Момент количества движения относительно центра и оси.

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Конец работы -

Эта тема принадлежит разделу:

Динамика

Лекция.. краткое содержание введение в динамику аксиомы классической механики.. введение..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы единиц
СГС Си Техническая [L] см м м [M]

Дифференциальные уравнения движения точки
Основное уравнение динамики можно записать так

Основные задачи динамики
Первая или прямая задача: Известна масса точки и закон ее движения, необходимо найти действующую на точку силу. m

Наиболее важные случаи
1. Сила постоянна.

Количество движения точки
Количеством движения материальной точки называется вектор, равный произведению м

Элементарный и полный импульс силы
Действие силы на материальную точку в течении времени

Теорема об изменении количества движения точки
Теорема. Производная по времени от количества движения точки равна действующей на точку силе. Запишем основной закон динамики

Теорема об изменении момента количества движения точки
Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же

Работа силы. Мощность
Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Теорема об изменении кинетической энергии точки
Теорема. Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Принцип Даламбера для материальной точки
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:

Динамика несвободной материальной точки
Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие свободу движения точки, называются связями

Относительное движение материальной точки
Во многих задачах динамики движение материальной точки рассматривается относительно системы отсчета, движущейся относительно инерциальной системы отсчета.

Частные случаи относительного движения
1. Относительное движение по инерции Если материальная точка движется относительно подвижной системы отсчета прямолинейно и равномерно, то такое движение называется относительны

Геометрия масс
Рассмотрим механическую систему, которая состоит из конечного числа материальных точек с массами

Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции. Момент инерции относительно точки

Моменты инерции простейших тел
1. Однородный стержень 2. Прямоугольная пластина 3. Однородный круглый диск

Количество движения системы
Количеством движения системы материальных точек называется векторная сумма колич

Теорема об изменении количества движения системы
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих н

Законы сохранения количества движения
1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно

Теорема о движении центра масс
Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассмат

Момент количества движения системы
Моментом количества движения системы материальных точек относительно некоторого

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела
Вычислим момент количества движения твердого тела относительно оси вращения.

Теорема об изменении момента количества движения системы
Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на

Законы сохранения момента количества движения
1. Если главный момент внешних сил системы относительно точки равен нулю (

Кинетическая энергия системы
Кинетической энергией системы называют сумму кинетических энергий всех точек системы.

Кинетическая энергия твердого тела
1. Поступательное движение тела. Кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе этого тела.

Теорема об изменении кинетической энергии системы
Эта теорема существует в двух формах. Теорема. Дифференциал кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систе

момент количества движения

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, момент импульса, угловой момент) мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы, если заменить в них вектор силы на вектор количества движения mv, в частности K0 = . Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твердого тела главный момент количества движения относительно оси вращения z тела выражается произведением момента инерции Iz на угловую скорость? тела, т.е. КZ = Iz?.

Момент количества движения

кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и относительно оси.

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv. Т. о., ko = , где r ≈ радиус-вектор движущейся точки, проведённый из центра О, a kz равняется проекции вектора ko на ось z, проходящую через точку О. Изменение М. к. д. точки происходит под действием момента mo(F) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dko/dt = mo(F). Когда mо(F) = 0, что, например, имеет место для центральных сил, движение точки подчиняется площадей закону. Этот результат важен для небесной механики, теории движения искусственных спутников Земли, космических летательных аппаратов и др.

Главный М. к. д. (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. Ko = Skoi, Kz = Skzi. Вектор Ko может быть определён его проекциями Kx, Ky, Kz на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью w, Kx = ≈ Ixzw, Ky = ≈Iyzw, Kz = Izw, где lz ≈ осевой, а Ixz, lyz ≈ центробежные моменты инерции. Если ось z является главной осью инерции для начала координат О, то Ko = Izw.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента Moe. Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dKo/dt = Moe. Аналогичным уравнением связаны моменты Kz и Mze. Если Moe = 0 или Mze = 0, то соответственно Ko или Kz будут величинами постоянными, т. е. имеет место закон сохранения М. к. д. (см. Сохранения законы). Т. о., внутренние силы не могут изменить М. к. д. системы, но М. к. д. отдельных частей системы или угловые скорости под действием этих сил могут изменяться. Например, у вращающегося вокруг вертикальной оси z фигуриста (или балерины) величина Kz= Izw будет постоянной, т. к. практически Mze = 0. Но изменяя движением рук или ног значение момента инерции lz, он может изменять угловую скорость w. Др. примером выполнения закона сохранения М. к. д. служит появление реактивного момента у двигателя с вращающимся валом (ротором). Понятие о М. к. д. широко используется в динамике твёрдого тела, особенно в теории гироскопа.

Размерность М. к. д. ≈ L2MT-1, единицы измерения ≈ кг×м2/сек, г×см2/сек. М. к. д. обладают также электромагнитное, гравитационное и др. физические поля. Большинству элементарных частиц присущ собственный, внутренний М. к. д. ≈ спин . Большое значение М. к. д. имеет в квантовой механике.

Лит. см. при ст. Механика.

Момент количества движения моме́нт коли́чества движе́ния

(кинетический момент, момент импульса, угловой момент), мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения K материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы, если заменить в них вектор силы на вектор количества движения mv , т. е. K = [r ·mv ], где r - расстояние до оси вращения. Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твёрдого тела главный момент количества движения относительно оси вращения z I z на угловую скорость ω тела, т. е. K z = I z ω.

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ

МОМЕ́НТ КОЛИ́ЧЕСТВА ДВИЖЕ́НИЯ (кинетический момент, момент импульса, угловой момент), мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы (см. МОМЕНТ СИЛЫ) , если заменить в них вектор силы на вектор количества движения mv , в частности K 0 = [r ·mv ]. Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твердого тела главный момент количества движения относительно оси вращения z тела выражается произведением момента инерции (см. МОМЕНТ ИНЕРЦИИ) I z на угловую скорость w тела, т. е. К Z = I z w.


Энциклопедический словарь . 2009 .

Смотреть что такое "момент количества движения" в других словарях:

    - (кинетический момент, угловой момент), одна из мер механич. движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращат. движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и… … Физическая энциклопедия

    - (кинетический момент Момент импульса, угловой Момент), мера механического движения тела или системы тел относительно какого либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же… … Большой Энциклопедический словарь

    Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси… … Википедия

    момент количества движения - кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль момент количества движения играет при изучении вращательного движения. Как и для момента силы, различают момент… … Энциклопедический словарь по металлургии

    момент количества движения - judesio kiekio momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, lygus dalelės padėties vektoriaus iš tam tikro taško į dalelę ir jos judesio kiekio vektorinei sandaugai, t. y. L = r · p; čia L – judesio kiekio momento… …

    момент количества движения - judesio kiekio momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Materialiojo taško arba dalelės spindulio vektoriaus ir judesio kiekio vektorinė sandauga. Dažniausiai apibūdina sukamąjį judesį taško arba ašies, iš kurios yra… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    момент количества движения - judesio kiekio momentas statusas T sritis fizika atitikmenys: angl. angular moment; moment of momentum; rotation moment vok. Drehimpuls, m; Impulsmoment, n; Rotationsmoment, n rus. момент импульса, m; момент количества движения, m; угловой момент … Fizikos terminų žodynas

    Кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения (См. Вращательное движение). Как и для момента силы (См. Момент силы),… … Большая советская энциклопедия

    - (кинетич. момент, момент импульса, угловой момент), мера механич. движения тела или системы тел относительно к. л. центра (точки) или осн. Для вычисления М. к. д. К материальной точки (тела) справедливы те же формулы, что и для вычисления момента … Естествознание. Энциклопедический словарь

    То же, что момент импульса … Большой энциклопедический политехнический словарь

Книги

  • Теоретическая механика. Динамика металлоконструкций электронная книга
  • Теоретическая механика. Динамика и аналитическая механика , В. Н. Шинкин. Рассмотрены основные теоретические и практические вопросы динамики материальной системы и аналитической механики по следующим темам: геометрия масс, динамика материальной системы и твердого…

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv . Т. о.,k o = [r · ], где r - радиус-вектор движущейся точки, проведённый из центра О , a k z равняется проекции вектора k o на ось z , проходящую через точку О . Изменение М. к. д. точки происходит под действием момента m o (F ) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dk o /dt = m o (F ). Когда m о (F ) = 0, что, например, имеет место для центральных сил, движение точки подчиняется Площадей закону.

Главный М. к. д . (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. K o = Σk oi , K z = Σk zi . Вектор K o может быть определён его проекциями K x , K y , K z на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью ω, K x = - I xz ω, K y = -I yz ω, K z = I z ω, где l z - осевой, а I xz , l yz - центробежные моменты инерции.

Если ось z является главной осью инерции для начала координат О, то K o = I z ω.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента M o e . Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dK o /dt = M o e . Аналогичным уравнением связаны моменты K z и M z e . Если M o e = 0 или M z e = 0, то соответственно K o или K z будут величинами постоянными, т. е. имеет место закон сохранения М. к. д.

Билет 20

Общее уравнение динамики.

Общее уравнение динамики – при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики. Последовательность составления: а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции; б) сообщают системе возможные перемещения; в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Потенциальная сила. Работа потенциальной силы на конечном перемещении.

Потенциальная сила - сила, работа которой зависит только от начального и конечного положения точки её приложения и не зависит ни от вида траектории, ни от закона движения этой точки

Работа потенциальной силы равна разности значений силовой функции в конечной и начальной точках пути и от вида траектории движущейся точки не зависит.

Основным свойством потенциального силового поля и является то, что работа сил поля при движении в нем материальной точки зависит только от начального и конечного положений этой точки и ни от вида ее траектории, ни от закона движения не зависит.

Билет 21

Принцип виртуальных (возможных) перемещений.

Существуют две различные формулировки принципа возможных перемещений. В одной формулировке утверждается, что для равновесия материальной системы необходимо, чтобы равнялась нулю сумма элементарных работ всех внешних сил, приложенных к системе, на любом возможном перемещении.
В другой формулировке, наоборот, говорится, что система должна находиться в равновесии, чтобы сумма элементарных работ всех сил равнялась нулю. Такое определение этого принципа дается, например, в работе: “Виртуальная работа заданных сил, приложенных к системе с идеальными связями и находящейся в равновесии, равна нулю”.
Математически принцип возможных перемещений представляется в виде:
, (1)
где - скалярное произведение вектора силы и вектора виртуального перемещения.

Мощность пары сил

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Мощность пары сил:

,

где омега Z – проекция угловой скорости на ось вращения.

Билет 22

1.Прнцип виртуальных перемещений
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δr i называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.

Если связь одна и описывается уравнением (2), физически ясно, что связь не нарушится, когда вектор виртуального перемещения

где grad f - градиент функции (2) при фиксированном t , перпендикулярный поверхности связи в месте нахождения точки, равный

В вариационном исчислении бесконечно малые величины δr i , δx i , δy i , δz i называются вариациями функций r i , x i , y i , z i . Изменения координат точек или уравнений связи при неизменном времени находятся синхронным варьированием, которое осуществляется согласно левым частям формул (4) и (6).

То есть проекции δx i , δy i , δz i виртуального перемещения точки δr обращают в нуль первую вариацию уравнения связи при условии, что время не варьируется (синхронное варьирование):

(7)

Следовательно, виртуальное перемещение точки не характеризует ее движение, а определяет связь или, в общем случае, связи, наложенные на точку системы. Таким образом, виртуальные перемещения позволяют учесть эффект механических связей, не вводя реакции связей, как мы это делали раньше, и получать уравнения равновесия или движения системы в аналитическом виде, не содержащие неизвестных реакций связей.

2.Элементарная работа
Элементарная работа сил , действующих на абсолютно твердое тело, равна алгебраической сумме двух слагаемых: работы главного вектора этих сил на элементарном поступательном перемещении тела вместе с произвольно выбранным полюсом и работы главного момента сил, взятого относительно полюса, на элементарном вращательном перемещении тела вокруг полюса. [1 ]

Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы. [2 ]

Элементарная работа сил при этом зависит от выбора возможного перемещения системы. [3 ]

Элементарная работа силы при вращении тела, на которое сила действуе

Билет 23

1. Принцип виртуальных перемещений в обобщенных координатах.

Запишем принцип, выражая виртуальную работу активных сил системы в обобщенных координатах:

Так как на систему наложены голономные связи, вариации обобщенных координат не зависят между собой и не могут быть одновременно равны нулю. Поэтому последнее равенство выполнится только тогда, когда коэффициенты при δ j (j = 1 ÷ s) одновременно обращаются в нуль, то есть

2.Работа силы на конечном перемещении
Работа
силы на конечном перемещении определяется как интегральная сумма элементарных Работа и при перемещении M 0 M 1 выражается криволинейным интегралом:

Билет 24

1.уравнение Лагранжа второго рода.

Для вывода уравнений запишем принцип Даламбера-Лагранжа в обобщенных координатах в виде -Q j u = Q j (j = 1 ÷ s) .

Принимая во внимание, что Ф i = -m i a i = -m i dV i / dt , получаем:

(1)

(2)

Подставляя (2) в (1) получаем дифференциальное уравнение движения системы в обобщенных координатах, которое названо уравнением Лагранжа второго рода:

(3)

то есть, материальная система с голономными связями описывается уравнениями Лагранжа второго рода по всем s обобщенным координатам.

Отметим важные особенности полученных уравнений.

1. Уравнения (3) - это система обыкновенных дифференциальных уравнений второго порядка относительно s неизвестных функций q j (t), полностью определяющих движение системы.

2. Число уравнений равно числу степеней свободы, то есть движение любой голономной системы описывается наименьшим числом уравнений.

3. В уравнения (3) не нужно включать реакции идеальных связей, что позволяет, находя закон движения несвободной системы, выбором обобщенных координат исключить задачу определения неизвестных реакций связей.

4. Уравнения Лагранжа второго рода позволяют указать единую последовательность действий для решения многих задач динамики, которую часто называют формализмом Лагранжа.

2. Условие относительного покоя материальной точки получают из динамического уравнения Кориолиса, подставив в это уравнение значения относительного ускорения и кориолисовой силы инерции равные нулю:

Количество движения (mV) - величина векторная, т.е. имеет определенное направление относительно выбранной точки отсчета (например, оси координат) или оси вращения. Основное уравнение динамики вращательного движения

можно также записать в виде

Здесь С/оо) имеет смысл аналога физической величины (mV) количества движения. Силовой момент М = Ph тогда с учетом (7.14)

Величину L можно рассматривать как момент количества движения (mV) относительно данной точки или оси. Она называется кинетическим моментом. Здесь h - кратчайшее расстояние от линии действия вектора mV по часовой стрелке. В общем случае

Знак «-» берется в случае вращения вектора mV по часовой стрелке.

Для пространственной системы момент количества движения материальной точки относительно оси, перпендикулярной к данной плоскости и проходящей через заданную точку 0, равен проекции момента количества движения. Например, для оси z: L z = L 0 cos а, где а - угол между данной плоскостью и радиус-вектором данной точки (расстояние от материальной точки до центра «0»).

Величина L относительно прямоугольных осей координат определяется проекциями скоростей на эти оси и координатами движущейся материаль-


Рис. 7.1.

ной точки. Например, в плоскости хОу (рис. 7.1) момент количества движения относительно оси z (перпендикулярной данной плоскости)

здесь L, и L 2 - моменты, создаваемые проекциями количества движения mV относительно точки 0.

По физическому смыслу производная - сумма моментов сил,

действующих на материальную точку, относительно выбранной оси координат. При JM i = 0, величина L = const, т.е. если момент равнодействующей силы равен нулю , то момент количества движения относительно выбранной оси остается постоянным.

Рис. 7.2.

Например, для точечного тела М с массой т величина L z = 0, если на тело действует сила Р, направленная к началу координат, так как моменты силы Р и силы тяжести mg (параллельной оси z, рис. 7.2) равны нулю. Здесь L z = mxV = const.

Если направление скорости V 0 все время перпендикулярно радиусу г, величина которого при перемещении точки М 2 уменьшается, то из равенства L z = const следует увеличение скорости точки М при приближении к точке О.

По аналогии с главным моментом сил можно вывести понятие: главный момент количества движения i 0 механической системы (или кинетический момент), относительно заданного центра, который равен геометрической сумме величин L 0j всех материальных точек данной системы относительно этого центра, т.е.

Кинетический момент механической системы относительно оси (например оси г) равен алгебраической сумме моментов количества движения всех точек данной системы: L 0 = X L iz .

Очевидно, что производная от кинетического момента по времени равна главному моменту внешних сил, действующих на данную механическую систему (относительно выбранного центра), т.е.

Отсюда следует закон сохранения кинетического момента механической системы относительно оси

т.е. кинетический момент в данном случае остается постоянным.

Изменения кинетического момента механической системы при ударе вытекает как следствие из рассмотрения вышеизложенных понятий об импульсе силы и моментах количества движения и определяется выражениями (7.17) и (7.18). Так, например, при ударе изменение кинетического момента системы относительно любой оси равно сумме моментов внешних импульсов сил относительно данной оси. Если к точкам механической системы приложены только внутренние силовые импульсы, то кинетический момент системы при ударе не изменяется.

Поделиться: