Марковские цепи.

по себе, а отчасти рассматриваем мы ее из-за того, что ее изложение не требует введения большого количества новых терминов.

Рассмотрим задачу об осле, стоящем точно между двумя копнами: соломы ржи и соломы пшеницы (рис. 10.5).

Осел стоит между двумя копнами: "Рожь" и "Пшеница" (рис. 10.5). Каждую минуту он либо передвигается на десять метров в сторону первой копны (с вероятностью ), либо в сторону второй копны (с вероятностью ), либо остается там, где стоял (с вероятностью ); такое поведение называется одномерным случайным блужданием. Будем предполагать, что обе копны являются "поглощающими" в том смысле, что если осел подойдет к одной из копен, то он там и останется. Зная расстояние между двумя копнами и начальное положение осла, можно поставить несколько вопросов, например: у какой копны он очутится с большей вероятностью и какое наиболее вероятное время ему понадобится, чтобы попасть туда?


Рис. 10.5.

Чтобы исследовать эту задачу подробнее, предположим, что расстояние между копнами равно пятидесяти метрам и что наш осел находится в двадцати метрах от копны "Пшеницы". Если места, где можно остановиться, обозначить через ( - сами копны), то его начальное положение можно задать вектором -я компонента которого равна вероятности того, что он первоначально находится в . Далее, по прошествии одной минуты вероятности его местоположения описываются вектором , а через две минуты - вектором . Ясно, что непосредственное вычисление вероятности его нахождения в заданном месте по прошествии минут становится затруднительным. Оказалось, что удобнее всего ввести для этого матрицу перехода .

Пусть - вероятность того, что он переместится из в за одну минуту. Например, и . Эти вероятности называются вероятностями перехода , а -матрицу называют матрицей перехода . Заметим, что каждый элемент матрицы неотрицателен и что сумма элементов любой из строк равна единице. Из всего этого следует, что - начальный вектор -строка, определенный выше, местоположение осла по прошествии одной минуты описывается вектором-строкой , а после минут - вектором . Другими словами, -я компонента вектора определяет вероятность того, что по истечении минут осел оказался в .

Можно обобщить эти понятия. Назовем вектором вероятностей вектор -строку, все компоненты которого неотрицательны и дают в сумме единицу. Тогда матрица перехода определяется как квадратная матрица , в которой каждая строка является вектором вероятностей. Теперь можно определить цепь Маркова (или просто цепь) как пару , где есть - матрица перехода , а есть - вектор -строка. Если каждый элемент из рассматривать как вероятность перехода из позиции в позицию , а - как начальный вектор вероятностей, то придем к классическому понятию дискретной стационарной цепи Маркова , которое можно найти в книгах по теории вероятностей (см. Феллер В. Введение в теорию вероятностей и ее приложения. Т.1. М.: Мир. 1967) Позиция обычно называется состоянием цепи . Опишем различные способы их классификации.

Нас будет интересовать следующее: можно ли попасть из одного данного состояния в другое, и если да, то за какое наименьшее время. Например, в задаче об осле из в можно попасть за три минуты и вообще нельзя попасть из в . Следовательно, в основном мы будем интересоваться не самими вероятностями , а тем, положительны они или нет. Тогда появляется надежда, что все эти данные удастся представить в виде орграфа , вершины которого соответствуют состояниям, а дуги указывают на то, можно ли перейти из одного состояния в другое за одну минуту. Более точно, если каждое состояние представлено соответствующей ему вершиной).

Цепи Маркова

Введение

§ 1. Цепь Маркова

§ 2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

§3. Равенство Маркова

§4. Стационарное распределение. Теорема о предельных вероятностях

§5. Доказательство теоремы о предельных вероятностях в цепи Маркова

§6. Области применения цепей Маркова

Заключение

Список использованной литературы

Введение

Тема нашей курсовой работы цепи Маркова. Цепи Маркова названы так в честь выдающегося русского математика, Андрея Андреевича Маркова, который много занимался случайными процессами и внес большой вклад в развитие этой области. В последнее время можно услышать о применении цепей Маркова в самых разных областях: современных веб-технологиях, при анализе литературных текстов или даже при разработке тактики игры футбольной команды. У тех, кто не знает что такое цепи Маркова, может возникнуть ощущение, что это что-то очень сложное и почти недоступное для понимания.

Нет, все как раз наоборот. Цепь Маркова это один из самых простых случаев последовательности случайных событий. Но, несмотря на свою простоту, она часто может быть полезной даже при описании довольно сложных явлений. Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от предыдущего, но не зависит от более ранних событий.

Прежде чем углубиться, нужно рассмотреть несколько вспомогательных вопросов, которые общеизвестны, но совершенно необходимы для дальнейшего изложения.

Задача моей курсовой работы – более подробно изучить приложения цепей Маркова, постановку задачи и проблемы Маркова.

§1. Цепь Маркова

Представим, что производится последовательность испытаний.

Определение. Цепью Маркова называют последовательность испытаний, в каждом из которых появляется одно и только одно из

несовместных событий полной группы, причем условная вероятность того, что в -м испытании наступит событие , при условии, что в -м испытании наступило событие , не зависит от результатов предшествующих испытаний.

Например, если последовательность испытаний образует цепь Маркова и полная группа состоит из четырех несовместных событий

, причем известно, что в шестом испытании появилось событие , то условная вероятность того, что в седьмом испытании наступит событие , не зависит от того, какие события появились в первом, втором, …, пятом испытаниях.

Заметим, что независимые испытания являются частным случаем цепи Маркова. Действительно, если испытания независимы, то появление некоторого определенного события в любом испытании не зависит от результатов ранее произведенных испытаний. Отсюда следует, что понятие цепи Маркова является обобщением понятия независимых испытаний.

Часто при изложении теории цепей Маркова придерживаются иной терминология и говорят о некоторой физической системе

, которая в каждый момент времени находится в одном из состояний: , и меняет свое состояние только в отдельные моменты времени то есть система переходит из одного состояния в другое (например из в ). Для цепей Маркова вероятность перейти в какое-либо состояние в момент зависит только от того, в каком состоянии система находилась в момент , и не изменяется от того, что становятся известными ее состояния в более ранние моменты. Так же в частности, после испытания система может остаться в том же состоянии («перейти» из состояния в состояние ).

Для иллюстрации рассмотрим пример.

Пример 1. Представим, что частица, находящаяся на прямой, движется по этой прямой под влиянием случайных толчков, происходящих в моменты

. Частица может находиться в точках с целочисленными координатами: ; в точках и находятся отражающие стенки. Каждый толчок перемещает частицу вправо с вероятностью и влево с вероятностью , если только частица не находится у стенки. Если же частица находится у стенки, то любой толчок переводит ее на единицу внутрь промежутка между стенками. Здесь мы видим, что этот пример блуждания частицы представляет собой типичную цепь Маркова.

Таким образом, события называют состояниями системы, а испытания – изменениями ее состояний.

Дадим теперь определение цепи Маркова, используя новую терминологию.

Цепью Маркова с дискретным временем называют цепь, изменение состояний которой происходит в определенные фиксированные моменты времени.

Цепью Маркова с непрерывным временем называют цепь, изменение состояний которой происходит в любые случайные возможные моменты времени.

§2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

Определение. Однородной называют цепь Маркова, если условная вероятность

(переход из состояния в состоянии ) не зависит от номера испытания. Поэтому вместо пишут просто .

Пример 1. Случайное блуждание. Пусть на прямой

в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью – на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание − пример однородной цепи Маркова с дискретным временем.

Цепь Маркова – череда событий, в которой каждое последующее событие зависит от предыдущего. В статье мы подробнее разберём это понятие.

Цепь Маркова – это распространенный и довольно простой способ моделирования случайных событий. Используется в самых разных областях, начиная генерацией текста и заканчивая финансовым моделированием. Самым известным примером является SubredditSimulator . В данном случае Цепь Маркова используется для автоматизации создания контента во всем subreddit.

Цепь Маркова понятна и проста в использовании, т. к. она может быть реализована без использования каких-либо статистических или математических концепций. Цепь Маркова идеально подходит для изучения вероятностного моделирования и Data Science.

Сценарий

Представьте, что существует только два погодных условия: может быть либо солнечно, либо пасмурно. Всегда можно безошибочно определить погоду в текущий момент. Гарантированно будет ясно или облачно.

Теперь вам захотелось научиться предсказывать погоду на завтрашний день. Интуитивно вы понимаете, что погода не может кардинально поменяться за один день. На это влияет множество факторов. Завтрашняя погода напрямую зависит от текущей и т. д. Таким образом, для того чтобы предсказывать погоду, вы на протяжении нескольких лет собираете данные и приходите к выводу, что после пасмурного дня вероятность солнечного равна 0,25. Логично предположить, что вероятность двух пасмурных дней подряд равна 0,75, так как мы имеем всего два возможных погодных условия.

Теперь вы можете прогнозировать погоду на несколько дней вперед, основываясь на текущей погоде.

Этот пример показывает ключевые понятия цепи Маркова. Цепь Маркова состоит из набора переходов, которые определяются распределением вероятностей, которые в свою очередь удовлетворяют Марковскому свойству.

Обратите внимание, что в примере распределение вероятностей зависит только от переходов с текущего дня на следующий. Это уникальное свойство Марковского процесса – он делает это без использования памяти. Как правило, такой подход не способен создать последовательность, в которой бы наблюдалась какая-либо тенденция. Например, в то время как цепь Маркова способна сымитировать стиль письма, основанный на частоте использования какого-то слова, она не способна создать тексты с глубоким смыслом, так как она может работать только с большими текстами. Именно поэтому цепь Маркова не может производить контент, зависящий от контекста.

Модель

Формально, цепь Маркова – это вероятностный автомат. Распределение вероятностей переходов обычно представляется в виде матрицы. Если цепь Маркова имеет N возможных состояний, то матрица будет иметь вид N x N, в которой запись (I, J) будет являться вероятностью перехода из состояния I в состояние J. Кроме того, такая матрица должна быть стохастической, то есть строки или столбцы в сумме должны давать единицу. В такой матрице каждая строка будет иметь собственное распределение вероятностей.

Общий вид цепи Маркова с состояниями в виде окружностей и ребрами в виде переходов.

Примерная матрица перехода с тремя возможными состояниями.

Цепь Маркова имеет начальный вектор состояния, представленный в виде матрицы N x 1. Он описывает распределения вероятностей начала в каждом из N возможных состояний. Запись I описывает вероятность начала цепи в состоянии I.

Этих двух структур вполне хватит для представления цепи Маркова.

Мы уже обсудили, как получить вероятность перехода из одного состояния в другое, но что насчет получения этой вероятности за несколько шагов? Для этого нам необходимо определить вероятность перехода из состояния I в состояние J за M шагов. На самом деле это очень просто. Матрицу перехода P можно определить вычислением (I, J) с помощью возведения P в степень M. Для малых значений M это можно делать вручную, с помощью повторного умножения. Но для больших значений M, если вы знакомы с линейной алгеброй, более эффективным способом возведения матрицы в степень будет сначала диагонализировать эту матрицу.

Цепь Маркова: заключение

Теперь, зная, что из себя представляет цепь Маркова, вы можете легко реализовать её на одном из языков программирования. Простые цепи Маркова являются фундаментом для изучения более сложных методов моделирования.

Все возможные состояния системы в однородной цепи Маркова, а - определяющая эту цепь стохастическая матрица, составленная из переходных вероятностей (см. стр. 381).

Обозначим через вероятность нахождения системы в состоянии в момент времени если известно, что в момент времени система находилась в состоянии (,). Очевидно, . Пользуясь теоремами о сложении и умножении вероятностей, мы легко найдем:

или в матричной записи

Отсюда, давая последовательно значения , получим важную формулу

Если существуют пределы

или в матричной записи

то величины называются предельными или финальными переходными вероятностями.

Для выяснения, в каких случаях существуют предельные переходные вероятности, и для вывода соответствующих формул введем следующую терминологию.

Мы будем стохастическую матрицу и соответствующую ой однородную цепь Маркова называть правильной, если у матрицы нет характеристических чисел, отличных от единицы и равных по модулю единице, и регулярной, если дополнительно единица является простым корнем характеристического уравнения матрицы .

Правильная матрица характеризуется том, что в ее нормальной форме (69) (стр. 373) матрицы являются примитивными. Для регулярной матрицы дополнительно .

Кроме того, однородная цепь Маркова называется неразложимой, разложимой, ациклической, циклической, если для этой цепи стохастическая матрица является соответственно неразложимой, разложимой, примитивной, импримитивной.

Поскольку примитивная стохастическая матрица является частным видом правильной матрицы, постольку ациклическая цепь Маркова является частным видом правильной цепи.

Мы покажем, что предельные переходные вероятности существуют только у правильных однородных цепей Маркова.

Действительно, пусть - минимальный многочлен правильной матрицы . Тогда

Согласно теореме 10 можно принять, что

На основании формулы (24) гл. V (стр. 113)

(96)

где - приведенная присоединенная матрица и

Если - правильная матрица, то

и потому в правой части формулы (96) все слагаемые, кроме первого, при стремится к нулю. Поэтому для правильной матрицы существует матрица , составленная из предельных переходных вероятностей, и

Обратное положение очевидно. Если существует продел

то матрица не может иметь характеристического числа , для которого , а , так как тогда не существовал бы предел [Этот же предел должен существовать в силу существования предела (97").]

Мы доказали, что для правильной (и только для правильной) однородной цепи Маркова существует матрица . Эта матрица определяется формулой (97).

Покажем, как можно выразить матрицу через характеристический многочлен

и присоединенную матрицу .

Из тождества

в силу (95), (95") и (98) вытекает:

Поэтому формулу (97) можно заменить формулой

(97)

Для регулярной цепи Маркова, поскольку она является частным видом правильной цепи, матрица существует и определяется любой из формул (97), (97"). В этом случае и формула (97") имеет вид

2. Рассмотрим правильную цепь общего типа (нерегулярную). Соответствующую матрицу запишем в нормальной форме

(100)

где - примитивные стохастические матрицы, а у неразложимых матриц максимальные характеристические числа . Полагая

,

запишем в виде

(101)

Но , поскольку все характеристические числа матрицы по модулю меньше единицы. Поэтому

(102)

Поскольку - примитивные стохастические матрицы, то матрицы согласно формулам (99) и (35) (стр. 362) положительны

и в каждом столбце любой из этих матриц все элементы равны между собой:

.

Заметим, что нормальному виду (100) стохастической матрицы соответствует разбиение состояний системы на группы:

Каждой группе в (104) соответствует своя группа рядов в (101). По терминологии Л. Н. Колмогорова состояния системы, входящие в , называются существенными, а состояния, входящие в остальные группы - несущественными.

Из вида (101) матрицы следует, что при любом коночном числе шагов (от момента к моменту ) возможен только переход системы а) из существенного состояния в существенное состояние той же группы, б) из несущественного состояния в существенное состояние и в) из несущественного состояния в несущественное состояние той же или предшествующей группы.

Из вида (102) матрицы следует, что в продело при переход возможен только из любого состояния в существенное состояние, т. е. вероятность перехода в любое несущественное состояние при числе шагов стремится к нулю. Поэтому существенные состояния иногда называются и предельными состояниями.

3. Из формулы (97) следует:

.

Отсюда видно, что каждый столбец матрицы является собственным вектором стохастической матрицы для характеристического числа .

Для регулярной матрицы число 1 является простым корнем характеристического уравнения и этому числу соответствует только один (с точностью до скалярного множителя) собственный вектор матрицы . Поэтому в любом -м столбце матрицы все элементы равны одному и тому же неотрицательному числу :

Таким образом, в регулярной цепи предельные переходные вероятности но зависят от начального состояния.

Обратно, если в некоторой правильной однородной цепи Маркова продельные переходные вероятности не зависят от начального состояния, т. е. имеют место формулы (104), то в схеме (102) для матрицы обязательно . Но тогда и цепь является регулярной.

Для ациклической цепи, которая является частным случаем регулярной цепи, - примитивная матрица. Поэтому при некотором (см. теорему 8 на стр. 377). Но тогда и .

Обратно, из следует, что при некотором , а это по теореме 8 означает примитивность матрицы и, следовательно, ацикличность данной однородной цепи Маркова.

Полученные результаты мы сформулируем в виде следующей теоремы:

Теорема 11. 1 .Для того чтобы в однородной цепа Маркова существовали все предельные переходные вероятности, необходимо и достаточно, чтобы цепь была правильной. В этом случае матрица , составленная из предельных переходных вероятностей, определяется формулой (95) или (98).

2. Для того чтобы в правильной однородной цепи Маркова предельные переходные вероятности не зависели от начального состояния, необходимо и достаточно, чтобы цепь была регулярной. В этом случае матрица определяется формулой (99).

3. Для того чтобы в правильной однородной цепи Маркова все предельные переходные вероятности были отличны от нуля, необходимо и достаточно, чтобы цепь была ациклической.

4. Введем в рассмотрение столбцы из абсолютных вероятностей

(105)

где - вероятность нахождения системы в момент в состоянии (,). Пользуясь теоремами сложения и умножения вероятностей, найдем:

(,),

или в матричной записи

где - транспонированная матрица для матрицы .

Все абсолютные вероятности (105) определяются из формулы (106), если известны начальные вероятности и матрица переходных вероятностей

Введем в рассмотрение предельные абсолютные вероятности

Переходя в обоих частях равенства (106) к пределу при , получим:

Заметим, что существование матрицы предельных переходных вероятностей влечет существование предельных абсолютных вероятностей при любых начальных вероятностях и наоборот.

Из формулы (107) и из вида (102) матрицы вытекает, что предельные абсолютные вероятности, соответствующие несущественным состояниям, равны нулю.

Умножая обе части матричного равенства

справа на , мы в силу (107) получим:

т. е. столбец предельных абсолютных вероятностей является собственным вектором матрицы для характеристического числа .

Если данная цепь Маркова регулярна, то является простым корнем характеристического уравнения матрицы . В этом случае столбец предельных абсолютных вероятностей однозначно определяется из (108) (поскольку и ).

Пусть дана регулярная цепь Маркова. Тогда из (104) и из (107) следует:

(109)

В этом случае предельные абсолютные вероятности не зависят от начальных вероятностей .

Обратно, может не зависеть от при наличии формулы (107) тогда и только тогда, когда все строки матрицы одинаковы, т. е.

,

и потому (согласно теореме 11) - регулярная матрица.

Если - примитивная матрица, то , а отсюда в силу (109)

Наоборот, если все и не зависят от начальных вероятностен, то в каждом столбце матрицы все элементы одинаковы и согласно (109) , а это по теореме 11 означает, что - примитивная матрица, т. е. данная цепь ациклична.

Из изложенного вытекает, что теорему 11 можно сформулировать так:

Теорема 11". 1. Для того чтобы в однородной цепи Маркова существовали все предельные абсолютные вероятности при любых начальных вероятностях, необходимо и достаточно, чтобы цепь была правильной.

2. Для того чтобы в однородной цепи Маркова существовали предельные абсолютные вероятности при любых начальных вероятностях и не зависели от этих начальных вероятностей, необходимо и достаточно, чтобы цепь была регулярной.

3. Для того чтобы в однородной цепи Маркова при любых начальных вероятностях существовали положительные предельные абсолютные вероятности и эти предельные вероятности не зависели от начальных, необходимо и достаточно, чтобы цепь была ациклической.

5. Рассмотрим теперь однородную цепь Маркова общего типа с матрицей переходных вероятностей .

Возьмем нормальную форму (69) матрицы и обозначим через индексы импримитивности матриц в (69). Пусть - наименьшее общее кратное целых чисел . Тогда матрица не имеет характеристических чисел, равных по модулю единице, но отличных от единицы, т. е. - правильная матрица; при этом - наименьший показатель, при котором - правильная матрица. Число назовем периодом данной однородной цепи Маркова и.. Обратно, если и , определяемые формулами (110) и (110").

Средние предельные абсолютные вероятности, соответствующие несущественным состояниям, всегда равны нулю.

Если в нормальной форме матрицы число (и только в этом случае), средние предельные абсолютные вероятности не зависят от начальных вероятностей и однозначно определяются из уравнения (111).

Однородной называют цепь Маркова, для которой условная вероятностьперехода из состоянияв состояниене зависит от номера испытания. Для однородных цепей вместо
используют обозначение
.

Примером однородной цепи Маркова могут служить случайные блуждания. Пусть на прямой Oxв точке с целочисленной координатойx=nнаходится материальная частица. В определенные моменты времени
частица скачкообразно меняет свое положение (например, с вероятностьюpможет сместиться вправо и с вероятностью 1 –p– влево). Очевидно, координата частицы после скачка зависит от того, где находилась частица после непосредственно предшествующего скачка, и не зависит от того, как она двигалась в предшествующие моменты времени.

В дальнейшем ограничимся рассмотрением конечных однородных цепей Маркова.

Переходные вероятности. Матрица перехода.

Переходной вероятностью
называют условную вероятность того, что из состоянияв итоге следующего испытания система перейдет в состояние. Таким образом, индексотносится к предшествующему, а- к последующему состоянию.

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

, где представляют вероятности перехода за один шаг.

Отметим некоторые особенности матрицы перехода.

Равенство Маркова

Обозначим через
вероятность того, что в результатеnшагов (испытаний) система перейдет из состоянияв состояние. Например,
- вероятность перехода за 10 шагов из третьего состояния в шестое. Отметим, что приn= 1 эта вероятность сводится просто к переходной вероятности
.

Возникает вопрос, как, зная переходные вероятности
, найти вероятности перехода состоянияв состояниезаnшагов. С этой целью вводится в рассмотрение промежуточное (междуи) состояниеr. Другими словами, полагают, что из первоначального состояниязаmшагов система перейдет в промежуточное состояниеrс вероятностью
, после чего за оставшиесяn–mшагов из промежуточного состоянияrона перейдет в конечное состояниес вероятностью
. Используя формулу полной вероятности, можно показать, что справедлива формула

Эту формулу называют равенством Маркова .

Зная все переходные вероятности
, т.е. зная матрицу переходаиз состояния в состояние за один шаг, можно найти вероятности
перехода из состояние в состояние за два шага, а значит, и саму матрицу перехода, далее – по известной матрице- найтии т.д.

Действительно, полагая в равенстве Маркова n= 2,m= 1 получим

или
. В матричном виде это можно записать как
.

Полагая n=3,m=2, получим
. В общем случае справедливо соотношение
.

Пример . Пусть матрица переходаравна

Требуется найти матрицу перехода
.

Умножая матрицу саму на себя, получим
.

Для практических применений чрезвычайно важным является вопрос о расчете вероятности нахождения системы в том или ином состоянии в конкретный момент времени. Решение этого вопроса требует знания начальных условий, т.е. вероятностей нахождения системы в определенных состояниях в начальный момент времени. Начальным распределением вероятностей марковской цепи называется распределение вероятностей состояний в начале процесса.

Здесь через
обозначена вероятность нахождения системы в состояниив начальный момент времени. В частном случае, если начальное состояние системы в точности известно (например
), то начальная вероятность
, а все остальные равны нулю.

Если для однородной цепи Маркова заданы начальное распределение вероятностей и матрица перехода, то вероятности состояний системы на n-м шаге
вычисляются по рекуррентной формуле

.

Для иллюстрации приведем простой пример. Рассмотрим процесс функционирования некоторой системы (например, прибора). Пусть прибор в течение одних суток может находиться в одном из двух состояний – исправном () и неисправном (). В результате массовых наблюдений за работой прибора составлена следующая матрица перехода
,

где - вероятность того, что прибор останется в исправном состоянии;

- вероятность перехода прибора из исправного в неисправное состояние;

- вероятность перехода прибора из неисправного в исправное состояние;

- вероятность того, что прибор останется в состоянии "неисправен".

Пусть вектор начальных вероятностей состояний прибора задан соотношением

, т.е.
(в начальный момент прибор был неисправен). Требуется определить вероятности состояния прибора через трое суток.

Решение : Используя матрицу перехода, определим вероятности состояний после первого шага (после первых суток):

Вероятности состояний после второго шага (вторых суток) равны

Наконец, вероятности состояний после третьего шага (третьих суток) равны

Таким образом, вероятность того, что прибор будет находиться в исправном состоянии равна 0,819, и того, что в неисправном – соответственно 0,181.

Поделиться: