Абсолютный минус. Что такое абсолютный ноль

> Абсолютный ноль

Изучите, чему равен абсолютный ноль температуры и значение энтропии. Узнайте, чему равна температура абсолютного ноля по шкале Цельсия и Кельвина.

Абсолютный ноль – минимальная температура. Это отметка, при которой энтропия достигает наименьшего значения.

Задача обучения

  • Разобраться в том, почему абсолютный ноль выступает естественным показателем нулевой точки.

Основные пункты

  • Абсолютный ноль выступает универсальным, то есть, вся материя пребывает в основном состоянии при этом показателе.
  • К обладает квантово-механической нулевой энергией. Но в интерпретации кинетическая энергия может быть нулевой, а тепловая исчезает.
  • Максимально низкая температура в лабораторных условиях достигла 10-12 К. Минимальная естественная – 1К (расширение газов в туманности Бумеранг).

Термины

  • Энтропия – мера того, как равномерная энергия располагается в системе.
  • Термодинамика – отрасль в науке, изучающая тепло и его соотношение с энергией и работой.

Абсолютный ноль – минимальная температура, при которой энтропия достигает наименьшего значения. То есть, это самый маленький показатель, который можно наблюдать в системе. Это универсальное понятие и выступает нулевой точкой в системе единиц температуры.

График зависимости давления от температуры для разных газов с постоянным объемом. Заметьте, что все графики экстраполируются к нулевому давлению при одной температуре

Система в абсолютном нуле все еще наделена квантово-механической нулевой энергией. Согласно принципу неопределенности, положение частичек нельзя определить с абсолютной точностью. Если частичка смещается в абсолютном нуле, то все еще обладает минимальным энергетическим запасом. Но в классической термодинамике кинетическая энергия способна быть нулевой, а тепловая исчезает.

Нулевая точка термодинамической шкалы, вроде Кельвина, приравнивается к абсолютному нулю. Международное соглашение установило, что температура абсолютного ноля достигает 0K по шкале Кельвина и -273.15°C по шкале Цельсия. Вещество при минимальных температурных показателях проявляет квантовые эффекты, вроде сверхпроводимости и сверхтекучести. Наиболее низкая температура в лабораторных условиях составляла 10-12 K, а в естественной среде – 1K (быстрое расширение газов в туманности Бумеранг).

Стремительное расширение газов приводит к минимальной наблюдаемой температуре

Предельную температуру, при которой объем идеального газа становится равным нулю, принимают за абсолютный нуль температуры. Однако объем реальных газов при абсолютном нуле температуры обращаться в нуль не может. Имеет ли смысл тогда это предельное значение температуры?

Предельная температура, существование которой вытекает из закона Гей-Люссака, имеет смысл, так как практически можно приблизить свойства реального газа к свойствам идеального. Для этого надо брать все более разреженный газ, так чтобы его плотность стремилась к нулю. У такого газа действительно объем с понижением температуры будет стремиться к предельному, близкому к нулю.

Найдем значение абсолютного нуля по шкале Цельсия. Приравнивая объем V в формуле (3.6.4) нулю и учитывая, что

Отсюда абсолютный нуль температуры равен

* Более точное значение абсолютного нуля: -273,15 °С.

Это предельная, самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказал Ломоносов.

Шкала Кельвина

Кельвин Уильям (Томсон У.) (1824- 1907) - выдающийся английский физик, один из основателей термодинамики и молекулярно-кинетической теории газов.

Кельвин ввел абсолютную шкалу температур и дал одну из формулировок второго начала термодинамики в форме невозможности полного превращения теплоты в работу. Он произвел расчет размеров молекул на основе измерения поверхностной энергии жидкости. В связи с прокладкой трансатлантического телеграфного кабеля Кельвин разработал теорию электромагнитных колебаний и вывел формулу для периода свободных колебаний в контуре. За научные заслуги У. Томсон получил титул лорда Кельвина.

Английский ученый У. Кельвин ввел абсолютную шкалу температур. Нулевая температура по шкале Кельвина соответствует абсолютному нулю, и единица температуры по этой шкале равна градусу по шкале Цельсия, поэтому абсолютная температура Т связана с температурой по шкале Цельсия формулой

(3.7.6)

На рисунке 3.11 для сравнения изображены абсолютная шкала и шкала Цельсия.

Единица абсолютной температуры в СИ называется кельвином (сокращенно К). Следовательно, один градус по шкале Цельсия равен одному градусу по шкале Кельвина: 1 °С = 1 К.

Таким образом, абсолютная температура по определению, даваемому формулой (3.7.6), является производной величиной, зависящей от температуры Цельсия и от экспериментально определяемого значения а. Однако она имеет фундаментальное значение.

С точки зрения молекулярно-кинетической теории абсолютная температура связана со средней кинетической энергией хаотического движения атомов или молекул. При Т = О К тепловое движение молекул прекращается. Подробнее об этом пойдет речь в главе 4.

Зависимость объема от абсолютной температуры

Применяя шкалу Кельвина, закон Гей-Люссака (3.6.4) можно записать в более простой форме. Так как

(3.7.7)

Объем газа данной массы при постоянном давлении прямо пропорционален абсолютной температуре.

Отсюда следует, что отношение объемов газа одной и той же массы в различных состояниях при одном и том же давлении равно отношению абсолютных температур:

(3.7.8)

Существует минимально возможная температура, при которой объем (и давление) идеального газа обращаются в нуль. Это абсолютный нуль температуры: -273 °С. Удобно отсчитывать температуру от абсолютного нуля. Так строится абсолютная шкала температур.

Задумывались ли вы над тем, насколько низкой может быть температура? Что представляет собой абсолютный ноль? Удастся ли человечеству когда-нибудь его достичь и какие возможности откроются после такого открытия? Эти и другие подобные вопросы издавна занимали умы многих физиков да и просто любознательных людей.

Что есть абсолютный ноль

Даже если с детства не любили физику, вам наверняка знакомо понятие температуры. Благодаря молекулярно-кинетической теории теперь мы знаем, что между ней и движениями молекул и атомов существует определенная статическая связь: чем больше температура любого физического тела, тем быстрее движутся его атомы, и наоборот. Возникает вопрос: «Существует ли такая нижняя граница, при которой элементарные частицы застынут на месте?». Ученые считают, что это теоритически возможно, столбик термометра окажется на отметке -273,15 градуса по шкале Цельсия. Данное значение получило название абсолютный ноль. Другими словами, это минимально возможный предел, до которого может быть охлаждено физическое тело. Есть даже абсолютная температурная шкала (шкала Кельвина), в которой абсолютный ноль является точкой отсчета, а единичное деление шкалы равно одному градусу. Ученые по всему миру не прекращают работы по достижению данного значения, так как это сулит человечеству огромные перспективы.

Почему это так важно

Предельно низкие и предельно высокие температуры тесно связаны с понятием сверхтекучести и сверхпроводимости. Исчезновение электрического сопротивления в сверхпроводниках позволит достичь немыслимых значений КПД и исключить любые потери энергии. Если бы удалось найти способ, который позволит свободно достичь значения "абсолютный нуль", многие проблемы человечества были бы решены. Поезда, парящие над рельсами, более легкие и менее объемные двигатели, трансформаторы и генераторы, высокоточная магнитоэнцефалография, высокоточные часы - вот лишь несколько примеров того, что может принести сверхпроводимость в нашу жизнь.

Последние научные достижения

В сентябре 2003 года исследователи из MIT и NASA сумели охладить газ натрий до рекордно низкого значения. В ходе эксперимента до финишной отметки (абсолютный ноль) им не хватило всего половины миллиардной доли градуса. В процессе тестов натрий все время находился в магнитном поле, которое удерживало его от прикосновения к стенкам контейнера. Если бы удалось преодолеть температурный барьер, молекулярное движение в газе полностью бы остановилось, ведь такое охлаждение извлекло бы всю энергию из натрия. Исследователи применили методику, автор которой (Вольфганг Кеттерле) получил в 2001 году Нобелевскую премию по физике. Ключевым моментом в проводимых тестах были газовые процессы конденсации Бозе-Эйнштейна. Меж тем, никто еще не отменял третье начало термодинамики, согласно которому абсолютный ноль - это не только непреодолимая, но и недостижимая величина. К тому же действует принцип неопределенности Гейзенберга, и атомы просто не могут остановиться как вкопанные. Таким образом, пока что абсолютный нуль температуры для науки остается недостижимым, хоть ученые и смогли приблизиться к нему на ничтожно маленькое расстояние.

Абсолютный ноль (absolute zero) – начало отсчета абсолютной температуры, начинающей отчет от 273.16 К ниже тройной точки воды (точка равновесия трех фаз – льда, воды и водяного пара); при абсолютном ноле движение молекул прекращается, и они находятся в состоянии «нулевых» движений. Или: самая низкая температура, при которой вещество не содержит тепловой энергии.

Абсолютный ноль начало отсчета абсолютной температуры . Соответствует -273 ,16 ° С . В настоящее время в физических лабораториях удалось получить температуру , превышающую абсолютный ноль всего на несколько миллионных долей градуса , достичь же его , согласно законам термодинамики , невозможно . При абсолютном ноле система находилась бы в состоянии с наименьшей возможной энергией (в этом состоянии атомы и молекулы совершали бы "нулевые " колебания ) и обладала нулевой энтропией (нулевой неупорядоченностью ). Объем идеального газа в точке абсолютного ноля должен быть равен нолю , и чтобы определить эту точку , измеряют объем реального газа гелия при последовательном понижении температуры вплоть до его ожижения при низком давлении (-268 ,9 ° С ) и проводят экстраполяцию к температуре , при которой объем газа в отсутствие ожижения обратился бы в ноль . Температура по абсолютной термодинамической шкале измеряется в кельвинах , обозначаемых символом К . Абсолютная термодинамическая шкала и шкала Цельсия просто смещены одна относительно другой и связаны соотношением К = °C + 273 ,16 °.

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии, поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Сравнение температурных шкал

Описание Кельвин Цельсий Фаренгейт Ньютон Реомюр
Абсолютный ноль −273.15 −459.67 −90.14 −218.52
Температура таяния смеси Фаренгейта (соли и льда в равных количествах) 0 −5.87
Температура замерзания воды (нормальные условия) 0 32 0
Средняя температура человеческого тела ¹ 36.8 98.2 12.21
Температура кипения воды (нормальные условия) 100 212 33
Температура поверхности Солнца 5800 5526 9980 1823

Нормальная температура человеческого тела - 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F o C o F o C o F o C o F o C
-459.67
-450
-400
-350
-300
-250
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-95
-90
-85
-80
-75
-70
-65
-273.15
-267.8
-240.0
-212.2
-184.4
-156.7
-128.9
-123.3
-117.8
-112.2
-106.7
-101.1
-95.6
-90.0
-84.4
-78.9
-73.3
-70.6
-67.8
-65.0
-62.2
-59.4
-56.7
-53.9
-60
-55
-50
-45
-40
-35
-30
-25
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-51.1
-48.3
-45.6
-42.8
-40.0
-37.2
-34.4
-31.7
-28.9
-28.3
-27.8
-27.2
-26.7
-26.1
-25.6
-25.0
-24.4
-23.9
-23.3
-22.8
-22.2
-21.7
-21.1
-20.6
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
-20.0
-19.4
-18.9
-18.3
-17.8
-17.2
-16.7
-16.1
-15.6
-15.0
-14.4
-13.9
-13.3
-12.8
-12.2
-11.7
-11.1
-10.6
-10.0
-9.4
-8.9
-8.3
-7.8
-7.2
20
21
22
23
24
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
125
150
200
-6.7
-6.1
-5.6
-5.0
-4.4
-3.9
-1.1
1.7
4.4
7.2
10.0
12.8
15.6
18.3
21.1
23.9
26.7
29.4
32.2
35.0
37.8
51.7
65.6
93.3

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T 0 где T- температура в кельвинах, t- температура в градусах цельсия, T 0 =273.15 кельвина. По размеру градус цельсия равен кельвину.

Физическое понятие «абсолютный нуль температуры» имеет для современной науки очень важное значение: с ним тесно связано такое понятие, как сверхпроводимость, открытие которой произвело настоящий фурор во второй половине ХХ века.

Чтобы понять, что же такое абсолютный ноль, следует обратиться к работам таких известных физиков, как Г. Фаренгейт, А. Цельсий, Ж. Гей-Люссак и У. Томсон. Именно они сыграли ключевую роль в создании используемых до сих пор основных температурных шкал.

Первым свою температурную шкалу предложил в 1714 году немецкий физик Г. Фаренгейт. При этом за абсолютный нуль, то есть за самую низкую точку этой шкалы, была принята температура смеси, которая включала в себя снег и нашатырь. Следующим важным показателем стала которая стала равняться 1000. Соответственно, каждое деление данной шкалы получило название «градус Фаренгейта», а сама шкала - «шкалы Фаренгейта».

Спустя 30 лет шведский астроном А. Цельсий предложил свою температурную шкалу, где основными точками стали температура таяния льда и воды. Эта шкала получила название «шкалы Цельсия», она до сих пор популярна в большинстве стран мира, в том числе и в России.

В 1802 году, проводя свои знаменитые опыты, французский ученый Ж. Гей-Люссак обнаружил, что объем массы газа при постоянном давлении находится в прямой зависимости от температуры. Но самое любопытное состояло в том, что при изменении температуры на 10 по шкале Цельсия, объем газа увеличивался или уменьшался на одну и ту же величину. Произведя необходимые вычисления, Гей-Люссак установил, что эта величина равнялась 1/273 от объема газа при температуре, равной 0С.

Из этого закона следовал напрашивающийся вывод: температура, равная -2730С, является наименьшей температурой, даже подойдя к которой вплотную, достичь ее невозможно. Именно эта температура получила название «абсолютный нуль температуры».

Более того, абсолютный нуль стал отправной точкой для создания шкалы абсолютной температуры, активное участие в котором принял английский физик У. Томсон, известный также, как лорд Кельвин.

Его основное исследование касалось доказательства того, что ни одно тело в природе не может быть охлаждено ниже, чем абсолютный нуль. При этом он активно использовал второй поэтому, введенная им в 1848 году абсолютная шкала температур стала называться термодинамической или «шкалой Кельвина».

В последующие годы и десятилетия происходило только числовое уточнение понятия «абсолютный ноль», которое после многочисленных согласований стало считаться равным -273,150С.

Стоит также обратить внимание, что абсолютный ноль играет очень важную роль в Все дело в том, что в 1960 году на очередной Генеральной конференции по мерам и весам единица термодинамической температуры - кельвин - стала одной из шести основных единиц измерений. При этом специально оговаривалось, что один градус Кельвина численно равен одному только вот точкой отсчета «по Кельвину» принято считать абсолютный ноль, то есть -273,150С.

Основной физический смысл абсолютного нуля состоит в том, что, согласно основным физическим законам, при такой температуре энергия движения элементарных частиц, таких как атомы и молекулы, равна нулю, и в этом случае должно прекратиться любое хаотическое движение этих самых частиц. При температуре, равной абсолютному нулю, атомы и молекулы должны занять четкое положение в основных пунктах кристаллической решетки, образуя упорядоченную систему.

В настоящее время, используя специальное оборудование, ученые смогли получить температуру, лишь на несколько миллионных долей превышающую абсолютный ноль. Достичь же самой этой величины физически невозможно из-за описанного выше второго закона термодинамики.

Поделиться: