Сумма убывающей геометрической прогрессии формула. Геометрическая прогрессия

Некоторые задачи физики и математики могут быть решены с использованием свойств числовых рядов. Две самых простых числовых последовательности, которые изучаются в школах, это алгебраическая и геометрическая. В данной статье рассмотрим подробнее вопрос, как найти сумму бесконечной прогрессии геометрической убывающей.

Прогрессия геометрическая

Под этими словами понимают такой ряд действительных чисел, элементы a i которого удовлетворяют выражению:

Здесь i - номер элемента в ряду, r - постоянное число, которое называется знаменателем.

Это определение показывает, что, зная любой член прогрессии и его знаменатель, можно восстановить весь ряд чисел. Например, если известен 10-й элемент, то разделив его на r, получим 9-й элемент, затем, разделив еще раз, получим 8-й и так далее. Эти простые рассуждения позволяют записать выражение, которое справедливо для рассматриваемого ряда чисел:

Примером прогрессии со знаменателем 2 может быть такой ряд:

1, 2, 4, 8, 16, 32, ...

Если же знаменатель будет равен -2, тогда получается совершенно другой ряд:

1, -2, 4, -8, 16, -32, ...

Прогрессия геометрическая является гораздо более быстрой, чем алгебраическая, то есть ее члены быстро растут и быстро уменьшаются.

Сумма i членов прогрессии

Для решения практических задач часто приходиться вычислять сумму нескольких элементов рассматриваемой числовой последовательности. Для этого случая справедлива следующая формула:

S i = a 1 *(r i -1)/(r-1)

Видно, что для вычисления суммы i членов необходимо знать всего два числа: a 1 и r, что является логичным, поскольку они однозначно определяют всю последовательность.

Убывающая последовательность и сумма ее членов

Теперь рассмотрим частный случай. Будем считать, что модуль знаменателя r не превышает единицы, то есть -1

Убывающую геометрическую прогрессию интересно рассмотреть, потому что бесконечная сумма ее членов стремится к конечному действительному числу.

Получим формулу суммы Это легко сделать, если выписать выражение для S i , приведенного в предыдущем пункте. Имеем:

S i = a 1 *(r i -1)/(r-1)

Рассмотрим случай, когда i->∞. Поскольку модуль знаменателя меньше 1, то возведение его в бесконечную степень даст ноль. Это можно проверить на примере r=0,5:

0,5 2 = 0,25; 0,5 3 = 0,125; ...., 0,5 20 = 0,0000009.

В итоге сумма членов бесконечной геометрической прогрессии убывающей примет форму:

Эта формула часто используется на практике, например, для вычисления площадей фигур. Ее также применяют при решении парадокса Зенона Элейского с черепахой и Ахиллесом.

Очевидно, что рассмотрение суммы бесконечной прогрессии геометрической возрастающей (r>1), приведет к результату S ∞ = +∞.

Задача на нахождение первого члена прогрессии

Покажем, как следует применять приведенные выше формулы на примере решения задачи. Известно, что сумма бесконечной геометрической прогрессии равна 11. При этом 7-й ее член в 6 раз меньше третьего члена. Чему равен первый элемент для этого числового ряда?

Для начала выпишем два выражения для определения 7-го и 3-го элементов. Получаем:

Разделив первое выражение на второе, и выражая знаменатель, имеем:

a 7 /a 3 = r 4 => r = 4 √(a 7 /a 3)

Поскольку отношение седьмого и третьего членов дано в условии задачи, можно его подставить и найти r:

r = 4 √(a 7 /a 3) = 4 √(1/6) ≈ 0,63894

Мы рассчитали r с точностью пяти значащих цифр после запятой. Поскольку полученное значение меньше единицы, значит, прогрессия является убывающей, что оправдывает использование формулы для ее бесконечной суммы. Запишем выражение для первого члена через сумму S ∞ :

Подставляем в эту формулу известные значения и получаем ответ:

a 1 = 11*(1-0,63894) = 3,97166.

Знаменитый парадокс Зенона с быстрым Ахиллесом и медленной черепахой

Зенон Элейский - известный греческий философ, живший в V веке до н. э. До настоящего времени дошли ряд его апогей или парадоксов, в которых формулируется проблема бесконечно большого и бесконечно малого в математике.

Одним из известных парадоксов Зенона являются соревнования Ахиллеса и черепахи. Зенон полагал, что если Ахиллес предоставит некоторое преимущество черепахе в расстоянии, то он никогда не сможет ее догнать. Например, пусть Ахиллес бежит в 10 раз быстрее, чем ползет животное, которое для примера находится на расстоянии 100 метров впереди него. Когда воин пробежит 100 метров, то черепаха отползет на 10. Пробежав вновь 10 метров, Ахиллес увидит, что черепаха отползла еще на 1 метр. Рассуждать так можно до бесконечности, расстояние будет между соревнующимися действительно уменьшаться, но черепаха будет всегда находиться впереди.

Привел Зенона к выводу, что движения не существует, и все окружающие перемещения объектов - это иллюзия. Конечно же, древнегреческий философ ошибался.

Решение парадокса кроется в том, что бесконечная сумма постоянно уменьшающихся отрезков, стремится к конечному числу. В приведенном выше случае для расстояния, которое пробежал Ахиллес, получим:

100 + 10 + 1 + 0,1 + 0,01 + ...

Применяя формулу суммы бесконечной прогрессии геометрической, получим:

S ∞ = 100 /(1-0,1) ≈ 111,111 метров

Этот результат показывает, что Ахиллес догонит черепаху, когда она проползет всего 11,111 метров.

Древние греки не умели работать с бесконечными величинами в математике. Однако этот парадокс можно разрешить, если обратить внимание не на бесконечное число промежутков, которые должен преодолеть Ахиллес, а на конечное число шагов бегуна, необходимых для достижения цели.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.
Задачи:
формулирование начального представления о пределе числовой последовательности;
знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии;
развитие интеллектуальных качеств личности школьников такие, как логическое мышление, способность к оценочным действиям, обобщению;
воспитание активности, взаимопомощи, коллективизма, интереса к предмету.

Скачать:


Предварительный просмотр:

Урок по теме “Бесконечно убывающая геометрическая прогрессия” (алгебра, 10кл.)

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.

Задачи:

формулирование начального представления о пределе числовой последовательности; знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии;

развитие интеллектуальных качеств личности школьников такие, как логическое мышление, способность к оценочным действиям, обобщению;

воспитание активности, взаимопомощи, коллективизма, интереса к предмету.

Оборудование: компьютерный класс, проектор, экран.

Тип урока: урок – усвоение новой темы.

Ход урока

I. Орг. момент. Сообщение темы и цели урока.

II. Актуализация знаний учащихся.

В 9 классе вы изучали арифметическую и геометрическую прогрессии.

Вопросы

1. Определение арифметической прогрессии.

(Арифметической прогрессией называется последовательность, каждый член которой,

Начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом).

2. Формула n -го члена арифметической прогрессии

3. Формула суммы первых n членов арифметической прогрессии.

( или )

4. Определение геометрической прогрессии.

(Геометрической прогрессией называется последовательность отличных от нуля чисел,

Каждый член которой, начиная со второго, равен предыдущему члену, умноженному на

Одно и то же число).

5. Формула n -го члена геометрической прогрессии

6. Формула суммы первых n членов геометрической прогрессии.

7. Какие формулы вы еще знаете?

(, где ; ;

; , )

Задания

1. Арифметическая прогрессия задана формулой a n = 7 – 4n . Найдите a 10 . (-33)

2. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 4 . (4)

3. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 17 . (-35)

4. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите S 17 . (-187)

5. Для геометрической прогрессии найдите пятый член.

6. Для геометрической прогрессии найдите n -й член.

7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4)

8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q .

9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

III. Изучение новой темы (демонстрация презентации).

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например ,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

С помощью этого рисунка можно рассмотреть и ещё одну последовательность.

Например, последовательность площадей квадратов:

И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

При .

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Фронтальная работа.

Определение:

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы. .

С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой:

Решение:

Найдем q .

; ; ; .

данная геометрическая прогрессия является бесконечно убывающей.

б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна .

Если n неограниченно возрастает, то

или . Поэтому , т.е. .

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1 , S 2 , S 3 , …, S n , … .

Например, для прогрессии ,

имеем

Так как

Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле .

III. Осмысление и закрепление (выполнение заданий).

№13; №14; №15(1,3); №16(1,3); №18(1,3); №19; №20.

IV. Подведение итогов.

С какой последовательностью сегодня познакомились?

Дайте определение бесконечно убывающей геометрической прогрессии.

Как доказать, что геометрическая прогрессия является бесконечно убывающей?

Назовите формулу суммы бесконечно убывающей геометрической прогрессии.

V. Домашнее задание.

2. № 15(2,4); №16(2,4); 18(2,4).

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э.Кольман В математике следует помнить не формулы, а процессы мышления. В.П.Ермаков Легче найти квадратуру круга, чем перехитрить математика. Огастес де Морган Какая наука может быть более благородна, более восхитительна, более полезна для человечества, чем математика? Франклин

Бесконечно убывающая геометрическая прогрессия 10 класс

I . Арифметическая и геометрическая прогрессии. Вопросы 1. Определение арифметической прогрессии. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. 2. Формула n -го члена арифметической прогрессии. 3. Формула суммы первых n членов арифметической прогрессии. 4. Определение геометрической прогрессии. Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число 5. Формула n -го члена геометрической прогрессии. 6. Формула суммы первых n членов геометрической прогрессии.

II . Арифметическая прогрессия. Задания Арифметическая прогрессия задана формулой a n = 7 – 4 n Найдите a 10 . (-33) 2. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 4 . (4) 3. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 17 . (-35) 4. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите S 17 . (-187)

II . Геометрическая прогрессия. Задания 5. Для геометрической прогрессии найдите пятый член 6. Для геометрической прогрессии найдите n -й член. 7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4) 8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q . 9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

определение: Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Задача №1 Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой: Решение: а) данная геометрическая прогрессия является бесконечно убывающей. б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1 , S 2 , S 3 , …, S n , … . Например, для прогрессии имеем Так как Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле

Выполнение заданий Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3, вторым 0,3. 2. №13; №14; учебник, стр. 138 3. №15(1;3); №16(1;3) №18(1;3); 4. №19; №20.

С какой последовательностью сегодня познакомились? Дайте определение бесконечно убывающей геометрической прогрессии. Как доказать, что геометрическая прогрессия является бесконечно убывающей? Назовите формулу суммы бесконечно убывающей геометрической прогрессии. Вопросы

Известный польский математик Гуго Штейнгаус шутливо утверждает, что существует закон, который формулируется так: математик сделает это лучше. А именно, если поручить двум людям, один из которых математик, выполнение любой незнакомой им работы, то результат всегда будет следующим: математик сделает ее лучше. Гуго Штейнгаус 14.01.1887-25.02.1972


Урок и презентация на тему: "Числовые последовательности. Геометрическая прогрессия"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Степени и корни Функции и графики

Ребята, сегодня мы познакомимся с еще одним видом прогрессии.
Тема сегодняшнего занятия - геометрическая прогрессия.

Геометрическая прогрессия

Определение. Числовая последовательность, в которой каждый член, начиная со второго, равен произведению предыдущего и некоторого фиксированного числа, называется геометрической прогрессией.
Зададим нашу последовательность рекуррентно: $b_{1}=b$, $b_{n}=b_{n-1}*q$,
где b и q – определенные заданные числа. Число q называется знаменателем прогрессии.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице, а $q=2$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми,
а $q=1$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем,
а $q=-1$.

Геометрическая прогрессия обладает свойствами монотонности.
Если $b_{1}>0$, $q>1$,
то последовательность возрастающая.
Если $b_{1}>0$, $0 Последовательность принято обозначать в виде: $b_{1}, b_{2}, b_{3}, ..., b_{n}, ...$.

Также как и в арифметической прогрессии, если в геометрической прогрессии количество элементов конечно, то прогрессия называется конечной геометрической прогрессией .

$b_{1}, b_{2}, b_{3}, ..., b_{n-2}, b_{n-1}, b_{n}$.
Отметим, если последовательность является геометрической прогрессией, то и последовательность квадратов членов, также является геометрической прогрессией. У второй последовательность первый член равен $b_{1}^2$, а знаменатель равен $q^2$.

Формула n-ого члена геометрической прогрессии

Геометрическую прогрессию можно задавать и в аналитической форме. Давайте посмотрим, как это сделать:
$b_{1}=b_{1}$.
$b_{2}=b_{1}*q$.
$b_{3}=b_{2}*q=b_{1}*q*q=b_{1}*q^2$.
$b_{4}=b_{3}*q=b_{1}*q^3$.
$b_{5}=b_{4}*q=b_{1}*q^4$.
Мы легко замечаем закономерность: $b_{n}=b_{1}*q^{n-1}$.
Наша формула называется "формулой n-ого члена геометрической прогрессии".

Вернемся к нашим примерам.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице,
а $q=2$.
$b_{n}=1*2^{n}=2^{n-1}$.

Пример. 16,8,4,2,1,1/2… Геометрическая прогрессия, у которой первый член равен шестнадцати, а $q=\frac{1}{2}$.
$b_{n}=16*(\frac{1}{2})^{n-1}$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми, а $q=1$.
$b_{n}=8*1^{n-1}=8$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем, а $q=-1$.
$b_{n}=3*(-1)^{n-1}$.

Пример. Дана геометрическая прогрессия $b_{1}, b_{2}, …, b_{n}, … $.
а) Известно,что $b_{1}=6, q=3$. Найти $b_{5}$.
б) Известно,что $b_{1}=6, q=2, b_{n}=768$. Найти n.
в) Известно,что $q=-2, b_{6}=96$. Найти $b_{1}$.
г) Известно,что $b_{1}=-2, b_{12}=4096$. Найти q.

Решение.
а) $b_{5}=b_{1}*q^4=6*3^4=486$.
б) $b_n=b_1*q^{n-1}=6*2^{n-1}=768$.
$2^{n-1}=\frac{768}{6}=128$,так как $2^7=128 => n-1=7; n=8$.
в) $b_{6}=b_{1}*q^5=b_{1}*(-2)^5=-32*b_{1}=96 => b_{1}=-3$.
г) $b_{12}=b_{1}*q^{11}=-2*q^{11}=4096 => q^{11}=-2048 => q=-2$.

Пример. Разность между седьмым и пятым членами геометрической прогрессии равны 192, сумма пятого и шестого члена прогрессии равна 192. Найти десятый член этой прогрессии.

Решение.
Нам известно, что: $b_{7}-b_{5}=192$ и $b_{5}+b_{6}=192$.
Мы так же знаем: $b_{5}=b_{1}*q^4$; $b_{6}=b_{1}*q^5$; $b_{7}=b_{1}*q^6$.
Тогда:
$b_{1}*q^6-b_{1}*q^4=192$.
$b_{1}*q^4+b_{1}*q^5=192$.
Получили систему уравнений:
$\begin{cases}b_{1}*q^4(q^2-1)=192\\b_{1}*q^4(1+q)=192\end{cases}$.
Приравняв, наши уравнения получим:
$b_{1}*q^4(q^2-1)=b_{1}*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Получили два решения q: $q_{1}=2, q_{2}=-1$.
Последовательно подставим во второе уравнение:
$b_{1}*2^4*3=192 => b_{1}=4$.
$b_{1}*(-1)^4*0=192 =>$ нет решений.
Получили что: $b_{1}=4, q=2$.
Найдем десятый член: $b_{10}=b_{1}*q^9=4*2^9=2048$.

Сумма конечной геометрической прогрессии

Пусть у нас есть конечная геометрическая прогрессия. Давайте, также как и для арифметической прогрессии, посчитаем сумму ее членов.

Пусть дана конечная геометрическая прогрессия: $b_{1},b_{2},…,b_{n-1},b_{n}$.
Введем обозначение суммы ее членов: $S_{n}=b_{1}+b_{2}+⋯+b_{n-1}+b_{n}$.
В случае, когда $q=1$. Все члены геометрической прогрессии равны первому члену, тогда очевидно, что $S_{n}=n*b_{1}$.
Рассмотрим теперь случай $q≠1$.
Умножим указанную выше сумму на q.
$S_{n}*q=(b_{1}+b_{2}+⋯+b_{n-1}+b_{n})*q=b_{1}*q+b_{2}*q+⋯+b_{n-1}*q+b_{n}*q=b_{2}+b_{3}+⋯+b_{n}+b_{n}*q$.
Заметим:
$S_{n}=b_{1}+(b_{2}+⋯+b_{n-1}+b_{n})$.
$S_{n}*q=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q$.

$S_{n}*q-S_{n}=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q-b_{1}-(b_{2}+⋯+b_{n-1}+b_{n})=b_{n}*q-b_{1}$.

$S_{n}(q-1)=b_{n}*q-b_{1}$.

$S_{n}=\frac{b_{n}*q-b_{1}}{q-1}=\frac{b_{1}*q^{n-1}*q-b_{1}}{q-1}=\frac{b_{1}(q^{n}-1)}{q-1}$.

$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$.

Мы получили формулу суммы конечной геометрической прогрессии.


Пример.
Найти сумму первых семи членов геометрической прогрессии, у которой первый член равен 4, а знаменатель 3.

Решение.
$S_{7}=\frac{4*(3^{7}-1)}{3-1}=2*(3^{7}-1)=4372$.

Пример.
Найти пятый член геометрической прогрессии, о которой известно: $b_{1}=-3$; $b_{n}=-3072$; $S_{n}=-4095$.

Решение.
$b_{n}=(-3)*q^{n-1}=-3072$.
$q^{n-1}=1024$.
$q^{n}=1024q$.

$S_{n}=\frac{-3*(q^{n}-1)}{q-1}=-4095$.
$-4095(q-1)=-3*(q^{n}-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
$341q=1364$.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристическое свойство геометрической прогрессии

Ребята, дана геометрическая прогрессия. Давайте рассмотрим три последовательных её члена: $b_{n-1},b_{n},b_{n+1}$.
Мы знаем что:
$\frac{b_{n}}{q}=b_{n-1}$.
$b_{n}*q=b_{n+1}$.
Тогда:
$\frac{b_{n}}{q}*b_{n}*q=b_{n}^{2}=b_{n-1}*b_{n+1}$.
$b_{n}^{2}=b_{n-1}*b_{n+1}$.
Если прогрессия конечная, то это равенство выполняется для всех членов, кроме первого и последнего.
Если заранее неизвестно, какой вид у последовательности, но известно что: $b_{n}^{2}=b_{n-1}*b_{n+1}$.
Тогда можно смело говорить, что это геометрическая прогрессия.

Числовая последовательность является геометрической прогрессией, только когда квадрат каждого её члена равен произведению двух соседних с ним членов прогрессии. Не забываем, что для конечной прогрессии это условие не выполняется для первого и последнего члена.


Давайте посмотрим вот на это тождество: $\sqrt{b_{n}^{2}}=\sqrt{b_{n-1}*b_{n+1}}$.
$|b_{n}|=\sqrt{b_{n-1}*b_{n+1}}$.
$\sqrt{a*b}$ называется средним геометрическим чисел a и b.

Модуль любого члена геометрической прогрессии равен среднему геометрическому двух соседних с ним членов.


Пример.
Найти такие х, что бы $х+2; 2x+2; 3x+3$ являлись тремя последовательными членами геометрической прогрессии.

Решение.
Воспользуемся характеристическим свойством:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_{1}=2$ и $x_{2}=-1$.
Подставим последовательно в исходные выражение, наши решения:
При $x=2$, получили последовательность: 4;6;9 – геометрическая прогрессия, у которой $q=1,5$.
При $х=-1$, получили последовательность: 1;0;0.
Ответ: $х=2.$

Задачи для самостоятельного решения

1. Найдите восьмой первый член геометрической прогрессии 16;-8;4;-2… .
2. Найдите десятый член геометрической прогрессии 11,22,44… .
3. Известно, что $b_{1}=5, q=3$. Найти $b_{7}$.
4. Известно, что $b_{1}=8, q=-2, b_{n}=512$. Найти n.
5. Найдите сумму первых 11 членов геометрической прогрессии 3;12;48… .
6. Найти такие х, что $3х+4; 2x+4; x+5$ являются тремя последовательными членами геометрической прогрессии.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ l48. Сумма бесконечно убывающей геометрической прогрессии

До сих пор, говоря о суммах, мы всегда предполагали, что число слагаемых в этих суммах конечно (например, 2, 15, 1000 и т. д.). Но при решении некоторых задач (особенно высшей математики) приходится сталкиваться и с суммами бесконечного числа слагаемых

S = a 1 + a 2 + ... + a n + ... . (1)

Что же представляют из себя такие суммы? По определению суммой бесконечного числа слагаемых a 1 , a 2 , ..., a n , ... называется предел суммы S n первых п чисел, когда п -> :

S = S n = (a 1 + a 2 + ... + a n ). (2)

Предел (2), конечно, может существовать, а может и не существовать. Соответственно этому говорят, что сумма (1) существует или не существует.

Как же выяснить, существует ли сумма (1) в каждом конкретном случае? Общее решение этого вопроса выходит далеко за пределы нашей программы. Однако существует один важный частный случай, который нам предстоит сейчас рассмотреть. Речь будет идти о суммировании членов бесконечно убывающей геометрической прогрессии.

Пусть a 1 , a 1 q , a 1 q 2 , ...- бесконечно убывающая геометрическая прогрессия. Это означает, что | q |< 1. Сумма первых п членов этой прогрессии равна

Из основных теорем о пределах переменных величин (см. § 136) получаем:

Но 1 = 1, a q n = 0. Поэтому

Итак, сумма бесконечно убывающей геометрической прогрессии равна первому члену этой прогрести, деленному на единицу минус знаменатель этой прогрессии.

1) Сумма геометрической прогрессии 1, 1 / 3 , 1 / 9 , 1 / 27 , ... равна

а сумма геометрической прогрессии 12; -6; 3; - 3 / 2 , ... равна

2) Простую периодическую дробь 0,454545 ... обратить в обыкновенную.

Для решения этой задачи представим данную дробь в виде бесконечной суммы:

Правая часть этого равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, первый член которой равен 45 / 100 , а знаменатель 1 / 100 . Поэтому

Описанным способом может быть получено и общее правило обращения простых периодических дробей в обыкновенные (см. гл. II, § 38):

Для обращения простой периодической дроби в обыкновенную нужно поступить следующим образом: в числителе поставить период десятичной дроби, а в знаменателе - число, состоящее из девяток, взятых столько раз, сколько знаков в периоде десятичной дроби.

3) Смешанную периодическую дробь 0,58333 .... обратить в обыкновенную.

Представим данную дробь в виде бесконечной суммы:

В правой части этого равенства все слагаемые, начиная с 3 / 1000 , образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен 3 / 1000 , а знаменатель 1 / 10 . Поэтому

Описанным способом может быть получено и общее правило обращения смешанных периодических дробей в обыкновенные (см. гл. II, § 38). Мы сознательно не приводим его здесь. Запоминать это громоздкое правило нет необходимости. Гораздо полезнее знать, что любую смешанную периодическую дробь можно представить в виде суммы бесконечно убывающей геометрической прогрессии и некоторого числа. А формулу

для суммы бесконечно убывающей геометрической прогрессии нужно, конечно, помнить.

В качестве упражнения предлагаем вам, помимо приведенных ниже задач № 995-1000, еще раз обратиться к задаче № 301 § 38 .

Упражнения

995. Что называется суммой бесконечно убывающей геометрической прогрессии?

996. Найти суммы бесконечно убывающих геометрических прогрессий:

997. При каких значениях х прогрессия

является бесконечно убывающей? Найти сумму такой прогрессии.

998. В равносторонний треугольник со стороной а вписан посредством соединения середин его сторон новый треугольник; в этот треугольник тем же способом вписан новый треугольник и так далее до бесконечности.

а) сумму периметров всех этих треугольников;

б) сумму их площадей.

999. В квадрат со стороной а вписан путем соединения середин его сторон новый квадрат; в этот квадрат таким же образом вписан квадрат и так далее до бесконечности. Найти сумму периметров всех этих квадратов и сумму их площадей.

1000. Составить бесконечно убывающую геометрическую прогрессию, такую, чтобы сумма ее равнялась 25 / 4 , а сумма квадратов ее членов равнялась 625 / 24 .

Поделиться: