Характеристики случайных процессов. Понятие случайной функции

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Случайная функция – функция, которая в результате опыта может принять тот или иной неизвестный заранее конкретный вид. Обычно аргументом случайной функции (с.ф.) является время, тогда с.ф. называют случайным процессом (с.п.).

С.ф. непрерывно изменяющегося аргумента t называется такая с.в., распределение которой зависит не только от аргумента t=t1 , но и от того, какие частные значения принимала эта величина при других значениях данного аргумента t=t 2. Эти с.в. корреляционно связаны между собой и тем больше, чем ближе одни к другим значения аргументов. В пределе при интервале между двумя значениями аргумента, стремящемся к нулю, коэффициент корреляции равен единице:

т.е. t 1 и t1+Dt1 при Dt1 ®0 связаны линейной зависимостью.

С.ф. принимает в результате одного опыта бесчисленное (в общем случае несчетное) множество значений – по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Эта функция имеет одно вполне определенное значение для каждого момента времени. Результат измерения непрерывно изменяющейся величины является такой с.в., которая в каждом данном опыте представляет собой определенную функцию времени.

С.ф. можно также рассматривать как бесконечную совокупность с.в., зависящую от одного или нескольких непрерывно изменяющихся параметров t . Каждому данному значению параметра t соответствует одна с.в Xt. Вместе все с.в. X t определяют с.ф. X(t). Эти с.в. корреляционно связаны между собой и тем сильнее, чем ближе друг к другу.

Элементарная с.ф. – это произведение обычной с.в. Х на некоторую неслучайную функцию j(t): X(t)=X×j(t) , т.е. такая с.ф., у которой случайным является не вид, а только ее масштаб.

С.ф. - имеет м.о. равное нулю. p – плотность распределения с.в. Х (значения с.ф. X(t) ), взятой при произвольном значении t 1 аргумента t .

Реализация с.ф. X(t) – описывается уравнением x=f1(t) при t=t1 и уравнением x=f2(t) при t=t2 .

Вообще функции x=f1(t) и x=f2(t) – различные функции. Но эти функции тождественны и линейны тем более, чем более (t1 ®t2 ) t 1 ближе к t 2.

Одномерная плотность вероятности с.ф. p(x,t) – зависит от х и от параметра t . Двумерная плотность вероятности p(x1,x2;t1,t2) – совместный закон распределения значений X(t1) и X(t2) с. ф. X(t) при двух произвольных значениях t и t ¢ аргумента t .

. (66.5)

В общем случае функция X(t) характеризуется большим числом n -мерных законов распределения .

М.о. с.ф. X(t) - неслучайная функция , которая при каждом значении аргумента t равна м.о. ординаты с.ф. при этом аргументе t.

- функция, зависящая от x и t .

Аналогично и дисперсия - неслучайная функция.

Степень зависимости с.в. для различных значений аргумента характеризуется автокорреляционной функцией.

Автокорреляционная функция с.ф. X(t) Kx(ti,tj) , которая при каждой паре значений ti, tj равна корреляционному моменту соответствующих ординат с.ф. (при i=j корреляционная функция (к.ф.) обращается в дисперсию с.ф.);

где - совместная плотность распределения двух с.в. (значений с.ф.), взятых при двух произвольных значениях t 1 и t 2 аргумента t . При t1=t2=t получаем дисперсию D(t).

Автокорреляционная функция - совокупность м.о. произведений отклонений двух ординат с.ф. , взятых при аргументах t1 и t 2, от ординат неслучайной функции м.о. , взятых при тех же аргументах.

Автокорреляционная функция характеризует степень изменчивости с.ф. при изменении аргумента. На рис. видно, что зависимость между значениями с.ф., соответствующим двум данным значениям аргумента t - слабее в первом случае.

Рис . Корреляционно связанные случайные функции

Если две с.ф. X(t) и Y(t) , образующие систему не являются независимыми, то тождественно не равна нулю их взаимная корреляционная функция:

где - совместная плотность распределения двух с.в. (значений двух с.ф. X(t) и Y(t) ), взятых при двух произвольных аргументах (t 1 - аргумент функции X(t) , t 2 - аргумент функции Y(t) ).

Если X(t) и Y(t) независимы, то K XY(t1,t2 )=0. Система из n с.ф. X 1(t), X2(t),...,Xn(t) характеризуется n м.о. , n автокорреляционными функциями и еще n (n -1)/2 корреляционными функциями .

Взаимная корреляционная функция (характеризует связь между двумя с.ф., т.е. стохастическую зависимость) двух с.ф. X(t) и Y(t) - неслучайная функция двух аргументов t i и t j, которая при каждой паре значений t i, t j равна корреляционному моменту соответствующих сечений с.ф. Она устанавливает связь между двумя значениями двух функций (значения - с.в.), при двух аргументах t 1 и t 2.

Особое значение имеют стационарные случайные функции , вероятностные характеристики которых не меняются при любом сдвиге аргумента. М.о. стационарной с.ф. постоянно (т.е. не является функцией), а корреляционная функция зависит лишь от разности значений аргументов t i и t j.

Это четная функция (симметрично OY ).

При большом значении интервала времени t=t2-t1 отклонение ординаты с.ф. от ее м.о. в момент времени t 2 становится практически независимым от значения этого отклонения в момент времени t 1. В этом случае функция KX(t), дающая значение корреляционного момента между X(t1) и X(t2), при ½t ½®¥ стремится к нулю.

Многие стационарные с.ф. обладают эргодическим свойством, которое заключается в том, что при неограниченно возрастающем интервале наблюдения среднее наблюденное значение стационарной с.ф. с вероятностью, равной 1, будет неограниченно приближаться к ее м.о. Наблюдение стационарной с.ф. при разных значениях t на достаточно большом интервале в одном опыте равноценно наблюдению ее значений при одном и том же значении t в ряде опытов.

Иногда требуется определить характеристики преобразованных с.ф. по характеристикам исходных с.ф. Так если

(70.5),

то т.е. м.о. интеграла (производной) от с.ф. равно интегралу (производной) от м.о. (y(t) - скорость изменения с.ф. X(t) , - скорость изменения м.о.).

При интегрировании или дифференцировании с.ф. получаем также с.ф. Если X(t) распределена нормально, то Z(t) и Y(t) распределены тоже нормально. Если X(t) – стационарная с.ф., то Z(t) уже не стационарная с.ф., т.к. зависит от t .

Примеры корреляционных функций.

1) (из (2) при b®0); 2) ;

3) ; 4) ;

5) (из (3) при b ®0); 6) (из (4) при b ®0).

На графиках a = 1, b = 5, s = 1.

a - характеризует быстроту убывания корреляционной связи между ординатами с.ф. при увеличении разности аргументов этих ординат t.

a/b - характеризует "степень нерегулярности процесса". При малом a/b ординаты процесса оказываются сильно коррелированными и реализация процесса похожа на синусоиду; при большом a/b (71.5).

Формула (71) для стационарной функции примет вид:

Корреляционная функция с.ф. и ее производной . Для дифференцируемого стационарного процесса ордината с.ф. и ее производной, взятая в тот же момент времени являются некоррелированными с.в. (а для нормального процесса и независимыми).

При умножении с.ф. на детерминированную получаем с.ф. Z(t)=a(t)X(t) , корреляционная функция которой равна

KZ(t1,t2)=a(t1)a(t2) KX(t1,t2) (72.5),

где a(t) - детерминированная функция.

Сумма двух с.ф. является тоже с.ф. Z(t)=X(t)+Y(t) и ее корреляционная функция при наличии корреляционной связи между X(t) и Y(t):

KZ(t1,t2)=KX(t1,t2)+ KY(t1,t2)+ 2KXY(t1,t2), (73.5)

где KXY(t1,t2) - см. (68.5) - взаимная корреляционная функция двух зависимых с.ф. X(t) и Y(t).

Если X(t) и Y(t) независимы, то KXY(t1,t2) =0. М.о. с.ф. Z(t): .

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj(4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.

Мы имели много случаев убедиться в том, какое большое значение в теории вероятностей имеют основные числовые характеристики случайных величин: математическое ожидание и дисперсия - для одной случайной величины, математические ожидания и корреляционная матрица - для системы случайных величин. Искусство пользоваться числовыми характеристиками, оставляя по возможности в стороне законы распределения, - основа прикладной теории вероятностей. Аппарат числовых характеристик представляет собой весьма гибкий и мощный аппарат, позволяющий сравнительно просто решать многие практические задачи.

Совершенно аналогичным аппаратом пользуются и в теории случайных функций. Для случайных функций также вводятся простейшие основные характеристики, аналогичные числовым характеристикам случайных величин, и устанавливаются правила действий с этими характеристиками. Такой аппарат оказывается достаточным для решения многих практических задач.

В отличие от числовых характеристик случайных величин, предоставляющих собой определенные числа, характеристики случайных функций представляют собой в общем случае не числа, а функции.

Математическое ожидание случайной функции определяется следующим образом. Рассмотрим сечение случайной функции при фиксированном . В этом сечении мы имеем обычную случайную величину; определим ее математическое ожидание. Очевидно, в общем случае оно зависит от , т. е. представляет собой некоторую функцию :

. (15.3.1)

Таким образом, математическим ожиданием случайной функции называется неслучайная функция , которая при каждом значении аргумента равна математическому ожиданию соответствующего сечения случайной функции.

По смыслу математическое ожидание случайной функции есть некоторая средняя функция, около которой различным образом варьируются конкретные реализации случайной функции.

На рис. 15.3.1 тонкими линиями показаны реализации случайной функции, жирной линией - ее математическое ожидание.

Аналогичным образом определяется дисперсия случайной функции.

Дисперсией случайной функции называется неслучайная функция , значение которой для каждого равно дисперсии соответствующего сечения случайной функции:

. (15.3.2)

Дисперсия случайной функции при каждом характеризует разброс возможных реализаций случайной функции относительно среднего, иными словами, «степень случайности» случайной функции.

Очевидно, есть неотрицательная функция. Извлекая из нее квадратный корень, получим функцию - среднее квадратическое отклонение случайной функции:

. (15.3.3)

Математическое ожидание и дисперсия представляют собой весьма важные характеристики случайной функции; однако для описания основных особенностей случайной функции этих характеристик недостаточно. Чтобы убедиться в этом, рассмотрим две случайные функции и , наглядно изображенные семействами реализаций на рис. 15.3.2 и 15.3.3.

У случайных функций и примерно одинаковые математические ожидания и дисперсии; однако характер этих случайных функций резко различен. Для случайной функции (рис. 15.3.2) характерно плавное, постепенное изменение. Если, например, в точке случайная функция приняла значение, заметно превышающее среднее, то весьма вероятно, что и в точке она также примет значение больше среднего. Для случайной функции характерна ярко выраженная зависимость между ее значениями при различных . Напротив, случайная функция (рис. 15.3.3) имеет резко колебательный характер с неправильными, беспорядочными колебаниями. Для такой случайной функции характерно быстрое затухание зависимости между ее значениями по мере увеличения расстояния по между ними.

Очевидно, внутренняя структура обоих случайных процессов совершенно различна, но это различие не улавливается ни математическим ожиданием, ни дисперсией; для его описания необходимо вести специальную характеристику. Эта характеристика называется корреляционной функцией (иначе - автокорреляционной функцией). Корреляционная функция характеризует степень зависимости между сечениями случайной функции, относящимися к различным .

Пусть имеется случайная функция (рис. 15.3.4); рассмотрим два ее сечения, относящихся к различным моментам: и , т. е. две случайные величины и . Очевидно, что при близких значениях и величины и связаны тесной зависимостью: если величина приняла какое-то значение, то и величина с большой вероятностью примет значение, близкое к нему. Очевидно также, что при увеличении интервала между сечениями , зависимость величин и вообще должна убывать.

Степень зависимости величин и может быть в значительной мере охарактеризована их корреляционным моментом; очевидно, он является функцией двух аргументов и . Эта функция и называется корреляционной функцией.

Таким образом, корреляционной функцией случайной функции называется неслучайная функция двух аргументов , которая при каждой паре значений , равна корреляционному моменту соответствующих сечений случайной функции:

, (15.3.4)

, .

Вернемся к примерам случайных функций и (рис. 15.3.2 и 15.3.3). Мы видим теперь, что при одинаковых математических ожиданиях и дисперсиях случайные функции и имеют совершенно различные корреляционные функции. Корреляционная функция случайной функции медленно убывает по мере увеличения промежутка ; напротив, корреляционная функция случайной функции быстро убывает с увеличением этого промежутка.

Выясним, во что обращается корреляционная функция , когда ее аргументы совпадают. Полагая , имеем:

, (15.3.5)

т. е. при корреляционная функция обращается в дисперсию случайной функции.

Таким образом, необходимость в дисперсии как отдельной характеристике случайной функции отпадает: в качестве основных характеристик случайной функции достаточно рассматривать ее математическое ожидание и корреляционную функцию.

Так как корреляционный момент двух случайных величин и не зависит от последовательности, в которой эти величины рассматриваются, то корреляционная функция симметрична относительно своих аргументов, т. е. не меняется при перемене аргументов местами:

. (15.3.6)

Если изобразить корреляционную функцию в виде поверхности, то эта поверхность будет симметрична относительно вертикальной плоскости , проходящей через биссектрису угла (рис. 15.3.5).

Заметим, что свойства корреляционной функции естественно вытекают из свойств корреляционной матрицы системы случайных величин. Действительно, заменим приближенно случайную функцию системой случайных величин . При увеличении и соответственном уменьшении промежутков между аргументами корреляционная матрица системы, представляющая собой таблицу о двух входах, в пределе переходит в функцию двух непрерывно изменяющихся аргументов, обладающую аналогичными свойствами. Свойство симметричности корреляционной матрицы относительно главной диагонали переходит в свойство симметричности корреляционной функции (15.3.6). По главной диагонали корреляционной матрицы стоят дисперсии случайных величин; аналогично при корреляционная функция обращается в дисперсию .

На практике, если требуется построить корреляционную функцию случайной функции , обычно поступают следующим образом: задаются рядом равноотстоящих значений аргумента и строят корреляционную матрицу полученной системы случайных величин. Эта матрица есть не что иное, как таблица значений корреляционной функции для прямоугольной сетки значений аргументов на плоскости . Далее, путем интерполирования или аппроксимации можно построить функцию двух аргументов .

Вместо корреляционной функции можно пользоваться нормированной корреляционной функцией:

, (15.3.7)

которая представляет собой коэффициент корреляции величин , . Нормированная корреляционная функция аналогична нормированной корреляционной матрице системы случайных величин. При нормированная корреляционная функция равна единице.

Задание на курсовую работу

Дано: пять начальных моментов

а1 = 1, а2 = 2, а3 = 2, а4 = 1, а5 = 1 г = 0, µ 0 = 1).

Найти: пять центральных моментов.

Имея в своём распоряжении пять начальных и пять центральных моментов, вычислить значения:

а) математическое ожидание;

б) дисперсию;

в) стандартное отклонение;

г) коэффициент вариации;

д) коэффициент асимметрии;

е) коэффициент эксцессии.

По полученным данным качественно описать плотность вероятности данного процесса.

1. Теоретические сведения

Распределения случайных величин и функции распределения

Распределение числовой случайной величины - это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.

Первое - если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р (Х = х), ставящей каждому возможному значению х случайной величины X вероятность того, что X = х.

Второе - если случайная величина принимает бесконечно много значений. Это возможно лишь тогда, когда вероятностное пространство, на котором определена случайная величина, состоит из бесконечного числа элементарных событий. Тогда распределение задается набором вероятностей Р (а Х для всех пар чисел а, b таких, что аРаспределение может быть задано с помощью т.н. функции распределения F(x) = Р (Х<х), определяющей для всех действительных х вероятность того, что случайная величина X принимает значения, меньшие х. Ясно, что

Р (а Х

Это соотношение показывает, что как распределение может быть рассчитано по функции распределения, так и, наоборот, функция распределения - по распределению.

Используемые в вероятностно-статистических методах принятия решений и других прикладных исследованиях функции распределения бывают либо дискретными, либо непрерывными, либо их комбинациями.

Дискретные функции распределения соответствуют дискретным случайным величинам, принимающим конечное число значений или же значения из множества, элементы которого можно перенумеровать натуральными числами (такие множества в математике называют счетными). Их график имеет вид ступенчатой лестницы (рис. 1).

Пример 1. Число X дефектных изделий в партии принимает значение 0 с вероятностью 0,3, значение 1 с вероятностью 0,4, значение 2 с вероятностью 0,2 и значение 3 с вероятностью 0,1. График функции распределения случайной величины X изображен на рис. 1.

Рис. 1. График функции распределения числа дефектных изделий.

Непрерывные функции распределения не имеют скачков. Они монотонно возрастают при увеличении аргумента - от 0 при х→∞ до 1 при х→+∞. Случайные величины, имеющие непрерывные функции распределения, называют непрерывными.

Непрерывные функции распределения, используемые в вероятностно-статистических методах принятия решений, имеют производные. Первая производная f(x) функции распределения F(x) называется плотностью вероятности,

По плотности вероятности можно определить функцию распределения:

Для любой функции распределения

Перечисленные свойства функций распределения постоянно используются в вероятностно-статистических методах принятия решений. В частности, из последнего равенства вытекает конкретный вид констант в формулах для плотностей вероятностей, рассматриваемых ниже.

Пример 2. Часто используется следующая функция распределения:

(1)

где а и b - некоторые числа, аНайдем плотность вероятности этой функции распределения:

(в точках х = а их = b производная функции F(x) не существует).

Случайная величина с функцией распределения (1) называется «равномерно распределенной на отрезке ».

Смешанные функции распределения встречаются, в частности, тогда, когда наблюдения в какой-то момент прекращаются. Например, при анализе статистических данных, полученных при использовании планов испытании на надежность, предусматривающих прекращение испытаний по истечении некоторого срока. Или при анализе данных о технических изделиях, потребовавших гарантийного ремонта.

Пример 3. Пусть, например, срок службы электрической лампочки - случайная величина с функцией распределения F(t), а испытание проводится до выхода лампочки из строя, если это произойдет менее чем за 100 часов от начала испытаний, или до момента t 0 = 100 часов. Пусть G(t) - функция распределения времени эксплуатации лампочки в исправном состоянии при этом испытании. Тогда

Функция G(t) имеет скачок в точке t 0 , поскольку соответствующая случайная величина принимает значение t 0 с вероятностью 1-F(t 0 )>0.

Характеристики случайных величин. В вероятностно-статистических методах принятия решений используется ряд характеристик случайных величин, выражающихся через функции распределения и плотности вероятностей.

При описании дифференциации доходов, при нахождении доверительных границ для параметров распределений случайных величин и во многих иных случаях используется такое понятие, как «квантиль порядка р», где 0 <р < 1 (обозначается х р ). Квантиль порядка р - значение случайной величины, для которого функция распределения принимает значение р или имеет место «скачок» со значения меньшер до значения больше р (рис. 2). Может случиться, что это условие выполняется для всех значений х, принадлежащих этому интервалу (т.е. функция распределения постоянна на этом интервале и равна р). Тогда каждое такое значение называется «квантилем порядка р». Для непрерывных функций распределения, как правило, существует единственный квантиль х р порядка р (рис. 2), причем

F(x p )=p. (2)

Рис. 2. Определение квантиля х р порядка р.

Пример 4. Найдем квантиль х р порядка р для функции распределения F(x) из (1).

При 0 <р < 1 квантиль х р находится из уравнения

т.е. х р = а + p (b - а) = а (1-р) +bр. При р = 0 любое х а является квантилем порядка p = 0. Квантилем порядка р = 1 является любое число х b.

Для дискретных распределений, как правило, не существует х р , удовлетворяющих уравнению (2). Точнее, если распределение случайной величины дается табл. 1, где x 1 < х 2 <… < х к , то равенство (2), рассматриваемое как уравнение относительно х р , имеет решения только для k значений р, а именно,

p =p 1

p =p 1 +p 2 ,

p = p 1 +p 2 +p 3 ,

p = p 1 +p 2 + р т , 3<т<к,

р =р, + р 2 +… +p k

Таблица 1. Распределение дискретной случайной величины

Значения х случайной величины 1 х 2 х k Вероятности Р (Х =х)P 1 Р 2 Р k

Для перечисленных к значений вероятности р решение х р уравнения (2) неединственно, а именно,

F(x) =р, +р 2 +… + Р т

для всех х таких, что х т < х < х т+1 . Т.е. х р - любое число из интервала т ; x m+1 ). Для всех остальных р из промежутка (0; 1), не входящих в перечень (3), имеет место «скачок» со значения меньше р до значения больше р. А именно, если

p 1 +p 2 +… + p т 1 +p 2 + … + p т + p т+1 ,

то x р =x т+1 .

Рассмотренное свойство дискретных распределений создает значительные трудности при табулировании и использовании подобных распределений, поскольку невозможным оказывается точно выдержать типовые численные значения характеристик распределения. В частности, это так для критических значений и уровней значимости непараметрических статистических критериев (см. ниже), поскольку распределения статистик этих критериев дискретны.

Большое значение в статистике имеет квантиль порядка p = ½. Он называется медианой (случайной величины X или ее функции распределения F(x)) и обозначается Ме(Х). В геометрии есть понятие «медиана» - прямая, проходящая через вершину треугольника и делящая противоположную его сторону пополам. В математической статистике медиана делит пополам не сторону треугольника, а распределение случайной величины: равенство F(x 0,5 ) = 0,5 означает, что вероятность попасть левее x 0,5 и вероятность попасть правее x 0,5 (или непосредственно x 0,5 ) равны между собой и равны ½ , т.е.

Медиана указывает «центр» распределения. С точки зрения одной из современных концепций - теории устойчивых статистических процедур - медиана является более хорошей характеристикой случайной величины, чем математическое ожидание . При обработке результатов измерений в порядковой шкале (см. главу о теории измерений) медианой можно пользоваться, а математическим ожиданием - нет.

Ясный смысл имеет такая характеристика случайной величины, как мода - значение (или значения) случайной величины, соответствующее локальному максимуму плотности вероятности для непрерывной случайной величины или локальному максимуму вероятности для дискретной случайной величины.

Если х 0 - мода случайной величины с плотностью f(x), то, как известно

из дифференциального исчисления,

У случайной величины может быть много мод. Так, для равномерного распределения (1) каждая точка х такая, что а < х < b, является модой. Однако это исключение. Большинство случайных величин, используемых в вероятностно-статистических методах принятия решений и других прикладных исследованиях, имеют одну моду. Случайные величины, плотности, распределения, имеющие одну моду, называются унимодальными.

Математическое ожидание для дискретных случайных величин с конечным числом значений рассмотрено в главе «События и вероятности». Для непрерывной случайной величины X математическое ожидание М(Х) удовлетворяет равенству

Пример 5. Математическое ожидание для равномерно распределенной случайной величины X равно

Для рассматриваемых в настоящей главе случайных величин верны все те свойства математических ожиданий и дисперсий, которые были рассмотрены ранее для дискретных случайных величин с конечным числом значений. Однако доказательства этих свойств не приводим, поскольку они требуют углубления в математические тонкости, не являющегося необходимым для понимания и квалифицированного применения вероятностно-статистических методов принятия решений.

Замечание. В настоящем учебнике сознательно обходятся математические тонкости, связанные, в частности, с понятиями измеримых множеств и измеримых функций, -алгебры событий и т.п. Желающим освоить эти понятия необходимо обратиться к специальной литературе, в частности, к энциклопедии .

Каждая из трех характеристик - математическое ожидание, медиана, мода - описывает «центр» распределения вероятностей. Понятие «центр» можно определять разными способами - отсюда три разные характеристики. Однако для важного класса распределений - симметричных унимодальных - все три характеристики совпадают.

Плотность распределения f(x) - плотность симметричного распределения, если найдется число х 0 такое, что

(3)

Равенство (3) означает, что график функции у =f(х) симметричен относительно вертикальной прямой, проходящей через центр симметрии х = х 0 . Из (3) следует, что функция симметричного распределения удовлетворяет соотношению

(4)

Для симметричного распределения с одной модой математическое ожидание, медиана и мода совпадают и равны х 0 .

Наиболее важен случай симметрии относительно 0, т.е. х п = 0. Тогда (3) и (4) переходят в равенства

(5)

(6)

соответственно. Приведенные соотношения показывают, что симметричные распределения нет необходимости табулировать при всех х, достаточно иметь таблицы при х х 0 .

Отметим еще одно свойство симметричных распределений, постоянно используемое в вероятностно-статистических методах принятия решений и других прикладных исследованиях. Для непрерывной функции распределения

Р(а) = Р (-а а) = F(a) - F(-a),

где F - функция распределения случайной величины X. Если функция распределения F симметрична относительно 0, т.е. для нее справедлива формула (6), то

Р(а) =2F(a) - 1.

Часто используют другую формулировку рассматриваемого утверждения: если

Если и - квантили порядка α и 1-α соответственно (см. (2)) функции распределения, симметричной относительно 0, то из (6) следует, что

От характеристик положения - математического ожидания, медианы, моды - перейдем к характеристикам разброса случайной величины X:

дисперсии , среднему квадратическому отклонению σ и коэффициенту вариации v . Определение и свойства дисперсии для дискретных случайных величин рассмотрены в предыдущей главе. Для непрерывных случайных величин

Среднее квадратическое отклонение - это неотрицательное значение квадратного корня из дисперсии:

Коэффициент вариации - это отношение среднего квадратического отклонения к математическому ожиданию:

Коэффициент вариации применяется при М(Х)>0. Он измеряет разброс в относительных единицах, в то время как среднее квадратическое отклонение - в абсолютных.

Пример 6. Для равномерно распределенной случайной величины X найдем дисперсию, среднеквадратическое отклонение и коэффициент вариации. Дисперсия равна:

Замена переменной дает возможность записать:

где с = (b - а )/2. Следовательно, среднее квадратическое отклонение равно , а коэффициент вариации таков:

По каждой случайной величине X определяют еще три величины - центрированную Y, нормированную V и приведенную U. Центрированная случайная величина Y - это разность между данной случайной величиной X и ее математическим ожиданием М(Х), т.е. Y= Х - М(Х). Математическое ожидание центрированной случайной величины Г равно 0, а дисперсия - дисперсии данной случайной величины: M(Y) = 0, D(Y) = D(X). Функция распределения F Y (x) центрированной случайной величины Y связана с функцией распределения F(x) исходной случайной величины X соотношением:

F Y (x) =F (x + М(Х)).

Для плотностей этих случайных величин справедливо равенство

f Y (x) =f (x + М(Х)).

Нормированная случайная величина V -это отношение данной случайной величины Х к ее среднему квадратическому отклонению σ, т.е. . Математическое ожидание и дисперсия нормированной случайной величины V выражаются через характеристики X так:

где v - коэффициент вариации исходной случайной величины X. Для функции распределения F v (x) и плотности f v (x) нормированной случайной величины V имеем:

где F(x) - функция распределения исходной случайной величины X, a f(x) - ее плотность вероятности.

Приведенная случайная величина U - это центрированная и нормированная случайная величина:

Для приведенной случайной величины:

(7)

Нормированные, центрированные и приведенные случайные величины постоянно используются как в теоретических исследованиях, так и в алгоритмах, программных продуктах, нормативно-технической и инструктивно-методической документации. В частности, потому, что позволяют упростить обоснования методов, формулировки теорем и расчетные формулы.

Используются преобразования случайных величин и более общего плана. Так, если Y= аХ+ b, где а и b - некоторые числа, то

(8)

Пример 7. Если то У - приведенная случайная величина, и формулы (8) переходят в формулы (7).

С каждой случайной величиной X можно связать множество случайных величин Y, заданных формулой У = аХ+b при различных а>0 и b. Это множество называют масштабно-сдвиговым семейством, порожденным случайной величиной X. Функции распределения F Y (x) составляют масштабно сдвиговое семейство распределений, порожденное функцией распределения F(x). Вместо Y= аХ+ b часто используют запись

(9)

Число с называют параметром сдвига, а число d - параметром масштаба. Формула (9) показывает, что Х - результат измерения некоторой величины - переходит в У - результат измерения той же величины, если начало измерения перенести в точку с, а затем использовать новую единицу измерения, в d раз большую старой.

Для масштабно-сдвигового семейства (9) распределение X называют стандартным. В вероятностно-статистических методах принятия решений и других прикладных исследованиях используют стандартное нормальное распределение, стандартное распределение Вейбулла-Гнеденко, стандартное гамма-распределение и др. (см. ниже).

Применяют и другие преобразования случайных величин. Например, для положительной случайной величины X рассматривают Y= gX, где lgX -десятичный логарифм числа X. Цепочка равенств

Лекция 13 Случайные процессы Основные понятия. Закон распределения и . Стационарные, эргодичес

Лекция 13
Случайные процессы
Основные понятия. Закон распределения и основные характеристики
случайных процессов. Стационарные, эргодические, элементарные случайные
процессы
(Ахметов С.К.)

Определения

Случайным процессом X(t) называется процесс, значение которого при
любом фиксированном t = ti является СВ X(ti)
Реализацией случайного процесса X(t) называется неслучайная функция
х(t), в которую превращается случайный процесс X(t) в результате опыта
Сечение случайного процесса (случайной функции) – это случайная
величина X(ti) при t = ti.

Случайный процесс X(t) называется процессом с дискретным
временем, если система, в которой он протекает, может менять
свои состояния только в моменты t1, t2, t3….. tn, число которых
конечно или счетно

временем, если переходы системы из состояния в состояние могут
происходить в любой момент времени t наблюдаемого периода
Случайный процесс X(t) называется процессом с непрерывным
состоянием, если его сечение в любой момент t представляет
собой не дискретную, а непрерывную величину
Случайный процесс X(t) называется процессом с дискретным
состоянием, если в любой момент времени t множество его
состояний конечно или счетно, то есть, если его сечение в любой
момент t характеризуется дискретной случайной величиной

Классификация случайных процессов

Таким образом, все СП можно разделить на 4 класса:
Процессы
временем;
Процессы
временем;
Процессы
временем;
Процессы
временем.
с дискретным состоянием и дискретным
с дискретным состоянием и непрерывным
с непрерывным состоянием и дискретным
с непрерывным состоянием и непрерывным
Большинство гидрологических процессов являются
процессами с непрерывным состоянием и непрерывным
временем. Но при вводе шага дискретности по времени они
превращаются из процесса с непрерывным временем в
процесс с дискретным временем. При этом процесс остается
непрерывным по состоянию

Основные характеристики случайных процессов

Сечение случайного процесса х(t) при любом фиксированном значении
аргумента t представляет собой СВ, которая имеет закон распределения
F (t, x) = P{X(t) < x}
Это одномерный закон распределения случайного процесса X(t)
Но, он не является исчерпывающей характеристикой СП, так как
характеризует свойства любого, но отдельно взятого сечения и не дает
представления о совместном распределении двух или более сечений.
Это видно на рисунке, где показаны два СП с разными вероятностными
структурами, но примерное одинаковыми распределениями СВ в каждом
сечении

Основные характеристики случайных процессов

Поэтому более полной характеристикой СП является двумерный закон
распределения
F(t1,t2,x1,x2) = P {X(t1) < x1, X(t2) < x2}
В общем случае исчерпывающей характеристикой СП является n мерный закон распределения
На практике вместо многомерных законов распределения используют
основные характеристики СП, такие как МО, дисперсия, начальные и
центральные моменты, но только для СП эти характеристики будут не
числами, а функциями
Математическое ожидание СП X(t) - неслучайная функция mx(t),
которая при любом значении аргумента t равна математическому
ожиданию соответствующего сечения СП:
где f1(x,t) – одномерная плотность распределения СП X(t)

Основные характеристики случайных процессов

МО СП представляет собой некоторую «среднею» функцию, вокруг
которой происходит разброс СП
Если из СП X(t) вычесть его МО, то получим центрированный СП:
X0(t) = X(t) – mx(t)
Дисперсией СП X(t) называется неслучайная функция СП X(t), которая
при любом значении аргумента t равна дисперсии соот – го сечения СП X(t)
СП X(t) = D = M{2}
Среднеквадратическим отклонением СП X(t) называется неслучайная
функция σx(t), которая равна корню квадратному из дисперсии СП:
σx(t) = σ = √Dx(t)

Основные характеристики случайных процессов

Для полной характеристики СП необходимо учитывать взаимосвязь
между различными сечениями. Поэтому, к комплексу перечисленных
характеристик нужно добавить также корреляционную функцию СП:
Корреляционной (или ковариационной) функцией СП X(t) называется
неслучайная функция Kx(t,t’), которая при каждой паре значений
аргументов t и t’ равна корреляции соответствующих сечений X(t) и X(t’)
Kx(t,t’) = M{ x }
или
Kx(t,t’) = M = M - mx(t) mx(t’)
Свойства корреляционной функции:
- при равенстве t = t’ корреляционная функция равна дисперсии СП, т. е.
Kx(t,t’) = Dx(t)
- корреляционная функция Kx(t,t’) симметрична относительно своих
аргументов, то есть
Kx(t,t’) = Kx(t’,t)

Основные характеристики случайных процессов

Нормированной корреляционной функцией rx(t,t’) СП X(t) называется
функция, полученная делением корреляционной функции на произведение
среднеквадратических отклонений σx(t) σx(t’)
rx(t,t’) = /(σx(t)σx(t’)) = /(√(Dx(t)Dx(t’))
Свойства нормированной корреляционной функции:
- при равенстве аргументов t и t’ нормированная корреляционная функция
равна единице rx(t,t’) = 1
-нормированная корреляционная функция симметрична относительно
своих аргументов, то есть rx(t,t’) = rx(t’,t)
- нормированная корреляционная функция по модулю не превышает
единицу rx(t,t’) ≤ 1

Основные характеристики случайных процессов

Скалярный СП – это когда речь идет об одном СП, как было до сих
пор.
Векторный СП – это когда рассматриваются 2 и более СП.
Допустим заданы расходы воды в нескольких створах во времени
В этом случае для характеристики СП нужно знать для каждого
скалярного процесса:
-МО
-корреляционную функцию
-взаимную корреляционную функцию
Взаимной корреляционной функцией Ri,j(t,t’) двух случайных
процессов X(t) и X(t’) называется неслучайная функция двух
аргументов t и t’, которая при каждой паре значений t и t’ равна
ковариации (линейной связи) двух сечений СП X(t) и X(t’)
Ri,j(t,t’) = M

Стационарные случайные процессы

Стационарные СП – это СП, у которых все вероятностные
характеристики не зависят от времени, то есть:
- mx = const
- Dx = const
Отличие стационарных и нестационарных СП показано на рисунке
а) стационарный СП
б) нестационарный СП по МО
с) нестационарный СП по дисперсии

Свойства корреляционной функции стационарного СП

Четность функции от своего аргумента, то есть kx(τ) = kx(-τ)
τ – сдвиг всех временных аргументов СП на одинаковую величину Θ
k – корреляционная функция СП при Kx(t1,t2) = kx(τ)
Значение корреляционной функции стационарного СП при нулевом
сдвиге τ равно дисперсии СП
Dx = Kx(t1,t2) = kx(t - t) = kx(0)
|kx(τ)| ≤ kx(0)
Помимо корреляционной функции используется нормированная
корреляционная функция стационарного СП, которую называют
автокорреляционной функцией
rx(τ) = kx(τ)/Dx = kx(τ)/kx(0)

Эргодические случайные процессы

Эргодическое свойство СП – это когда по одной достаточно
продолжительной реализации СП можно судить о СП в целом
Достаточным условием эргодичности СП является условие
lim kx(τ) = 0
при τ → ∞, т.е. при увеличении сдвига между сечениями
корреляционная функция затухает
На рисунке показаны а) неэргодический и б) эргодический СП
На практике (чаще всего) мы вынуждены принимать гипотезу о
стационарности и эргодичности гидрологических процессов, чтобы по
имеющемуся раду судить о всей генеральной совокупности

Элементарные случайные процессы

Элементарный СП (э.с.п) – это такая функция аргумента t, для
которой зависимость от t представлена обычной неслучайной функцией,
в которую в качестве аргумента входит одна или несколько обычных СВ
То есть каждая СВ порождает свою реализацию СП
К примеру, если в каком – то створе ветвь спада половодья является
устойчивой и описывается уравнением
Q(t) = Qнe-at
a - районный параметр (a>0)
Qн - расход воды в начальный момент времени t = t0
то процесс спада половодья можно считать э.с.п., где a - неслучайная
величина, Qн -случайная величина
Поделиться: