Озон можно обнаружить с помощью. Молекула озона: строение, формула, модель

МОСКВА, 16 сен — РИА Новости. Международный день охраны озонового слоя, тонкого "щита", защищающего все живое на Земле от губительного ультрафиолетового излучения Солнца, отмечается в понедельник, 16 сентября — в этот день в 1987 году был подписан знаменитый Монреальский протокол.

В нормальных условиях озон, или O3, — бледно-голубой газ, который по мере охлаждения превращается в темно-синюю жидкость, а затем и в иссиня-черные кристаллы. Всего на озон в атмосфере планеты приходится около 0,6 части на миллион по объему: это значит, например, что в каждом кубометре атмосферы всего 0,6 кубического сантиметра озона. Для сравнения, углекислого газа в атмосфере уже около 400 частей на миллион — то есть больше двух стаканов на тот же кубометр воздуха.

На самом деле, такую небольшую концентрацию озона можно назвать благом для Земли: этот газ, который на высоте 15-30 километров образует спасительный озоновый слой, в непосредственной близости от человека куда менее "благороден". Озон по российской классификации относится к веществам наивысшего, первого класса опасности — это очень сильный окислитель, который крайне токсичен для человека.

Международный день охраны озонового слоя В 1994 году Генеральная Ассамблея ООН провозгласила 16 сентября Международным днем охраны озонового слоя. В этот день в 1987 году был подписан Монреальский протокол по веществам, разрушающим озоновый слой.

Разобраться в разных свойствах непростого озона РИА Новости помогал старший научный сотрудник лаборатории катализа и газовой электрохимии химического факультета МГУ имени Ломоносова Вадим Самойлович.

Озоновый щит

"Это достаточно хорошо изученный газ, практически все изучено — всего никогда не бывает, но основное все (известно)… У озона много всяких применений. Но и не забывайте, что, вообще говоря, жизнь возникла благодаря озоновому слою — это, наверное, главный момент", — говорит Самойлович.

В стратосфере озон образуется из кислорода в результате фотохимических реакций — такие реакции начинаются под воздействием солнечного излучения. Там концентрация озона уже выше — около 8 миллилитров на кубический метр. Разрушается газ при "встрече" с некоторыми соединениями, например, атомарным хлором и бромом — именно эти вещества входят в состав опасных хлорфторуглеродов, более известных как фреоны. До появления Монреальского протокола они использовались, в частности, в холодильной промышленности и как пропелленты в газовых баллончиках.

Протокол по защите озонового слоя выполнил задачу, считают ученые Монреальский протокол выполнил свою задачу - наблюдения показывают, что содержание озоноразрушающих веществ в атмосфере снижается, а научное сообщество с помощью соглашения сильно продвинулось в понимании процессов в атмосфере, связанных с озоновым слоем, сказал РИА Новости представитель России в Международной комиссии по озону, ведущий научный сотрудник Института физики атмосферы РАН имени Обухова Александр Груздев.

В 2012 году, когда Монреальский протокол отмечал 25-летие, эксперты Программы ООН по окружающей среде (UNEP) назвали защиту озонового слоя одной из всего четырех ключевых экологических проблем, в решении которой человечеству удалось добиться значительных успехов. Тогда же в UNEP отмечали, что содержание озона в стратосфере перестало снижаться с 1998 года, и, по прогнозам ученых, к 2050-2075 годам может вернуться к уровням, фиксировавшимся до 1980 года.

Озоновый смог

В 30 километрах от поверхности Земли озон "ведет себя" хорошо, но в тропосфере, приземном слое, он оказывается опасным загрязнителем. По данным UNEP, концентрация тропосферного озона в Северном полушарии за последние 100 лет выросла почти втрое, что к тому же делает его третьим по значимости "антропогенным" парниковым газом.

Здесь озон тоже не выбрасывается в атмосферу, а образуется под действием солнечного излучения в воздухе, который уже загрязнен "предшественниками" озона — оксидами азота, летучими углеводородами и некоторыми другими соединениями. В городах, где озон является одним из основных компонентов смога, в его появлении косвенно "виноваты" главным образом выбросы автотранспорта.

Страдают от приземного озона не только люди и климат. По оценкам специалистов UNEP, снижение концентрации тропосферного озона может помочь сохранить около 25 миллионов тонн риса, пшеницы, сои и кукурузы, которые ежегодно теряются из-за этого токсичного для растений газа.

Эксперты Приморья: озоновые дыры появляются, но кто виноват, непонятно Причины появления озоновых дыр до сих пор остаются спорной темой среди специалистов. В день охраны озонового слоя эксперты Приморья рассказали РИА Новости о том, какие существуют теории его повреждения и насколько соседний Китай, чья энергетика держится на угле, влияет на состояние этой части стратосферы.

Именно из-за того, что приземный озон уже совсем не так полезен, специалисты метеослужб и экологического мониторинга постоянно ведут наблюдение за его концентрациями в воздухе крупных городов, в том числе и Москвы.

Озон полезный

"Одно из очень интересных свойств озона — бактерицидное. Он по бактерицидности практически первый среди всех таких веществ, хлора, перекиси марганца, окиси хлора", — отмечает Вадим Самойлович.

Та же экстремальная природа озона, делающая его очень сильным окислителем, объясняет сферы применения этого газа. Озон используется для стерилизации и дезинфекции помещений, одежды, инструментов и, конечно, очистки воды — как питьевой, так и промышленной и даже сточной.

Кроме того, подчеркивает эксперт, озон во многих странах используется как заменитель хлора в установках для отбеливания целлюлозы.

"Хлор (при реакции) с органикой дает соответственно хлорорганику, которая гораздо более ядовитая, чем просто хлор. По большому счету, избежать этого (появления ядовитых отходов — ред.) можно либо резко уменьшив концентрацию хлора, либо просто устранив его. Один из вариантов — замена хлора на озон", — объяснил Самойлович.

Озонировать можно и воздух, и это тоже дает интересные результаты — так, по словам Самойловича, в Иванове специалисты ВНИИ охраны труда и их коллеги провели целую серию исследований, в ходе которых "в прядильных цехах в обычные воздуховоды вентиляции добавляли некоторое количество озона". В результате, распространенность респираторных заболеваний уменьшалась, а производительность труда, напротив, росла. Озонирование воздуха на складах пищевой продукции может повышать ее сохранность, и такие опыты в других странах тоже есть.

Озон токсичный

Австралийские авиарейсы производят больше всего токсичного озона Исследователи обнаружили в Тихом океане "пятно" размером в тысячу километров, где тропосферный озон генерируется эффективнее всего, а также выявили самые "производительные" в отношении озона авиарейсы - все они имеют местом назначения Австралию или Новую Зеландию.

Подвох с использованием озона все тот же — его токсичность. В России предельно допустимая концентрация (ПДК) по озону в атмосферном воздухе составляет 0,16 миллиграмма на кубический метр, а в воздухе рабочей зоны — 0,1 миллиграмма. Поэтому, отмечает Самойлович, то же озонирование требует постоянного мониторинга, что сильно усложняет дело.

"Это все-таки техника достаточно сложная. Вылить ведро какого-нибудь там бактерицида — это проще гораздо, вылил и все, а тут следить надо, какая-то подготовка должна быть", — говорит ученый.

Озон вредит организму человека медленно, но серьезно — при длительном нахождении в загрязненном озоном воздухе возрастает риск сердечно-сосудистых заболеваний и болезней дыхательных путей. Вступая в реакцию с холестерином, он образует нерастворимые соединения, что приводит к развитию атеросклероза.

"При концентрациях выше предельно допустимых могут возникать головная боль, раздражение слизистых, кашель, головокружение, общая усталость, упадок сердечной деятельности. Токсичный приземной озон приводит к появлению или обострению болезней органов дыхания, в группе риска находятся дети, пожилые люди, астматики", — отмечается на сайте Центральной аэрологической обсерватории (ЦАО) Росгидромета.

Озон взрывоопасный

Озон вредно не только вдыхать — спички тоже стоит спрятать подальше, потому что этот газ весьма взрывоопасен. Традиционно "порогом" опасной концентрации газообразного озона считается 300-350 миллилитров на литр воздуха, хотя некоторые ученые работают и с более высокими уровнями, говорит Самойлович. А вот жидкий озон — та самая синяя жидкость, темнеющая по мере охлаждения — взрывается самопроизвольно.

Именно это мешает использовать жидкий озон как окислитель в ракетном топливе — такие идеи появились вскоре после начала космической эры.

"Наша лаборатория в университете возникла как раз на такой идее. У каждого топлива ракетного есть своя теплотворная способность в реакции, то есть сколько тепла выделяется, когда оно сгорает, и отсюда насколько мощной будет ракета. Так вот, известно, что самый мощный вариант — жидкий водород смешивать с жидким озоном… Но есть один минус. Жидкий озон взрывается, причем взрывается спонтанно, то есть без каких-либо видимых причин", — говорит представитель МГУ.

По его словам, и советские, и американские лаборатории потратили "огромное количество сил и времени на то, чтобы сделать это каким-то безопасным (делом) — выяснилось, что сделать это невозможно". Самойлович вспоминает, что однажды коллегам из США удалось получить особо чистый озон, который "вроде бы" не взрывался, "уже все били в литавры", но затем взорвался весь завод, и работы были прекращены.

"У нас были случаи, когда, скажем, колба с жидким озоном стоит, стоит, жидкий азот подливают туда, а потом — то ли азот там выкипел, то ли что — приходишь, а там половины установки нет, все разнесло в пыль. Отчего он взорвался — кто его знает", — отмечает ученый.

Озон - слово греческого происхождения, которое в переводе означает “пахучий”. Что такое озон? По своей сути, озон О3 - это газ голубого цвета с характерным запахом, который ассоциируется с запахом воздуха после грозового дождя. Особенно ощущается вблизи источников электрического тока.

История обнаружения озона учеными

Что такое озон? Как он был открыт? В 1785 физиком из Голландии Мартином ван Марумом было проведено несколько экспериментов, направленных на исследование воздействия электрического тока на кислород. По их результатам ученый исследовал появление специфической "электрической материи". Продолжая работать в данном направлении, в 1850 году ему удалось определить способность озона взаимодействовать с органическими соединениями и его свойство в качестве окислителя.

Впервые дезинфицирующие свойства озона были применены в 1898 году на территории Франции. В городке Бон Вояж был построен завод, который осуществлял обеззараживание и дезинфекцию воды из реки Вазюби. В России первый завод по озонированию был запущен в Санкт-Петербурге в 1911 году.

Широкое применение озон получил в годы Первой мировой войны в качестве антисептического средства. Озонокислородная смесь применялась для лечения заболеваний кишечника, пневмонии, гепатита и практиковалась при инфекционных поражениях после хирургического вмешательства. Особенно активно озонированием начали заниматься с 1980 года, толчком к этому стало появление на рынке надежных и энергосберегающих В настоящее время с помощью озона очищают около 95% воды в США и по всей Европе.

Технология образования озона

Что такое озон? Как он образуется? В естественной среде озон находится в атмосфере Земли на высоте 25 км. По сути, это газ, который образуется в результате ультрафиолетового излучения Солнца. На поверхности он образует слой толщиной 19-35 км, который защищает Землю от проникновения солнечной радиации. Согласно трактовке химиков, озон - это активный кислород (соединение трех атомов кислорода). В газообразном состоянии он голубой, в жидком имеет оттенок индиго, а в твердом - это темно-синие кристаллы. О3 - это его молекулярная формула.

Каков вред озона? Он относится к самому высокому классу опасности - это очень ядовитый газ, токсичность которого приравнивается к категории боевых отравляющих веществ. Причиной его появления являются электрические разряды в атмосфере (3O2 = 2O3). В природе почувствовать его можно после сильных вспышек молний. Озон хорошо взаимодействует с другими соединениями и считается одним из Поэтому его используют для уничтожения бактерий, вирусов, микроорганизмов, для очистки воды и воздуха.

Негативное влияние озона

На что влияет озон? Характерной особенностью этого газа является способность быстро взаимодействовать с другими веществами. Если в природе наблюдается превышение нормативных показателей, то в результате его взаимодействия с тканями человека могут возникнуть опасные вещества и заболевания. Озон - сильнодействующий окислитель, при взаимодействии с которым быстро разрушаются:

  • натуральная резина;
  • металлы, за исключением золота, платины и иридия;
  • бытовые приборы;
  • электроника.

При больших концентрациях озона в воздухе происходит ухудшение здоровья и самочувствия человека, в частности:

  • раздражается слизистая оболочка глаз;
  • нарушается функционирование органов дыхания, которое приведет к параличу легких;
  • наблюдается общая усталость организма;
  • появляются головные боли;
  • возможно появление аллергических реакций;
  • жжение в горле и тошнота;
  • происходит негативное влияние на нервную систему.

Полезные свойства озона

Очищает ли озон воздух? Да, несмотря на свою газ является очень полезным для человека. В небольших концентрациях он отмечается отличными дезинфицирующими и дезодорирующими свойствами. В частности, он губительно действует на вредные микроорганизмы и производит к уничтожению:

Чаще всего озон используют во время эпидемии гриппа и вспышек опасных инфекционных заболеваний. С его помощью очищают воду от разного рода примесей и соединений железа, при этом обогащают ее кислородом и минералами.

Интересная информация об озоне, сфера его применения

Отличные дезинфицирующие свойства и отсутствие побочных эффектов привели к появлению спроса на озон и его широкому применению в различных отраслях экономики. В наши дни озон успешно используется для:

  • удовлетворения потребностей фармацевтической отрасли;
  • очистки воды в аквариумах и рыбных хозяйствах;
  • дезинфекции бассейнов;
  • медицинских целей;
  • косметических процедур.

В медицинской отрасли озонирование практикуется при язвах, ожогах, экземах, варикозе, ранах и дерматологических заболеваниях. В косметологии озон применяют для борьбы со старением кожи, целлюлитом и лишним весом.

Влияние озона на жизнедеятельность живых существ

Что такое озон? Как он влияет на жизнь на Земле? Согласно исследованиям ученых, 10% озона находится в тропосфере. Этот озон является составным компонентом смогов и выполняет роль загрязнителя. Он негативно сказывается на дыхательных органах людей, животных и замедляет рост растений. Однако его количество очень мало, чтобы существенно вредить здоровью. Значительная часть вредного озона в составе смогов - это продукты функционирования автомобилей и электростанций.

Значительно больше озона (около 90%) находится в стратосфере. Этот поглощает биологически вредное ультрафиолетовое излучение Солнца, тем самым защищая людей, флору и фауну от негативных последствий.


«Озон - бесценный подарок Создателя.
Его уникальные свойства огромны и неограниченны.
Это не фармацевтический препарат - сама природа заботится о нас. Великий и непревзойденный художник и целитель -
Доктор Природа - благословил Человечество, принеся в дар исключительную помощь и выдающееся благословение - Озон»

Озон, свойства, токсикология и применение. Роль озонового щита планеты.

1 Озон. Общая характеристика

Озон (от др.- греч. ? ?? - пахну) - состоящая из трёхатомных молекул O3 аллотропная модификация кислорода. При нормальных условиях - голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.
Основная масса озона в атмосфере расположена на высоте от 10 до 50 км с максимальной концентрацией на высоте 20-25 км, образуя слой, называемый озоносферой.
Озоносфера отражает жесткое ультрафиолетовое излучение, защищает живые организмы от губительного действия радиации. Именно, благодаря образованию озона из кислорода воздуха стала возможна жизнь на суше.
Впервые озон обнаружил в 1785 году голландский физик Мартинус ван Марум по характерному запаху, создающему эффект свежести, и окислительным свойствам, которые приобретает воздух после пропускания через него «электрических искр». Однако как новое вещество он описан не был, так как ван Марум считал, что данный эффект достигается образованием особой «электрической материи».
Сам термин «озон» (от греческого слова «пахнущий») был предложен немецким химиком X. Ф. Шейнбейном в 1840 году . В словари его ввели в конце 19 века. Многие источники отдают приоритет открытия озона именно Х. Ф. Шейнбену, датируя это событие 1839 годом.

2 Нахождение в природе. Основные способы получения

В природе озон образуется из молекулярного кислорода (О2) во время грозы или под действием ультрафиолетового излучения. Особенно это ощутимо в местах, богатых кислородом: в лесу, в приморской зоне или около водопада. При попадании солнечных лучей, в капле воды кислород преобразуется в озон. Озон обеззараживает воздух, окисляя примеси различных веществ, придавая приятную свежесть - запах грозы. Озон вступает в реакцию с большинством органических и неорганических веществ, в результате образуется кислород, вода, оксиды углерода и высшие оксиды других элементов. Все эти продукты абсолютно безвредны и постоянно присутствуют в чистом природном воздухе.
Озон образуется в газовой среде, содержащей кислород, если возникнут условия, при которых кислород диссоциирует на атомы. Это возможно во всех формах электрического разряда: тлеющем, дуговом, искровом, коронном, поверхностном, барьерном, безэлектродном и т.п. Основной причиной диссоциации является столкновение молекулярного кислорода с электронами, ускоренными в электрическом поле.
Кроме разряда диссоциацию кислорода вызывают УФ-излучение. Озон получают также при электролизе воды.
Получение озона
Озон образуется из кислорода. Существует несколько способов получения озона, среди которых наиболее распространенными являются: электролитический, фотохимический и электросинтез в плазме газового разряда. Чтобы избежать нежелательных окисей, предпочтительнее получать озон из чистого медицинского кислорода, используя электросинтез. Концентрацию получаемой озоно-кислородной смеси в таких аппаратах легко варьировать - либо задавая определенную мощность электрического разряда, либо регулируя поток входящего кислорода (чем быстрее кислород проходит через озонатор, тем меньше озона образуется).
Фотохимический способ
Фотохимический метод получения озона представляет из себя наиболее распространенный в природе способ. Образование озона происходит при диссоциации молекулы кислорода под действием коротковолнового УФ излучения. Этот метод не позволяет получать озон высокой концентрации. Приборы, основанные на этом методе, получили распространение для лабораторных целей, в медицине и пищевой промышленности.
Электролитический метод синтеза.
Первое упоминание об образовании озона в электролитических процессах относится к 1907 г. Электролитический метод синтеза озона осуществляется в специальных электролитических ячейках. В качестве электролитов используются растворы различных кислот и их соли (H2SO4, HClO4, NaClO4, KClO4). Образование озона происходит за счет разложения воды и образования атомарного кислорода, который присоединясь к молекуле кислорода образует озон и молекулу водорода. Этот метод позволяет получить концентрированный озон, однако он весьма энергоемкий, и поэтому он не нашел широкого распространения.
Н2О + О2 -> О3 + 2Н+ + e-
с возможным промежуточным образованием ионов или радикалов.
Электросинтез озона получил наибольшее распространение. Этот метод сочетает в себе возможность получения озона высоких концентраций с большой производительностью и относительно невысокими энергозатратами.
В результате многочисленных исследований по использованию различных видов газового разряда для электросинтеза озона распространение получили аппараты использующие три формы разряда:
1 Барьерный разряд;
2 Поверхностный разряд;
3 Импульсный разряд.
Образование озона под действием ионизирующего излучения.
Озон образуется в ряде процессов, сопровождающихся возбуждением молекулы кислорода либо светом, либо электрическим полем. При облучении кислорода ионизирующей радиацией также могут возникать возбужденные молекулы, и наблюдается образование озона
Образование озона в СВЧ-поле.
При пропускании струи кислорода через СВЧ-поле наблюдалось образование озона. Этот процесс мало изучен, хотя генераторы, основанные на этом явлении, часто используются в лабораторной практике.

3 Физические и химические свойства озона.

Физические свойства:

    Молекулярная масса - 47,998 г/моль.
    Плотность газа при нормальных условиях - 2,1445 кг/м?. Относительная плотность газа по кислороду 1,5; по воздуху - 1,62 (1,658).
    Плотность жидкости при?183 °C - 1,71 кг/м?
    Температура кипения - ?111,9 °C. Жидкий озон - тёмно-фиолетового цвета. В газообразном виде озон имеет голубоватый оттенок, заметный при содержании в воздухе 15-20% озона.
    Температура плавления - -197,2 ± 0,2 °С (приводимая обычно?251,4 °C ошибочна, так как при её определении не учитывалась большая способность озона к переохлаждению). В твёрдом состоянии - чёрного цвета с фиолетовым отблеском.
    Растворимость в воде при 0 °С - 0,394 кг/м? (0,494 л/кг), она в 10 раз выше по сравнению с кислородом.
    В газообразном состоянии озон диамагнитен, в жидком - слабопарамагнитен.
    Запах - резкий, специфический «металлический» (по Менделееву - «запах раков»). При больших концентрациях напоминает запах хлора. Запах ощутим даже при разбавлении 1: 100000.
Химические свойства:
Озон - мощный окислитель , намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота , платины и иридия ) до их высших степеней окисления . Окисляет многие неметаллы. Продуктом реакции в основном является кислород.
2 Cu 2+ (aq) + 2 H 3 O + (aq) + O 3(g) > 2 Cu 3+ (aq) + 3 H 2 O (l) + O 2(g)
Озон повышает степень окисления оксидов:
NO + O 3 > NO 2 + O 2
Эта реакция сопровождается хемилюминесценцией . Двуокись азота может быть окислена до трёхокиси азота:
NO 2 + O 3 > NO 3 + O 2
с образованием азотного ангидрида N 2 O 5:
NO 2 + NO 3 > N 2 O 5
Озон реагирует с углеродом при нормальной температуре с образованием двуокиси углерода :
C + 2 O 3 > CO 2 + 2 O 2
Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония :
2 NH 3 + 4 O 3 > NH 4 NO 3 + 4 O 2 + H 2 O
Озон реагирует с сульфидами с образованием сульфатов :
PbS + 4O 3 > PbSO 4 + 4O 2
С помощью озона можно получить Серную кислоту как из элементарной серы , так и из двуокиси серы :
S + H 2 O + O 3 > H 2 SO 4
3 SO 2 + 3 H 2 O + O 3 > 3 H 2 SO 4
Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:
3 SnCl 2 + 6 HCl + O 3 > 3 SnCl 4 + 3 H 2 O
В газовой фазе озон взаимодействует с сероводородо м с образованием двуокиси серы:
H 2 S + O 3 > SO 2 + H 2 O
В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:
H 2 S + O 3 > S + O 2 + H 2 O
3 H 2 S + 4 O 3 > 3 H 2 SO 4
Обработкой озоном раствора йода в холодной безводной хлорной кислоте может быть получен перхлорат йода (III):
I 2 + 6 HClO 4 + O 3 > 2 I(ClO 4) 3 + 3 H 2 O
Твёрдый нитрилперхлорат может быть получен реакцией газообразных NO 2 , ClO 2 и O 3:
2 NO 2 + 2 ClO 2 + 2 O 3 > 2 NO 2 ClO 4 + O 2
Озон может участвовать в реакциях горения , при этом температуры горения выше, чем с двухатомным кислородом:
3 C 4 N 2 + 4 O 3 > 12 CO + 3 N 2
Озон может реагировать при низких температурах. При 77 K (?196 °C), атомарный водород взаимодействует с озоном с образованием супероксидного радикала с димеризацией последнего :
H + O 3 > HO 2 + O
2 HO 2 > H 2 O 2 +O 2

5 Основные области применения.

После открытия озона было сразу отмечено его главное свойство - огромная окислительная способность, значительно превосходящая таковую у кислорода. Поэтому неудивительно, что озон стал использоваться для борьбы с микроорганизмами.
В 1881 году в книге, посвященной дифтерии, доктор Келлог (Kellogg) рекомендовал его использование в качестве средства для дезинфекции. Но подлинная революция в использовании озона для стерилизации произошла после патентования и начала массового производства генераторов озона - предшественников озоновых стерилизаторов. До середины XIX века попытки создания таких генераторов были безуспешными. Считается, что первый образец создал Werner von Siemens в 1857 году. Однако понадобилось еще 29 лет для того, чтобы запатентовать промышленный генератор озона, который отвечал определенным требованиям. Патент на его изобретение принадлежит Николе Тесла. Он же в 1900 году начал выпуск данного продукта для медицины.
С этих пор начинает развиваться несколько направлений по применению озона - дезинфекция, стерилизация и лечение.
При стерилизации происходит уничтожение микроорганизмов путем насыщения озоном замкнутого объема, где находятся медицинские инструменты, приспособления, устройства. Во время лечения применяют озонированную воду, водные растворы и озонокислородную смесь. Для дезинфекции помещений, емкостей, трубопроводов - озоновоздушную или озонокислородную смеси.
Все три метода обладают одним неоспоримым преимуществом: озон оказывает быстрое и эффективное воздействие
Время воздействия озона на некоторые виды микроорганизмов измеряется секундами. По качеству стерилизации и некоторым техническим характеристикам современные озоновые стерилизаторы превосходят ультрафиолетовые, сухожаровые шкафы, паровые автоклавы, жидкостную и газовую стерилизацию. Лечение с применением озона позволяет безболезненно и с высокой эффективностью уничтожать микроорганизмы, проникшие в органы и ткани человека. Это стало возможным еще и потому, что наш организм, в отличие от бактерий, обладает достаточно мощной системой антиоксидантной защиты. При воздействии определенных концентраций озона в течение ограниченного времени клетки нашего организма сохраняют достаточную устойчивость к образованию нежелательных агрессивных продуктов.
Озон оказывает положительное действие на метаболизм печени и почек, поддерживает работу сердечной мышцы, уменьшает частоту дыхания и увеличивает дыхательный объем. Положительное влияние озона на людей с заболеваниями сердечно-сосудистой системы (снижается уровень холестерина в крови, снижается риск тромбообразования, активизируется процесс "дыхания" клетки).
Озонотерапия в последние годы довольно широко применяется и в гинекологии, и в терапии, и в хирургии, и в проктологии, и в урологии, и в офтальмологии, и в стоматологии, и в других направлениях медицины.
Озон широко используют в химической отрасли промышленности.
Особая роль отводится озону в пищевой промышленности . Являясь сильно дезинфицирующим и химически безопасным средством, он используется для предотвращения биологического роста нежелательных организмов в продуктах питания и на технологическом пищевом оборудовании. Озон обладает свойством убивать микроорганизмы, не создавая новых вредных химических веществ.
Самое распространенное применение - для очистки воды . В 1907 году был построен первый завод по озонированию воды в городе Бон Вуаяж (Франция), который обрабатывал 22500 кубических метров воды из реки Вазюби в сутки для нужд города Ниццы. В 1911 году была пущена в эксплуатацию станция озонирования питьевой воды в Санкт-Петербурге. В 1916 году действует уже 49 установок по озонированию питьевой воды.
К 1977 году во всем мире действует более 1000 установок. В настоящее время 95% питьевой воды в Европе проходит озонную подготовку. В США идет процесс перевода с хлорирования на озонирование. В России действуют несколько крупных станций (в Москве, Нижнем Новгороде и ряде других городах). Приняты программы перевода на озонирование еще нескольких крупных станций водоподготовки.
Широкие спектр областей применения озона в сельском хозяйстве : растениеводство, животноводство, рыбоводство, кормопроизводство и хранение продуктов, обуславливает множество озонных технологий, которые условно можно разделить на два больших направления. Первое имеет целью стимулировать жизнедеятельность живых организмов. С этой целью применяются концентрации озона на уровне ПДК, например санация помещений с животными и растениями для улучшения комфортности их пребывания. Второе направление связано с подавлением жизнедеятельности вредных организмов или с устранением вредных загрязнений из окружающей атмосферы и гидросферы. Концентрации озона в этом случае намного превышают значения ПДК. К таким технологиям относятся дезинфекция тары и помещений, очистка газовых выбросов птицеферм, свинарников, обезвреживание сточных вод сельскохозяйственных предприятий и т.д.

5 Озон в атмосфере. Озоновый слой - ультрафиолетовый щит Земли

Озоновый слой начинается на высотах около 8 км над полюсами (или 17 км над Экватором) и простирается вверх до высот приблизительно равных 50-ти км. Однако плотность озона очень низкая, и если сжать его до плотности, которую имеет воздух у поверхности земли, то толщина озонового слоя не превысит 3,5 мм. Озон образуется, когда солнечное ультрафиолетовое излучение бомбардирует молекулы кислорода (О22 -> О3).

5.1 Изучение озонового слоя. Причины его разрушения.

С начала 20 века ученые наблюдают за состоянием озонового слоя атмосферы. Сейчас уже все понимают, что стратосферный озон является своего рода естественным фильтром, препятствующим проникновению в нижние слои атмосферы жесткого космического излучения - ультрафиолета-В.
С конца 70-х годов ученые стали отмечать неуклонное истощение озонового слоя. Различные причины приводят к истощению озонового слоя. Среди них есть естественные, как, например, извержения вулканов. Известно, например, что при этом происходят выбросы газов, содержащих соединения серы, которая реагирует с находящимися в воздухе другими газами, образуя сульфаты, разрушающие озоновый слой. Но гораздо большее влияние на стратосферный озон оказывают антропогенные воздействия, т.е. деятельность человека. И она многообразна. Использование в хозяйственной деятельности таких соединений, как ХФУ, бромистый метил, галоны, растворители, разрушающие озон, также приводят к истощению озонового слоя. Хлорфторуглероды (ХФУ) или другие ОРВ, выпущенные человеком в атмосферу, достигают стратосферы, где под действием коротковолнового ультрафиолетового излучения Солнца их молекулы теряют атом хлора. Агрессивный хлор начинает разбивать одну за другой молекулы озона, сам при этом не претерпевая никаких изменений. Срок существования различных ХФУ в атмосфере от 74 до 111 лет. Расчетным путем доказано, что за это время один атом хлора способен превратить в кислород 100 000 молекул озона. Однако озоновый слой разрушает также реактивная авиация и некоторые пуски космических ракет
В изучении проблемы озонового слоя наука оказалась удивительно недальновидной. Еще с 1975 г. содержание стратосферного озона над Антарктидой в весенние месяцы стало заметно падать. В середине 1980-х годов его концентрация снизилась уже на 40%. Вполне можно было говорить об образовании озоновой дыры. Ее размеры достигли примерно площади США. Тогда же появились еще слабовыраженные - со снижением концентрации озона на 1,5-2,5% - дыры вблизи Северного полюса и южнее. Край одной из них зависал даже над Санкт- Петербургом.
Однако еще в первой половине 1980-х некоторые ученые продолжали рисовать радужную перспективу, предвещая убыль стратосферного озона лишь на 1-2% и то чуть ли не через 70-100 лет.
В 1985 г. английские ученые опубликовали статью, в которой утверждалось, что каждой весной, начиная с 1980 г., над Антарктидой образуются значительные области уменьшения общего содержания озона. Выяснилось, что диаметр её свыше 1000 километров, площадь – около 9 миллионов квадратных километров. Этот результат журналисты превратили в сенсацию, объявив о существовании "озоновой дыры" над Антарктидой. Сегодня принято аномалии озона относить к "озоновым дырам", если дефицит озона превышает 30%.
5.2 Последствия разрушения озонового слоя.

Озоновый слой защищает жизнь на Земле от вредного ультрафиолетового излучения Солнца.
Утончение этого слоя может привести к серьезным последствиям для человечества. Содержание озона в атмосфере менее 0.0001%, однако, именно озон полностью поглощает жесткое ультрафиолетовое излучение солнца с длиной волны l<280 нм и значительно ослабляет полосу УФ-Б с 280
Падение концентрации озона на 1% приводит в среднем к увеличению интенсивности жесткого ультрафиолета у поверхности земли на 2%. Эта оценка подтверждается измерениями, проведенными в Антарктиде (правда, из-за низкого положения солнца, интенсивность ультрафиолета в Антарктиде все еще ниже, чем в средних широтах).
По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям, однако, из-за большей, чем у g-излучения длины волны он не способен проникать глубоко в ткани, и поэтому поражает только поверхностные органы. Жесткий ультрафиолет обладает достаточной энергией для разрушения ДНК и других органических молекул.
По мнению врачей, каждый потерянный процент озона в масштабах планеты вызывает до 150 тысяч дополнительных случаев слепоты из-за катаракты, вызывает 4%-ный скачок в распространении рака кожи, значительно возрастает число болезней, вызванных ослаблением иммунной системы человека. Наибольшему риску подвержены жители северного полушария со светлой кожей.
Уже сейчас во всем мире заметно увеличение числа заболевания раком кожи, однако, значительно количество других факторов (например, возросшая популярность загара, приводящая к тому, что люди больше времени проводят на солнце, таким образом, получая большую дозу УФ облучения) не позволяет однозначно утверждать, что в этом повинно уменьшение содержания озона. Жесткий ультрафиолет плохо поглощается водой и поэтому представляет большую опасность для морских экосистем. Эксперименты показали, что планктон, обитающий в приповерхностном слое, при увеличении интенсивности жесткого УФ может серьезно пострадать и даже погибнуть полностью. Планктон находится в основании пищевых цепочек практически всех морских экосистем, поэтому без преувеличения можно сказать, что практически вся жизнь в приповерхностных слоях морей и океанов может исчезнуть. Растения менее чувствительны к жесткому УФ, но при увеличении дозы могут пострадать и они. Если содержание озона в атмосфере значительно уменьшится, человечество легко найдет способ защититься от жесткого УФ излучения но при этом рискует умереть от голода.

5.3 Меры по сохранению и восстановлению озонового слоя

Многие страны мира разрабатывают и осуществляют мероприятия по выполнению Венских конвенций об охране озонового слоя и Монреальского протокола по веществам, разрушающим озоновый слой.
Монреальский протокол: первое глобальное экологическое соглашение, достигшее всеобщей ратификации и всемирного участия 196 стран. Монреальский протокол был подписан 16 сентября 1987 года. Впоследствии по инициативе ООН этот день стал отмечаться как День защиты озонового слоя. К концу 2009 года деятельность, осуществленная в рамках Монреальского протокола привела к выводу из обращения 98% веществ, разрушающих озоновый слой. Другое важное достижение Монреальского протокола – в ближайшем будущем страны должны были прекратить производство и потребление хлорфторуглеродов, галонов, четырёххлористого углерода и других гидрогенизованных соединений, разрушающих озоновый слой. Все эти вещества объединяются под единым названием – озоноразрушающие вещества (далее по тексту ОРВ).
Без Монреальского протокола и Венской конвенции, содержание ОРВ в атмосфере повысилось бы в 10 раз к 2050, что привело бы к 20 миллионам случаев рака кожи и 130 миллионам случаев катаракты глаза, не говоря об ущербе, нанесенном иммунной системе человека, фауне и сельскому хозяйству. Теперь мы также знаем, что некоторые из этих газов воздействуют на изменение климата. По некоторым оценкам, выведение ОРВ с 1990 года способствовало замедлению глобального потепления на 7-12 лет и каждый доллар, потраченный на озон обернулся выгодой в других областях экологии. Даже при быстрых и решительных действиях правительств согласно Монреальскому протоколу, полное восстановление защитного слоя Земли займет еще 40-50 лет.
Согласно международным соглашениям промышленно развитые страны полностью прекращают производство фреонов и тетрахлорида углерода, которые также разрушают озон, а развивающиеся страны – к 2010г. Россия из-за тяжелого финансово-экономического положения попросила отсрочки на 3 – 4 года. Страны-члены Монреальского протокола по веществам, разрушающим озоновый слой, на встрече в Катаре договорились выделить в общей сложности 490 миллионов долларов в течение трех ле Вторым этапом должен стать запрет на производство метилбромидов и гидрофреонов. Уровень производства первых в промышленно развитых странах с 1996 г. заморожен, гидрофреоны полностью снимаются с производства к 2030 г. Однако развивающиеся страны до сих пор не взяли на себя обязательств по контролю над этими химическими субстанциями.
Восстановить озоновый слой над Антарктидой при помощи запуска специальных воздушных шаров с установками для производства озона надеется английская группа защитников окружающей среды, которая называется «Помогите озону». Один из авторов этого проекта заявил, что озонаторы, работающие от солнечных батарей, будут установлены на сотнях шаров, наполненных водородом или гелием.
Несколько лет назад была разработана технология замены фреона специально подготовленным пропаном. Сейчас промышленность уже на треть сократила выпуск аэрозолей с использованием фреонов, В странах ЕЭС намечено полное прекращение использования фреонов на заводах бытовой химии и т.д.
и т.д.................

Озон - газообразное вещество, являющееся видоизменением кислорода (состоит из трех атомов его). Он всегда присутствует в атмосфере, но впервые был обнаружен в 1785 г. во время изучения действия искры на воздух голландским физиком Ван Марумом. В 1840 г. немецкий химик Кристиан Фридрих Шенбейн подтвердил эти наблюдения и предложил, что им открыт новый элемент, которому он дал название «озон» (от греческого ozon - пахнущий). В 1850 г. была определена высокая активность озона как окислителя и способность его присоединяться к двойным связям в реакциях со многими органическими соединениями. Оба эти свойства озона в дальнейшем нашли широкое практическое применение. Однако значение озона не ограничивается только этими двумя свойствами. Было установлено, что он обладает рядом ценных свойств как дезинфектанта и дезодоранта.
Впервые озон стали использовать в санитарии как средство для обеззараживания питьевой воды и воздуха. В числе первых исследователей процессов озонирования были и русские ученые. Еще в 1874 г. создатель перво" школы (русской) гигиенистов профессор А. Д. Доброе ш вин предложил озон как лучшее средство для обеззараживания питьевой воды и воздуха от патогенной микро флоры. Дозднее, в 1886 г. Н. К. Келдыш провел исследования бактерицидного действия озона и рекомендовали его как высокоэффективное дезинфицирующее средство. Особенно широко развернулись исследования озона в XX в. И уже в 1911 г. в.Петербурге была пущена в эксплуатацию первая в Европе озоноводопроводная станция. В этот же период были проведены многочисленные исследования озонирования с лечебной целью в медицине, с санитарной целью в пищевой промышленности, в окислительных процессах химической промышленности и др.
Сферы и масштабы использования озона в последнее десятилетие увеличиваются быстрыми темпами. В настоящее время наиболее важные области применения озона следующие: очистка и обеззараживание питьевой и промышленной воды, а также хозяйственно-фекальных и промышленных стоков с целью снижения биологического потребления кислорода (БПК), обесцвечивание, нейтрализация вредных ядовитых веществ (цианидов, фенолов, меркаптанов), устранение неприятных запахов, дезодорация и очистка воздуха различных производств, озонирование в системах кондиционирования воздуха, хранение пищевых продуктов, стерилизация упаковочных и перевязочных материалов в фармацевтической промышленности, терапия и медицинская профилактика различных заболеваний и др.
В последние годы установлено еще одно свойство озона - способность повышать биологическую ценность кормов для животных и продуктов питания для человека, что позволило применять озон в процессах переработки, подготовки и хранения кормов и различных продуктов. Поэтому разработка технологий озонирования в сельскохозяйственном производстве, и, в частности в птицеводстве, весьма перспективна

Физические свойства озона

Озон - это высокоактивная, аллотропная форма кислорода; при обычных температурах - это газ светло-голубого цвета с характерным острым запахом (запах органолептически ощущается при концентрации озона 0,015 мг/м3 воздуха). В жидкой фазе озон имеет индиго-голубой, а в твердой - густой фиолетово-голубоватый цвет, слой озона толщиной в 1 мм практически светонепроницаем. Озон образуется из кислорода, поглощая при этом тепло и, наоборот, при разложении переходит в кислород, выделяя тепло (подобно горению). Процесс этот можно записать в следующем виде:
Экзотермическая реакция
2Оз=ЗО2+68 ккал
Эндотермическая реакция

Скорости этих реакций зависят от температуры, давления и концентрации озона. При нормальной температуре и давлении реакции протекают медленно, но при повышенных температурах ускоряется распад озона.
Образование озона под действием энергии различных излучений довольно сложно. Первичные процессы образования озона из кислорода могут протекать по-разному в зависимости от количества приложенной энергии.
Возбуждение молекулы кислорода происходит при энергии электронов 6,1 эВ; образование молекулярных ионов кислорода - при энергии электронов 12,2 эВ; диссоциация в кислороде - при энергии электронов 19,2 эВ. Все свободные электроны захватываются молекулами кислорода, в результате чего образуются отрицательные ионы кислорода. После возбуждения молекулы наступает реакция образования озона.
При энергии электронов 12,2 эВ, когда происходит образование молекулярных ионов кислорода, выхода озона не наблюдается, а при энергии электронов 19,2 эВ, когда участвуют как атом, так и ион кислорода, образуется озон. Наряду с этим образуются положительные и отрицательные ионы кислорода. Механизм распада озона*, в котором участвуют гомогенные и гетерогенные системы, сложен и зависит от условий. Разложение озона ускоряется в гомогенных системах газообразными добавками (окислы азота, хлор и др.), а в гетерогенных системах металлами (ртуть, серебро, медь и др.) и окислами металлов (железо, медь, никель, свинец и др.). При высоких концентрациях озона реакция происходит со взрывом. При концентрации озона до 10% взрывного разложения его не происходит. Низкие температуры способствуют сохранению озона. При температурах около - 183°С жидкий озон можно хранить длительное время без заметного разложения. Быстрое нагревание до точки кипения (-119°С) или быстрое охлаждение озона могут привести к взрыву. Поэтому знание свойств озона и соблюдение мер предосторожности очень важно при работе с ним. В таблице 1 приведены основные физические свойства озона.
При газообразном состоянии озон диамагнитен, а в жидком - слабо парамагнитен. Озон хорошо растворяется в эфирных маслах, скипидаре, четыреххлористом углероде. Растворимость его в воде выше, чем кислорода, более чем в 15 раз.
Молекула озона, как уже отмечалось, состоит из трех атомов кислорода и имеет несимметричную структуру треугольника, характеризующегося тупым углом при вершине (116,5°) и равными ядерными расстояниями (1,28°А) со средней энергией связи (78 ккал/моль) и слабовыражен-ной полярностью (0,58).

Основные физические свойства озона

Показатель Значение
Молекулярный вес 47,998
Удельный вес по воздуху 1,624
Плотность при НТД 2,1415 г/л
Объем при НТД 506 см3/г
Температура плавления - 192,5° С
Температура кипения -111,9°С
Критическая температура - 12,1° С
Критическое давление 54,6 атм
Критический объем 147,1 см3/моль
Вязкость при НТД 127- КГ* пауз
Теплота образования (18° С) 34,2 ккал/моль
Теплота испарения (-112° С) 74,6 ккал/моль
Теплота растворения (НгО, 18° С) 3,9 ккал/моль
Потенциал ионизации 12,8 эВ
Сродство к электрону 1,9-2,7 эВ
Диэлектрическая постоянная
Газообразного озона при НТД
1,0019
Теплопроводность (25° С) 3,3- 10~"5 кал/с- см2
Скорость детонации (25° С) 1863 м/с
Давление детонации (25° С) 30 атм
Магнитная восприимчивость
(18° С) 0,002- Ю-6 ед
Молекулярные коэффициенты
.кстинции (25° С) 3360 см""1 моль (при 252 нмУФЛ); 1,32см-1
(при 605 нм видимого света)
Растворимость в воде при ("С):
0 1,13 г/л
10 0,875 г/л
20 0,688 г/л
40 0,450 г/л
СО 0,307 г/л
Растворимость озона:
в уксусной кислоте (18,2° С) 2,5 г/л
в трихлоруксусной кислоте, 0"С) 1,69 г/л
, ангидриде уксусной кислоты (0°С) 2,15 г/л
в пропионовой кислоте (17,3° С) 3,6 г/л
в ангидриде пропионовой кислоты (18,2° С) 2,8 г/л
в четыреххлористом углероде (21° С) 2,95 г/л

Оптические свойства озона характеризуются его нестойкостью к излучениям различного спектрального состава. Излучения могут не только поглощаться озоном, разрушая его, но и образовывать озон. Образование озона в атмосфере происходит под воздействием ультрафиолетового излучения солнца в коротковолновом участке спектра 210-220 и 175 нм. При этом на поглощенный квант света образуются две молекулы озона. Спектральные свойства озона, его образование и распад под влиянием солнечной радиации обеспечивают оптимальные параметры климата в биосфере Земли.



гольника, характеризующегося тупым углом при вершине (116,5°) и равными ядерными расстояниями (1,28°А) со средней энергией связи (78 ккал/моль) и слабовыражен-ной полярностью (0,58).
Оптические свойства озона характеризуются его нестойкостью к излучениям различного спектрального состава. Излучения могут не только поглощаться озоном, разрушая его, но и образовывать озон. Образование озона в атмосфере происходит под воздействием ультрафиолетового излучения солнца в коротковолновом участке спектра 210-220 и 175 нм. При этом на поглощенный квант света образуются две молекулы озона. Спектральные свойства озона, его образование и распад под влиянием солнечной радиации обеспечивают оптимальные параметры климата в биосфере Земли.
Озон обладает хорошей способностью адсорбироваться силикагелем и алюмогелем, что позволяет использовать это явление для извлечения озона из газовых смесей и из растворов, а также для безопасного обращения с ним при высоких концентрациях. В последнее время для безопасной работы с высокими концентрациями озона широко используют фреоны. Концентрированный озон, растворенный во фреоне, может сохраняться длительное время.
При синтезе озона, как правило, образуются газовые смеси (O3+O2 или Оз + воздух), в которых содержание озона не превышает 2-5% по объему. Получение чистого озона - технически сложная задача и до настоящего времени еще нерешенная. Существует способ отделения кислорода от смесей путем низкотемпературной ректификации газовых смесей. Однако пока еще не удалось исключить опасность взрыва озона при ректификации. В исследовательской практике часто используют прием двойного намораживания озона жидким азотом, позволяющий получить концентрированный озон. Более безопасным является метод получения концентрированного озона путем адсорбции - десорбции, когда поток газовой смеси продувают через слой охлажденного (-80°С) силикагеля, а затем адсорбент продувают инертным газом (азотом или гелием). Таким методом можно получить соотношение озон: кислород =9:1, т. е. высококонцентрированный озон.
Использование в промышленных целях концентрированного озона как окислительного компонента незначительно.

Химические свойства озона

Характерными химическими свойствами озона в первую очередь следует считать его нестойкость, способность быстро разлагаться, и высокую окислительную активность.
Для озона установлено окислительное число И, которое характеризует число атомов кислорода, отдаваемых озоном окисляемому веществу. Как показали опыты, оно может быть равным 0,1, 3. В первом случае озон разлагается с увеличением объема: 2Оз--->ЗО2, во втором он отдает окисляемому веществу один атом кислорода: О3 ->О2+О (при этом, объем не увеличивается), и в третьем случае происходит присоединение озона к окисляемому веществу: О3->ЗО (при этом объем его уменьшается) .
Окислительными свойствами характеризуются химические реакции озона с неорганическими веществами.
Озон окисляет все металлы, за исключением золота и группы платины. Сернистые соединения окисляются им до сернокислых, нитриты - в нитраты. В реакциях с соединениями йода и брома озон проявляет восстановительные свойства, и на этом основан ряд методов его количественного определения. В реакцию с озоном вступают азот, углерод и их окислы. В реакции озона с водородом образуются гидроксильные радикалы: Н+О3-> HO+O2. Окислы азота реагируют с озоном быстро, образуя высшие окислы:
NO+Оз->NO2+O2;
NO2+O3----->NO3+O2;
NO2+O3->N2O5.
Аммиак окисляется озоном в азотнокислый аммоний.
Озон разлагает галогеноводороды и переводит низшие окислы в высшие. Галогены, участвующие в качестве активаторов процесса, также образуют высшие окислы.
Восстановительный потенциал озон - кислород достаточно высокий и в кислой среде определен величиной 2,07 В, а в щелочном растворе - 1,24 В. Сродство озона с электроном определено величиной в 2 эВ, и только фтор, его окислы и свободные радикалы обладают более сильным сродством к электрону.
Высокое окислительное действие озона было использовано для перевода ряда трансурановых элементов в семивалентное состояние, хотя высшее валентное состояние их равно 6. Реакция озона с металлами переменной валентности (Сг, Сог и др.) находит практическое применение при получении исходного сырья в производстве красителей и витамина PP.
Щелочные и щелочно-земельные металлы под действием озона окисляются, а их гидроокиси образуют озониды (триоксиды). Известны озониды давно, о них упоминал еще в 1886 г. французский химик-органик Шарль Адольф Вюрц. Они представляют собой кристаллическое вещество красно-коричневого цвета, в решетку молекул которого входят однократно отрицательные ионы озона (O3-), чем и обусловлены их парамагнитные свойства. Предел термической устойчивости озонидов -60±2° С, содержание активного кислорода - 46% по весу. Как многие пе-рекисные соединения озониды щелочных металлов нашли широкое применение в регенеративных процессах.
Озониды образуются в реакциях озона с натрием, калием, рубидием, цезием, которые идут через промежуточный неустойчивый комплекс типа М+ О- Н+ O3--с дальнейшей реакцией с озоном, в результате чего образуется смесь озонида и водного гидрата окиси щелочного металла.
Озон активно вступает в химическое взаимодействие со многими органическими соединениями. Так, первичным продуктом взаимодействия озона с двойной связью непредельных соединений является малозоид, который нестоек и распадается на биполярный ион и карбонильные соединения (альдегид или кетон). Промежуточные продукты, которые образуются в этой реакции, вновь соединяются в другой последовательности, образуя озо-нид. В присутствии веществ, способных вступать в реакцию с биполярным ионом (спирты, кислоты), вместо озонидов образуются различные перекисные соединения.
Озон активно вступает в реакцию с ароматическими соединениями, при этом реакция идет как с разрушением ароматического ядра, так и без его разрушения.
В реакциях с насыщенными углеводородами озон вначале распадается с образованием атомарного кислорода, который инициирует цепное окисление, при этом выход продуктов окисления соответствует расходу озона. Взаимодействие озона с насыщенными углеводородами протекает как в газовой фазе, так и в растворах.
С озоном легко реагируют фенолы, при этом происходит разрушение последних до соединений с нарушенным ароматическим ядром (типа хиноина), а также малотоксичных производных непредельных альдегидов и кислот.
Взаимодействие озона с органическими соединениями находит широкое применение в химической промышленности и в смежных отраслях. Использование реакции озона с непредельными соединениями позволяет получать искусственным путем различные жирные кислоты, аминокислоты, гормоны, витамины и полимерные материалы; реакции озона с ароматическими углеводородами - дифениловую кислоту, фталевый диальдегид и фталевую кислоту, глиоксалевую кислоту и др.
Реакции озона с ароматическими углеводородами легли в основу разработки методов дезодорации различных сред, помещений, сточных вод, абгазов, а с серосодержащими соединениями - в основу разработки методов очистки сточных вод и отходящих газов различных производств, включая сельское хозяйство, от серосодержащих вредных соединений (сероводород, меркаптаны, сернистый ангидрид).

Поделиться: