.

Например, порядок тестирования комплекса K (Рис. 15) при нисходящем тестировании может быть таким, как показано ниже, где тестовый набор, разработанный для модуля Mi, обозначен как XYi = (X, Y)i.

K->XYk
M1->XY1
M11->XY11
M2->XY2
M22->XY22
M21->XY21
M12->XY12

К недостаткам нисходящего тестирования следует отнести:

Проблему разработки достаточно «интеллектуальных» заглушек, т.е. заглушек, способных к использованию при моделировании различных режимов работы комплекса, необходимых для тестирования;

Сложность организации и разработки среды для реализации исполнения модулей в нужной последовательности;

Не всегда эффективную реализацию модулей из-за подстройки (специализации) еще не тестированных модулей нижних уровней к уже оттестированным модулям верхних уровней при параллельной разработке модулей верхних и нижних уровней.

Особенности восходящего тестирования заключаются в организации порядка сборки и перехода к тестированию модулей, соответствующему порядку их реализации.

Например, порядок тестирования комплекса K (Рис. 15) при нисходящем тестировании может быть следующим:

M11->XY11
M12->XY12
M1->XY1
M21->XY21
M2(M21, Stub(M22))->XY2
K(M1, M2(M21, Stub(M22)) ->XYk
M22->XY22
M2->XY2
K->XYk

А к недостаткам восходящего тестирования можно отнести:

Запаздывание проверки концептуальных особенностей тестируемого комплекса;

Необходимость в разработке и использовании драйверов.

Всего приложения. Но между этими двумя этапами тестирования происходят и другие. Я, как и многие другие, называю такие тесты интеграционными.

Несколько слов о терминологии

Много общаясь с любителями разработки через тестирование, я пришёл к выводу, что они имеют другое определение для термина «интеграционные тесты». С их точки зрения, интеграционный тест проверяет «внешний» код, то есть тот, который взаимодействует с «внешним миром», миром приложения.

Поэтому, если их код использует Ajax или localStorage, или IndexedDB и, следовательно, не может быть протестирован с помощью юнит-тестов, они оборачивают этот функционал в интерфейс и мокают этот интерфейс для юнит-тестов, а тестирование реальной реализации интерфейса называют «интеграционным тестом». С этой точки зрения «интеграционный тест» просто тестирует код, который взаимодействует с «реальным миром» вне тех юнитов, которые работают без учета реального мира.

Я, как и многие другие, склонен использовать понятие «интеграционные тесты» для обозначения тестов, которые проверяют интеграцию двух или более юнитов (модулей, классов и т. д.). При этом неважно, скрываете ли вы реальный мир через замоканные интерфейсы.

Мое эмпирическое правило о том, следует ли использовать реальные реализации Ajax и других операций I/O (ввода-вывода) в интеграционных тестах, заключается в следующем: если вы можете это сделать и тесты все еще выполняются быстро и не ведут себя странно, то проверяйте I/O. Если операция I/O сложная, медленная или просто странная, то используйте в интеграционных тестах mock-объекты.

В нашем калькуляторе, к счастью, единственным реальным I/O является DOM. Нет вызовов Ajax и других причин писать «моки».

Фейковый DOM

Возникает вопрос: нужно ли писать фейковый DOM в интеграционных тестах? Применим моё правило. Использование реального DOM сделает тесты медленными? К сожалению, ответ - «да»: использование реального DOM означает использование реального браузера, что делает тесты медленными и непредсказуемыми.

Мы отделим большую часть кода от DOM или протестируем всё вместе в E2E-тестах? Оба варианта не оптимальны. К счастью, есть третье решение: jsdom . Этот замечательный и удивительный пакет делает именно то, чего от него ждёшь - реализует DOM в NodeJS.

Он работает, он быстр, он запускается в Node. Если вы используете этот инструмент, то можете перестать рассматривать DOM как «I/O». А это очень важно, ведь отделить DOM от фронтенд-кода сложно, если не невозможно. (Например, я не знаю, как сделать это.) Я предполагаю, что jsdom был написан именно для запуска фронтенд-тестов под Node.

Давайте посмотрим, как он работает. Как обычно, есть инициализирующий код и есть тестовый код, но на этот раз мы начнём с тестового. Но перед этим - отступление.

Отступление

Эта часть является единственной частью серии, которая ориентирована на конкретный фреймворк. И фреймворк, который я выбрал - это React. Не потому, что это лучший фреймворк. Я твердо верю, что нет такого понятия. Я даже не считаю, что существуют лучшие фреймворки для конкретных случаев использования. Единственное, во что я верю - люди должны использовать среду, в которой им наиболее комфортно работать.

И фреймворком, с которым мне наиболее комфортно работать, является React, поэтому следующий код написан на нём. Но, как мы увидим, интеграционные тесты фронтенда с использованием jsdom должны работать во всех современных фреймворках.

Вернемся к использованию jsdom.

Использование jsdom

const React = require("react") const e = React.createElement const ReactDom = require("react-dom") const CalculatorApp = require("../../lib/calculator-app") ... describe("calculator app component", function () { ... it("should work", function () { ReactDom.render(e(CalculatorApp), document.getElementById("container")) const displayElement = document.querySelector(".display") expect(displayElement.textContent).to.equal("0")

Интересными являются строки с 10 по 14. В строке 10 мы визуализируем компонент CalculatorApp , который (если вы следите за кодом в репозитории) также отображает компоненты Display и Keypad .

Затем мы проверяем, что в строках 12 и 14 элемент в DOM показывает на дисплее калькулятора начальное значение, равное 0.

И этот код, который работает под Node, использует document ! Глобальная переменная document является переменной браузера, но вот она здесь, в NodeJS. Чтобы эти строки работали, требуется очень большой объем кода. Этот очень большой объем кода, который находится в jsdom, является, по сути, полной реализацией всего, что есть в браузере, за вычетом самого рендеринга!

Строка 10, которая вызывает ReactDom для визуализации компонента, также использует document (и window), так как ReactDom часто использует их в своем коде.

Итак, кто создает эти глобальные переменные? Тест - давайте посмотрим на код:

Before(function () { global.document = jsdom(`

`) global.window = document.defaultView }) after(function () { delete global.window delete global.document })

В строке 3 мы создаём простой document , который содержит лишь div .

В строке 4 мы создаём глобальное window для объекта. Это нужно React.

Функция cleanup удалит эти глобальные переменные, и они не будут занимать память.

В идеале переменные document и window должны быть не глобальными. Иначе мы не сможем запустить тесты в параллельном режиме с другими интеграционными тестами, потому что все они будут переписывать глобальные переменные.

К сожалению, они должны быть глобальными - React и ReactDom нуждаются в том, чтобы document и window были именно такими, поскольку вы не можете им их передать.

Обработка событий

А как насчет остальной части теста? Давайте посмотрим:

ReactDom.render(e(CalculatorApp), document.getElementById("container")) const displayElement = document.querySelector(".display") expect(displayElement.textContent).to.equal("0") const digit4Element = document.querySelector(".digit-4") const digit2Element = document.querySelector(".digit-2") const operatorMultiply = document.querySelector(".operator-multiply") const operatorEquals = document.querySelector(".operator-equals") digit4Element.click() digit2Element.click() operatorMultiply.click() digit2Element.click() operatorEquals.click() expect(displayElement.textContent).to.equal("84")

Остальная часть теста проверяет сценарий, в котором пользователь нажимает «42 * 2 =» и должен получить «84».

И он делает это красивым способом - получает элементы, используя известную функцию querySelector , а затем использует click , чтобы щелкнуть по ним. Вы даже можете создать событие и иницировать его вручную, используя что-то вроде:

Var ev = new Event("keyup", ...); document.dispatchEvent(ev);

Но встроенный метод click работает, поэтому мы используем его.

Так просто!

Проницательный заметит, что этот тест проверяет точно то же самое, что и E2E-тест. Это правда, но обратите внимание, что этот тест примерно в 10 раз быстрее и является синхронным по своей природе. Его гораздо проще писать и гораздо легче читать.

А почему, если тесты одинаковы, нужен интеграционный? Ну, просто потому, что это учебный проект, а не настоящий. Два компонента составляют всё приложение, поэтому интеграционные и E2E-тесты делают одно и то же. Но в реальном приложении E2E-тест состоит из сотен модулей, тогда как интеграционные тесты включают в себя несколько, быть может, 10 модулей. Таким образом, в реальном приложении будет около 10 E2E-тестов, но сотни интеграционных тестов.

Педагогический тест

Педагогический тест определяется как система заданий определенного содержания, возрастающей трудности, специфической формы, позволяющая качественно и эффективно измерить уровень и оценить структуру подготовленности учащихся. В педагогическом тесте задания располагаются по мере возрастания трудности - от самого легкого до самого трудного.

Интегративный тест

Интегративным можно назвать тест, состоящий из системы заданий, отвечающих требованиям интегративного содержания, тестовой формы, возрастающей трудности заданий, нацеленных на обобщенную итоговую диагностику подготовленности выпускника образовательного учреждения.

Диагностика проводится посредством предъявления таких заданий, правильные ответы на которые требуют интегрированных (обобщенных, явно взаимосвязанных) знаний в области двух и большего числа учебных дисциплин. Создание таких тестов дается только тем преподавателям, которые владеют знаниями ряда учебных дисциплин, понимают важную роль межпредметных связей в обучении, способны создавать задания, правильные ответы на которые требуют от учащихся знаний различных дисциплин и умений применять такие знания. Интегративному тестированию предшествует организация интегративного обучения. К сожалению, существующая сейчас классно-урочная форма проведения занятия, в сочетании с чрезмерным дроблением учебных дисциплин, вместе с традицией преподавания отдельных дисциплин (а не обобщенных курсов), еще долго будут тормозить внедрение интегративного подхода в процессы обучения и контроля подготовленности.

Преимущество интегративных тестов перед гетерогенными заключается в большей содержательной информативности каждого задания и в меньшем числе самих заданий.

Методика создания интегративных тестов сходна с методикой создания традиционных тестов, за исключением работы по определению содержания заданий. Для отбора содержания интегративных тестов использование экспертных методов является обязательным.

Адаптивный тест

Адаптивный тест работает, как хороший экзаменатор. Сначала он "задает" вопрос средней сложности, и полученный ответ немедленно оценивается. Если ответ правильный, то оценка возможностей тестируемого повышается. В этом случае задается более сложный вопрос. При успешном ответе студента на вопрос, следующий подбирается более трудным, при неуспешном - легким.

Главное преимущество адаптивного теста перед традиционным - эффективность. Адаптивный тест может определить уровень знаний тестируемого с помощью меньшего количества вопросов (иногда длина теста уменьшается до 60%).

В адаптивном тесте на каждый вопрос в среднем выделяется больше времени для обдумывания, чем в обычном тесте. Например, вместо 2 минут на каждый вопрос, у сдающего адаптивный тест может получиться 3 или 4 минуты (в зависимости от того, на сколько вопросов ему понадобится ответить).

Достоверность результатов адаптивного теста совпадает с достоверностью тестов фиксированной длины. Оба вида тестов одинаково точно оценивают уровень знаний.

Тем не менее, очень широко распространено мнение, что адаптивный тест более точно оценивает уровень знаний. Это неверно.

12 ответов

Интеграционное тестирование - это когда вы тестируете несколько компонентов и как они работают вместе. Например, как другая система взаимодействует с вашей системой или база данных взаимодействует с уровнем абстракции данных. Обычно для этого требуется полностью установленная система, хотя в ее чистых формах она не работает.

Функциональное тестирование - это когда вы тестируете систему в соответствии с функциональными требованиями продукта. Управление продуктами/проектами обычно записывает эти данные, и QA формализует процесс того, что пользователь должен видеть и испытывать, и каков конечный результат этих процессов. В зависимости от продукта это может быть автоматизировано или нет.

Функциональное тестирование: Да, мы тестируем продукт или программное обеспечение в целом функционально независимо от того, работает ли он функционально или нет (кнопки тестирования, ссылки и т.д.)

Например: Страница входа

вы указываете имя пользователя и пароль, вы проверяете, ведет ли он вас на домашнюю страницу или нет.

Тестирование интеграции: Да, вы тестируете только интегрированное программное обеспечение, но вы проверяете, где происходит поток данных, и происходят ли какие-либо изменения в базе данных.

Например: Отправка электронной почты

Вы отправляете кому-то одно сообщение, есть поток данных, а также изменение в базе данных (отправленная таблица увеличивает значение на 1)

Надеюсь, это помогло вам.

Это важное различие, но, к сожалению, вы никогда не найдете согласия. Проблема в том, что большинство разработчиков определяют их с их собственной точки зрения. Это очень похоже на дебаты о Плутоне. (Если бы это было ближе к Солнцу, это была бы планета?)

Единичное тестирование легко определить. Он тестирует CUT (Code Under Test ) и ничего больше. (Ну, как можно меньше.) Это значит, что это издевательства, подделки и светильники.

На другом конце спектра есть то, что многие люди называют тестированием системной интеграции. Это тестирование как можно больше, но все еще ищет ошибки в вашем собственном CUT.

Но как насчет обширного пространства между?

  • Например, что, если вы проверите немного больше, чем CUT? Что делать, если вы включили функцию Фибоначчи вместо использования приспособления, которое вы ввели? Я бы назвал это функциональное тестирование, но мир не согласен со мной.
  • Что делать, если вы включили time() или rand() ? Или что, если вы вызываете http://google.com ? Я бы назвал это тестирование системы, но опять же, я один.

Почему это имеет значение? Потому что системные тесты ненадежны. Они необходимы, но иногда они могут потерпеть неудачу по причинам, не зависящим от вас. С другой стороны, функциональные тесты всегда должны проходить, а не случайным образом; если они бывают быстрыми, их можно также использовать с самого начала, чтобы использовать Test-Driven Development без написания слишком большого количества тестов для вашей внутренней реализации. Другими словами, я думаю, что модульные тесты могут быть более сложными, чем они того стоят, и у меня хорошая компания .

Я поставил тесты на 3 оси, со всеми их нулями при модульном тестировании:

  • Функциональное тестирование: использование реального кода глубже и глубже в вашем стеке вызовов.
  • Интеграция-тестирование: выше и выше ваш стек вызовов; другими словами, тестирование вашего CUT путем запуска кода, который будет использовать его.
  • Системное тестирование: все больше и больше неповторимых операций (планировщик O/S, часы, сеть и т.д.).

Тест может легко быть все 3 в разной степени.

Функциональное тестирование: это процесс тестирования, в котором тестируются каждый компонент модуля. Например: если веб-страница содержит текстовое поле, необходимо проверить флажки радиобота, кнопок и выпадающих и т.д.

Тестирование интеграции: процесс, в котором проверяется поток данных между двумя модулями.

Интеграционное тестирование. Тестирование интеграции - это не что иное, как тестирование различных модулей. Вы должны проверить взаимосвязь между модулями. Например, вы открываете facebook, после чего вы видите страницу входа в систему после ввода идентификатора входа и пароля, вы можете видеть домашнюю страницу facebook, поэтому страница входа - это один модуль, а домашняя страница - это еще один модуль. вы должны проверять только связь между ними, когда вы вошли в систему, тогда только домашняя страница должна быть открыта, а не поле сообщения или что-то еще. Существует два основных типа интеграционного тестирования: подход TOP-DOWN и подход BOTTOM UP.

Функциональное тестирование. В функциональном тестировании вы должны думать только о вводе и выводе. В этом случае вы должны думать, как настоящий пользователь. Тестирование того, что вы дали и какой результат вы получили, - это функциональное тестирование. вам нужно только наблюдать за выходом. При функциональном тестировании вам не нужно тестировать кодирование приложения или программного обеспечения.

В тесте функционального тестирования основное внимание уделяется функциональности и вспомогательной функциональности приложения. Функциональность приложения должна работать правильно или нет.

В тесте тестирования интеграции необходимо проверить зависимость между модулями или подмодулями. Пример для записей модулей должен быть корректно отображен и отображен в другом модуле.

Интеграционный тест: - Когда выполняется тестирование модуля и устранены проблемы с соответствующими компонентами, тогда все необходимые компоненты должны интегрироваться в одну систему, чтобы она могла выполнять операцию. После объединения компонентов системы Чтобы проверить, работает ли система правильно или нет, этот тип тестирования называется интеграционным тестированием.

Функциональное тестирование: - Тестирование в основном разделено на две категории: 1.Функциональное тестирование 2. Нефункциональное тестирование ** Функциональное тестирование: - Проверить, работает ли программное обеспечение в соответствии с требованиями пользователя или нет. ** Нефункциональное тестирование: - Чтобы проверить, соответствует ли программное обеспечение критериям качества, таким как стресс-тест, тест безопасности и т.д.

Обычно Клиент предоставляет требования только для функционального теста и для не-функционального теста, требования не должны упоминаться, но приложение обязательно выполняет эти действия.

Я бы сказал, что оба они тесно связаны друг с другом и очень сложно различать их. На мой взгляд, тестирование интеграции - это подмножество функционального тестирования.

Проверка функциональности основана на исходных требованиях, которые вы получаете. Вы будете тестировать поведение приложения, как и ожидалось, с требованиями.

Когда дело доходит до интеграционного тестирования, это взаимодействие между модулями. Если модуль отправляет вход, модуль B может обрабатывать его или нет.

Тестирование интеграции

Можно видеть, как разные модули системы работают вместе. Мы в основном ссылаемся на интегрированную функциональность различных модулей, а не на разные компоненты системы. Для эффективной работы любой системы или программного продукта каждый компонент должен синхронизироваться друг с другом. В большинстве случаев инструмент, который мы использовали для тестирования интеграции, будет выбран, который мы использовали для модульного тестирования. Он используется в сложных ситуациях, когда модульное тестирование оказывается недостаточным для тестирования системы.

Функциональное тестирование

Его можно определить как тестирование отдельных функциональных возможностей модулей. Это относится к тестированию программного продукта на индивидуальном уровне, чтобы проверить его функциональность. Для проверки программного обеспечения для ожидаемых и неожиданных результатов разработаны тестовые примеры. Этот тип тестирования выполняется больше с точки зрения пользователя. То есть, он учитывает ожидание пользователя для ввода типа. Он также называется тестированием черного ящика, а также тестом с закрытым ящиком

Аннотация: Лекция является второй из трех рассматривающих уровни процесса верификации. Тема данной лекции - процесс интеграционного тестирования, его задачи и цели. Рассматриваются организационные аспекты интеграционного тестирования - структурная и временная классификации методов интеграционного тестирования, планирование интеграционного тестирования. Цель данной лекции: дать представление о процессе интеграционного тестирования, его технической и организационной составляющих

20.1. Задачи и цели интеграционного тестирования

Результатом тестирования и верификации отдельных модулей, составляющих программную систему, должно быть заключение о том, что эти модули являются внутренне непротиворечивыми и соответствуют требованиям. Однако отдельные модули редко функционируют сами по себе, поэтому следующая задача после тестирования отдельных модулей - тестирование корректности взаимодействия нескольких модулей, объединенных в единое целое. Такое тестирование называют интеграционным . Его цель - удостовериться в корректности совместной работы компонент системы.

Интеграционное тестирование называют еще тестированием архитектуры системы . С одной стороны, это название обусловлено тем, что интеграционные тесты включают в себя проверки всех возможных видов взаимодействий между программными модулями и элементами, которые определяются в архитектуре системы - таким образом, интеграционные тесты проверяют полноту взаимодействий в тестируемой реализации системы. С другой стороны, результаты выполнения интеграционных тестов - один из основных источников информации для процесса улучшения и уточнения архитектуры системы, межмодульных и межкомпонентных интерфейсов. Т.е., с этой точки зрения, интеграционные тесты проверяют корректность взаимодействия компонент системы.

Примером проверки корректности взаимодействия могут служить два модуля, один из которых накапливает сообщения протокола о принятых файлах, а второй выводит этот протокол на экран. В функциональных требованиях к системе записано, что сообщения должны выводиться в обратном хронологическом порядке. Однако, модуль хранения сообщений сохраняет их в прямом порядке, а модуль вывода использует стек для вывода в обратном порядке. Модульные тесты, затрагивающие каждый модуль по отдельности, не дадут здесь никакого эффекта - вполне реальна обратная ситуация, при которой сообщения хранятся в обратном порядке, а выводятся с использованием очереди. Обнаружить потенциальную проблему можно только проверив взаимодействие модулей при помощи интеграционных тестов. Ключевым моментом здесь является то, что в обратном хронологическом порядке сообщения выводит система в целом, т.е., проверив модуль вывода и обнаружив, что он выводит сообщения в прямом порядке, мы не сможем гарантировать, что мы обнаружили дефект.

В результате проведения интеграционного тестирования и устранения всех выявленных дефектов получается согласованная и целостная архитектура программной системы, т.е. можно считать, что интеграционное тестирование - это тестирование архитектуры и низкоуровневых функциональных требований.

Интеграционное тестирование , как правило, представляет собой итеративный процесс, при котором проверяется функциональной все более и более увеличивающейся в размерах совокупности модулей.

20.2. Организация интеграционного тестирования

20.2.1. Структурная классификация методов интеграционного тестирования

Как правило, интеграционное тестирование проводится уже по завершении модульного тестирования для всех интегрируемых модулей. Однако это далеко не всегда так. Существует несколько методов проведения интеграционного тестирования:

  • восходящее тестирование ;
  • монолитное тестирование ;
  • нисходящее тестирование .

Все эти методики основываются на знаниях об архитектуре системы, которая часто изображается в виде структурных диаграмм или диаграмм вызовов функций . Каждый узел на такой диаграмме представляет собой программный модуль, а стрелки между ними представляют собой зависимость по вызовам между модулями. Основное различие методик интеграционного тестирования заключается в направлении движения по этим диаграммам и в широте охвата за одну итерацию.

Восходящее тестирование . При использовании этого метода подразумевается, что сначала тестируются все программные модули, входящие в состав системы и только затем они объединяются для интеграционного тестирования. При таком подходе значительно упрощается локализация ошибок: если модули протестированы по отдельности, то ошибка при их совместной работе есть проблема их интерфейса. При таком подходе область поиска проблем у тестировщика достаточно узка, и поэтому гораздо выше вероятность правильно идентифицировать дефект.


Рис. 20.1.

Однако, у восходящего метода тестирования есть существенный недостаток - необходимость в разработке драйвера и заглушек для модульного тестирования перед проведением интеграционного тестирования и необходимость в разработке драйвера и заглушек при интеграционном тестировании части модулей системы (Рис 20.1)

С одной стороны драйверы и заглушки - мощный инструмент тестирования, с другой - их разработка требует значительных ресурсов, особенно при изменении состава интегрируемых модулей, иначе говоря, может потребоваться один набор драйверов для модульного тестирования каждого модуля, отдельный драйвер и заглушки для тестирования интеграции двух модулей из набора, отдельный - для тестирования интеграции трех модулей и т.п. В первую очередь это связано с тем, что при интеграции модулей отпадает необходимость в некоторых заглушках, а также требуется изменение драйвера, которое поддерживает новые тесты, затрагивающие несколько модулей.

Монолитное тестирование предполагает, что отдельные компоненты системы серьезного тестирования не проходили. Основное преимущество данного метода - отсутствие необходимости в разработке тестового окружения, драйверов и заглушек. После разработки всех модулей выполняется их интеграция, затем система проверяется вся в целом. Этот подход не следует путать с системным тестированием, которому посвящена следующая лекция. Несмотря на то, что при монолитном тестировании проверятся работа всей системы в целом, основная задача этого тестирования - определить проблемы взаимодействия отдельных модулей системы. Задачей же системного тестирования является оценка качественных и количественных характеристик системы с точки зрения их приемлемости для конечного пользователя.

Монолитное тестирование имеет ряд серьезных недостатков.

  • Очень трудно выявить источник ошибки (идентифицировать ошибочный фрагмент кода). В большинстве модулей следует предполагать наличие ошибки. Проблема сводится к определению того, какая из ошибок во всех вовлечённых модулях привела к полученному результату. При этом возможно наложение эффектов ошибок. Кроме того, ошибка в одном модуле может блокировать тестирование другого.
  • Трудно организовать исправление ошибок. В результате тестирования тестировщиком фиксируется найденная проблема. Дефект в системе, вызвавший эту проблему, будет устранять разработчик. Поскольку, как правило, тестируемые модули написаны разными людьми, возникает проблема - кто из них является ответственным за поиск устранение дефекта? При такой "коллективной безответственности" скорость устранения дефектов может резко упасть.
  • Процесс тестирования плохо автоматизируется. Преимущество (нет дополнительного программного обеспечения, сопровождающего процесс тестирования) оборачивается недостатком. Каждое внесённое изменение требует повторения всех тестов.

Нисходящее тестирование предполагает, что процесс интеграционного тестирования движется следом за разработкой. Сначала тестируют только самый верхний управляющий уровень системы, без модулей более низкого уровня. Затем постепенно с более высокоуровневыми модулями интегрируются более низкоуровневые. В результате применения такого метода отпадает необходимость в драйверах (роль драйвера выполняет более высокоуровневый модуль системы), однако сохраняется нужда в заглушках (]. По своей сути такой подход не является новым типом интеграционного тестирования, просто меняется минимальный элемент, получаемый в результате интеграции. При интеграции модулей на процедурных языках программирования можно интегрировать любое количество модулей при условии разработки заглушек. При интеграции классов в кластеры существует достаточно нестрогое ограничение на законченность функциональности кластера. Однако, даже в случае объектно-ориентированных систем возможно интегрировать любое количество классов при помощи классов-заглушек.

Вне зависимости от применяемого метода интеграционного тестирования, необходимо учитывать степень покрытия интеграционными тестами функциональности системы. В работе был предложен способ оценки степени покрытия, основанный на управляющих вызовах между функциями и потоках данных. При такой оценке код всех модулей на структурной диаграмме системы должен быть выполнен (должны быть покрыты все узлы), все вызовы должны быть выполнены хотя бы единожды (должны быть покрыты все связи между узлами на структурной диаграмме), все последовательности вызовов должны быть выполнены хотя бы один раз (все пути на структурной диаграмме должны быть покрыты) .

Поделиться: