Купить диплом о высшем образовании недорого. Закон Ома для однородного участка цепи

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Валентина:

Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!

Ом экспериментально установил закон, согласно которому сила тока, текущего по однородному (в смысле отсутствия сторонних сил) металлическому проводнику, пропорциональна падению напряжения V на проводнике:

Напомним, что в случае однородного проводника напряжение U совпадает с разностью потенциалов (см. (33.6)).

Обозначенная в формуле (34.1) буквой R величина называется электрическим сопротивлением проводника. Единицей сопротивления служит равный сопротивлению такого проводника, в котором при напряжении в 1 В течет ток силой 1 А.

Величина сопротивления зависит от формы и размеров проводника, а также от свойств материала, из которого он сделан. Для однородного цилиндрического проводника

где l - длина проводника, S - площадь его поперечного сечения, - зависящий от свойств материала коэффициент, называемый удельным электрическим сопротивлением вещества. Если то R численно равно . В СИ измеряется в ом-метрах (Ом-м).

Найдем связь между векторами j и Е в одной и той же точке проводника. В изотропном проводнике упорядоченное движение носителей тока происходит в направлении вектора Е.

Поэтому на правления векторов j и Е совпадают Выделим мысленно в окрестности некоторой точки элементарный цилиндрический объем с образующими, параллельными векторам j и Е (рис. 34.1). Через поперечное сечение цилиндра течет ток силой . Напряжение, приложенное к цилиндру, равно , где Е - напряженность поля в данном месте. Наконец, сопротивление цилиндра, согласно формуле (34.2), равно . Подставив эти значения в формулу (34.1), придем к соотношению

Воспользовавшись тем, что векторы j и Е имеют одинаковое направление, можно написать

Эта формула выражает закон Ома в дифференциальной форме.

Фигурирующая в (34.3) обратная величина называется удельной электрической проводимостью материала. Единица, обратная ому, называется сименсом (См). Соответственно единицей о является сименс на метр (См/м).

Допустим для простоты, что в проводнике имеются носители лишь одного знака. Согласно формуле (31.5) плотность тока в этом случае равна

Сравнение этого выражения с формулой (34.3) приводит к выводу, что скорость упорядоченного движения носителей тока пропорциональна напряженности поля Е, т. е. силе, сообщающей носителям упорядоченное движение. Пропорциональность скорости приложенной к телу силе наблюдается в тех случаях, когда кроме силы, вызвавшей движение, на тело действует сила сопротивления среды. Эта сила вызывается взаимодействием носителей тока с частицами, из которых построено вещество проводника. Наличие силы сопротивления упорядоченному движению носителей тока обусловливает электрическое сопротивление проводника.

Способность вещества проводить электрический ток характеризуется его удельным сопротивлением либо удельной проводимостью .

Их величина определяется химической природой вещества и условиями, в частности температурой, при которых оно находится.

Для большинства металлов при температурах, близких к комнатной, изменяется пропорционально абсолютной температуре Т:

При низких температурах наблюдаются отступления от этой закономерности (рис. 34.2). В большинстве случаев зависимость от Т следует кривой. Величина остаточного сопротивления рост в сильной степени зависит от чистоты материала и наличия остаточных механических напряжений в образце. Поэтому после отжига рост заметно уменьшается. У абсолютно чистого металла с идеально правильной кристаллической решеткой при абсолютном нуле

У большой группы металлов и сплавов при температуре порядка нескольких кельвинов сопротивление скачков обращается в нуль (кривая 2 на рис. 34.2). Впервые это явление, названное сверхпроводимостью, было обнаружено в 1911 г. Камерлинг-Оннесом для ртути. В дальнейшем сверхпроводимость была обнаружена у свинца, олова, цинка, алюминия и других металлов, а также у ряда сплавов. Для каждого сверхпроводника имеется своя критическая температура Т при которой он переходит в сверхпроводящее состояние. При действии на сверхпроводник магнитного поля сверхпроводящее состояние нарушается. Величина критического поля разрушающего сверхпроводимость, равна нулю при и растет с понижением температуры.

Полное теоретическое объяснение сверхпроводимости было дано академиком Н. Н. Боголюбовым и независимо от него Дж. Бардином, Л. Купером и Дж. Шриффером (см. § 56 тома 3).

Зависимость электрического сопротивления от температуры положена в основу термометров сопротивления. Такой термометр представляет собой металлическую (обычно платиновую) проволочку, намотанную на фарфоровый или слюдяной каркас. Проградуированный по постоянным температурным точкам термометр сопротивления позволяет измерять с погрешностью порядка несколько сотых градуса как низкие, так и высокие температуры. В последнее время все большее применение находят термометры сопротивления из полупроводников.

Электри́ческое сопротивле́ние - физическая величина , характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока , протекающего по нему .

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления . Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R = U I , {\displaystyle R={\frac {U}{I}},} R - сопротивление, Ом; U - разность электрических потенциалов (напряжение) на концах проводника, В; I - сила тока , протекающего между концами проводника под действием разности потенциалов, А.

Энциклопедичный YouTube

    1 / 5

    Электрическое сопротивление. Удельное сопротивление проводника ➽ Физика 8 класс

    Физика. Постоянный ток: Электрическое сопротивление проводника. Центр онлайн-обучения «Фоксфорд»

    Сопротивление. Закон Ома

    Сопротивление металла – охлаждение

    Электрическое сопротивление

    Субтитры

Единицы и размерности

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (10 9 −2) /см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·10 11 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер );
  • абом (в СГСМ, 1 abΩ = 1·10 −9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер ).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL −1 (то есть совпадает с размерностью обратной скорости , с/см), в СГСМ - LT −1 (то есть совпадает с размерностью скорости, см/с) .

Обратной величиной по отношению к сопротивлению является электропроводность , единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом −1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ - абсименс .

Физика явления

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока - электронов проводимости , образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому . Электрический ток в металле возникает под действием внешнего электрического поля , которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс , а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока .

В других средах (полупроводниках , диэлектриках , электролитах , неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома , соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ - сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

Из формулы

R = ρ ⋅ l S , {\displaystyle R={\frac {\rho \cdot l}{S}},}

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Допустим, что в неоднородном проводнике с переменным сечением (рис. 111.28) 1 и 2 изображают эквипотенциальные поверхности с потенциалами При переносе заряда из первого сечения во второе электрические силы, действующие внутри проводника, совершают работу Эта работа при постоянном токе, как указывалось выше, идет не на увеличение кинетической энергий упорядоченного движения электронов, а выделяется в проводнике в виде тепла. Если сила тока с течением времени увеличивается, то часть работы электрических сил идет на увеличение скорости упорядоченного движения электронов, а остальная часть выделяется в виде тепла. При переменном токе работу электрических сил следует рассчитывать, разбивая время наблюдения на элементарные отрезки на протяжении которых силу тока и разность потенциалов можно полагать постоянными. Тогда за время через участок 1-2 пройдет электрический заряд выделится энергия Обозначив можем рассчитать/энергию, выделяющуюся на участке 1-2 за время по формуле

Сила тока выражается в амперах, разность потенциалов в вольтах, время - в секундах, а энергия - в джоулях

Энергию можно выразить в зависимости от размеров и вещества проводника на рассматриваемом участке 1-2. Допустим, на элементарном участке проводник однороден и имеет постоянное сечение (рис. III.28). Кроме того, в пределах объема электрическое поле будем счдедть однородным, имеющим везде одинаковую напряженность Сила тока через сечение 5, согласно формуле (2.6), равна откуда

Умножим обе части этого равенства на и проинтегрируем для интересующего нас участка проводника между эквипотенциальными сечениями 1 и 2:

(при постоянном токе сила тока одинакова для любого сечения проводника). Левый интеграл есть, по определению, разность потенциалов правый интеграл зависит от сврйств проводника (электропроводность а) и его конфигурации. Обозначим этот интеграл через

Это есть электрическое сопротивление проводника на участке 1-2. Тогда предыдущее выражение перепишется в виде

Эта формула выражает закон Ома для участка цепи.

Пользуясь им, можно записать работу электрического тока в зависимости от сопротивления проводника:

или при переменном токе

Энергия выделяющаяся в проводнике в виде тепла,

Эта формула выражает закон Джоуля-Ленца в обычной форме.

Электрическое сопротивление однородного проводника с постоянным сечением зависит от его длины I и площади сечения

Если длина и сечение проводника равны единице, то Величина

есть удельное электрическое сопротивление вещества проводника. Для неоднородного проводника переменного сечения электрическое сопротивление необходимо рассчитывать по фмуле (2.11) или же по приближенной формуле

Сопротивление проводника, на концах которого при силе тока в один ампер существует разность потенциалов в один вольт, называется омом:

Удельное, а следовательно, и полное электрическое сопротивление проводников зависят от температуры. Эта зависимость имеет сложный вид. Для металлов можно пользоваться приближенными формулами:

где относятся к нулевой температуре по шкале Цельсия, температурный коэффициент сопротивления. Этот коэффйциент можно считать постоянным только для небольших интервалов температур. При точных расчетах необходимо учитывать зависимость а от температуры.

Закон Ома, т. е. прямая пропорциональность между напряжением и силой тока (см. формулу (2.12)), имеет место для различных значений только при условии Если же через проводник течет переменный ток и выделяющееся джоулево тепло не отводится так, чтобы обеспечить постоянство температуры проводника, то сопротивление проводника будет изменяться со временем в зависимости от того, как изменяется сила тока. Вследствие этого сопротивление проводника является функцией от силы тока: Для каждого момента времени можно рассчитать две величины:

которые могут отличаться друг от друга в зависимости от вида функции и от условий, в которых находится проводник. Если есть сопротивление какого-нибудь сложного прибора, то функции или характеризуют электрические свойства этого прибора. Однако более удобными являются кривые изображающие зависимость тока приложенного напряжения; эти кривые называются «вольт-амперными характеристиками» прибора.

При очень низких температурах, близких к абсолютному нулю (около сопротивление некоторых металлов скачком уменьшается практически до нуля. Например, алюминий при температуре 1,4 К теряет электрическое сопротивление. Состояние металла с нулевым электрическим сопротивлением называется сверхпроводящим, а само исчезновение сопротивления - сверхпроводимостью. Вследствие отсутствия сопротивления в сверхпроводниках можно вызвать очень большие токи (до 1200 А на 1 мм2) без выделения теплоты. Если в замкнутой цепи из сверхпроводников вызвать электрический ток (например, при помощи электромагнитной индукции), то этот ток ввиду отсутствия потерь может существовать очень долго.

>>Физика: Электрическое сопротивление

Скачать календарно-тематическое планирование по физике , ответы на тесты, задания и ответы школьнику, книги и учебники, курсы учителю по физике для 9 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Поделиться: