Фср и общее решение однородной системы. Системы линейных алгебраических уравнений

Пусть М 0 – множество решений однородной системы (4) линейных уравнений.

Определение 6.12. Векторы с 1 , с 2 , …, с p , являющиеся решениями однородной системы линейных уравнений называются фундаментальным набором решений (сокращенно ФНР), если

1) векторы с 1 , с 2 , …, с p линейно независимы (т. е. ни один из них нельзя выразить через другие);

2) любое другое решение однородной системы линейных уравнений можно выразить через решения с 1 , с 2 , …, с p .

Заметим, что если с 1 , с 2 , …, с p – какой-либо ф.н.р., то выражением k 1 ×с 1 + k 2 ×с 2 + … + k p ×с p можно описать все множество М 0 решений системы (4), поэтому его называют общим видом решения системы (4).

Теорема 6.6. Любая неопределенная однородная система линейных уравнений обладает фундаментальным набором решений.

Способ нахождения фундаментального набора решений состоит в следующем:

Найти общее решение однородной системы линейных уравнений;

Построить (n r ) частных решений этой системы, при этом значения свободных неизвестных должны образовывать единичную матрицу;

Выписать общий вид решения, входящего в М 0 .

Пример 6.5. Найти фундаментальный набор решений следующей системы:

Решение . Найдем общее решение этой системы.

~ ~ ~ ~ Þ Þ Þ В этой системе пять неизвестных (n = 5), из них главных неизвестных два (r = 2), свободных неизвестных три (n r ), то есть в фундаментальном наборе решений содержится три вектора решения. Построим их. Имеем x 1 и x 3 – главные неизвестные, x 2 , x 4 , x 5 – свободные неизвестные

Значения свободных неизвестных x 2 , x 4 , x 5 образуют единичную матрицу E третьего порядка. Получили, что векторы с 1 , с 2 , с 3 образуют ф.н.р. данной системы. Тогда множество решений данной однородной системы будет М 0 = {k 1 ×с 1 + k 2 ×с 2 + k 3 ×с 3 , k 1 , k 2 , k 3 Î R}.

Выясним теперь условия существования ненулевых решений однородной системы линейных уравнений, другими словами условия существования фундаментального набора решений.

Однородная система линейных уравнений имеет ненулевые решения, то есть является неопределенной, если

1) ранг основной матрицы системы меньше числа неизвестных;

2) в однородной системе линейных уравнений число уравнений меньше числа неизвестных;

3) если в однородной системе линейных уравнений число уравнений равно числу неизвестных, и определитель основной матрицы равен нулю (т. е. |A | = 0).

Пример 6.6 . При каком значении параметра a однородная система линейных уравнений имеет ненулевые решения?

Решение . Составим основную матрицу этой системы и найдем ее определитель: = = 1×(–1) 1+1 × = –а – 4. Определитель этой матрицы равен нулю при a = –4.

Ответ : –4.

7. Арифметическое n -мерное векторное пространство

Основные понятия

В предыдущих разделах уже встречалось понятие о наборе из действительных чисел, расположенных в определенном порядке. Это матрица-строка (или матрица-столбец) и решение системы линейных уравнений с n неизвестными. Эти сведения можно обобщить.

Определение 7.1. n -мерным арифметическим вектором называется упорядоченный набор из n действительных чисел.

Значит а = (a 1 , a 2 , …, a n ), где a i Î R, i = 1, 2, …, n – общий вид вектора. Число n называется размерностью вектора, а числа a i называются его координатами .

Например: а = (1, –8, 7, 4, ) – пятимерный вектор.

Все множество n -мерных векторов принято обозначать как R n .

Определение 7.2. Два вектора а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) одинаковой размерности равны тогда и только тогда, когда равны их соответствующие координаты, т. е. a 1 = b 1 , a 2 = b 2 , …, a n = b n .

Определение 7.3. Суммой двух n -мерных векторов а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) называется вектор a + b = (a 1 + b 1 , a 2 + b 2 , …, a n + b n ).

Определение 7.4. Произведением действительного числа k на вектор а = (a 1 , a 2 , …, a n ) называется вектор k ×а = (k ×a 1 , k ×a 2 , …, k ×a n )

Определение 7.5. Вектор о = (0, 0, …, 0) называется нулевым (или нуль–вектором ).

Легко проверить, что действия (операции) сложения векторов и умножения их на действительное число обладают следующими свойствами: " a , b , c Î R n , " k , l Î R:

1) a + b = b + a ;

2) a + (b + c ) = (a + b ) + c ;

3) a + о = a ;

4) a + (–a ) = о ;

5) 1×a = a , 1 Î R;

6) k ×(l ×a ) = l ×(k ×a ) = (l ×k a ;

7) (k + l a = k ×a + l ×a ;

8) k ×(a + b ) = k ×a + k ×b .

Определение 7.6. Множество R n с заданными на нем операциями сложения векторов и умножения их на действительное число называется арифметическим n-мерным векторным пространством .

Ещё в школе каждый из нас изучал уравнения и, наверняка, системы уравнений. Но не многие знают, что существует несколько способов их решения. Сегодня мы подробно разберём все методы решения системы линейных алгебраических уравнений, которые состоят более чем из двух равенств.

История

На сегодняшний день известно, что искусство решать уравнения и их системы зародилось ещё в Древнем Вавилоне и Египте. Однако равенства в их привычном для нас виде появились после возникновения знака равенства "=", который был введён в 1556 году английским математиком Рекордом. Кстати, этот знак был выбран не просто так: он означает два параллельных равных отрезка. И правда, лучшего примера равенства не придумать.

Основоположником современных буквенных обозначений неизвестных и знаков степеней является французский математик Однако его обозначения значительно отличались от сегодняшних. Например, квадрат неизвестного числа он обозначал буквой Q (лат."quadratus"), а куб - буквой C (лат. "cubus"). Эти обозначения сейчас кажутся неудобными, но тогда это был наиболее понятный способ записать системы линейных алгебраических уравнений.

Однако недостатком в тогдашних методах решения было то, что математики рассматривали только положительные корни. Возможно, это связано с тем, что отрицательные значения не имели никакого практического применения. Так или иначе, но первыми считать отрицательные корни начали именно итальянские математики Никколо Тарталья, Джероламо Кардано и Рафаэль Бомбелли в 16 веке. А современный вид, основной метод решения (через дискриминант) был создан только в 17 веке благодаря работам Декарта и Ньютона.

В середине 18 века швейцарский математик Габриэль Крамер нашёл новый способ для того, чтобы сделать решение систем линейных уравнений проще. Этот способ был впоследствии назван его именем и по сей день мы пользуемся им. Но о методе Крамера поговорим чуть позднее, а пока обсудим линейные уравнения и методы их решения отдельно от системы.

Линейные уравнения

Линейные уравнения - самые простые равенства с переменной (переменными). Их относят к алгебраическим. записывают в общем виде так: а 1 *x 1 +а 2* x 2 +...а n *x n =b. Представление их в этом виде нам понадобится при составлении систем и матриц далее.

Системы линейных алгебраических уравнений

Определение этого термина такое: это совокупность уравнений, которые имеют общие неизвестные величины и общее решение. Как правило, в школе все решали системы с двумя или даже тремя уравнениями. Но бывают системы с четырьмя и более составляющими. Давайте разберёмся сначала, как следует их записать так, чтобы в дальнейшем было удобно решать. Во-первых, системы линейных алгебраических уравнений будут выглядеть лучше, если все переменные будут записаны как x с соответствующим индексом: 1,2,3 и так далее. Во-вторых, следует привести все уравнения к каноническому виду: а 1 *x 1 +а 2* x 2 +...а n *x n =b.

После всех этих действий мы можем начать рассказывать, как находить решение систем линейных уравнений. Очень сильно для этого нам пригодятся матрицы.

Матрицы

Матрица - это таблица, которая состоит из строк и столбцов, а на их пересечении находятся её элементы. Это могут быть либо конкретные значения, либо переменные. Чаще всего, чтобы обозначить элементы, под ними расставляют нижние индексы (например, а 11 или а 23). Первый индекс означает номер строки, а второй - столбца. Над матрицами, как и над любым другим математическим элементом можно совершать различные операции. Таким образом, можно:

2) Умножать матрицу на какое-либо число или вектор.

3) Транспонировать: превращать строчки матрицы в столбцы, а столбцы - в строчки.

4) Умножать матрицы, если число строк одной их них равно количеству столбцов другой.

Подробнее обсудим все эти приёмы, так как они пригодятся нам в дальнейшем. Вычитание и сложение матриц происходит очень просто. Так как мы берём матрицы одинакового размера, то каждый элемент одной таблицы соотносится с каждым элементом другой. Таким образом складываем (вычитаем) два этих элемента (важно, чтобы они стояли на одинаковых местах в своих матрицах). При умножении матрицы на число или вектор необходимо просто умножить каждый элемент матрицы на это число (или вектор). Транспонирование - очень интересный процесс. Очень интересно иногда видеть его в реальной жизни, например, при смене ориентации планшета или телефона. Значки на рабочем столе представляют собой матрицу, а при перемене положения она транспонируется и становится шире, но уменьшается в высоте.

Разберём ещё такой процесс, как Хоть он нам и не пригодится, но знать его будет всё равно полезно. Умножить две матрицы можно только при условии, что число столбцов одной таблицы равно числу строк другой. Теперь возьмём элементы строчки одной матрицы и элементы соответствующего столбца другой. Перемножим их друг на друга и затем сложим (то есть, например, произведение элементов a 11 и а 12 на b 12 и b 22 будет равно: а 11 *b 12 + а 12 *b 22). Таким образом, получается один элемент таблицы, и аналогичным методом она заполняется далее.

Теперь можем приступить к рассмотрению того, как решается система линейных уравнений.

Метод Гаусса

Этой тему начинают проходить еще в школе. Мы хорошо знаем понятие "система двух линейных уравнений" и умеем их решать. Но что делать, если число уравнений больше двух? В этом нам поможет

Конечно, этим методом удобно пользоваться, если сделать из системы матрицу. Но можно и не преобразовывать её и решать в чистом виде.

Итак, как решается этим методом система линейных уравнений Гаусса? Кстати, хоть этот способ и назван его именем, но открыли его ещё в древности. Гаусс предлагает следующее: проводить операции с уравнениями, чтобы в конце концов привести всю совокупность к ступенчатому виду. То есть, нужно, чтобы сверху вниз (если правильно расставить) от первого уравнения к последнему убывало по одному неизвестному. Иными словами, нужно сделать так, чтобы у нас получилось, скажем, три уравнения: в первом - три неизвестных, во втором - два, в третьем - одно. Тогда из последнего уравнения мы находим первое неизвестное, подставляем его значение во второе или первое уравнение, и далее находим оставшиеся две переменные.

Метод Крамера

Для освоения этого метода жизненно необходимо владеть навыками сложения, вычитания матриц, а также нужно уметь находить определители. Поэтому, если вы плохо всё это делаете или совсем не умеете, придется поучиться и потренироваться.

В чём суть этого метода, и как сделать так, чтобы получилась система линейных уравнений Крамера? Всё очень просто. Мы должны построить матрицу из численных (практически всегда) коэффициентов системы линейных алгебраических уравнений. Для этого просто берём числа перед неизвестными и расставляем в таблицу в том порядке, как они записаны в системе. Если перед числом стоит знак "-", то записываем отрицательный коэффициент. Итак, мы составили первую матрицу из коэффициентов при неизвестных, не включая числа после знаков равенства (естественно, что уравнение должно быть приведено к каноническому виду, когда справа находится только число, а слева - все неизвестные с коэффициентами). Затем нужно составить ещё несколько матриц - по одной для каждой переменной. Для этого заменяем в первой матрице по очереди каждый столбец с коэффициентами столбцом чисел после знака равенства. Таким образом получаем несколько матриц и далее находим их определители.

После того как мы нашли определители, дело за малым. У нас есть начальная матрица, и есть несколько полученных матриц, которые соответствуют разным переменным. Чтобы получить решения системы, мы делим определитель полученной таблицы на определитель начальной таблицы. Полученное число и есть значение одной из переменных. Аналогично находим все неизвестные.

Другие методы

Существует ещё несколько методов для того, чтобы получить решение систем линейных уравнений. Например, так называемый метод Гаусса-Жордана, который применяется для нахождения решений системы квадратных уравнений и тоже связан с применением матриц. Существует также метод Якоби для решения системы линейных алгебраических уравнений. Он легче всех адаптируется для компьютера и применяется в вычислительной технике.

Сложные случаи

Сложность обычно возникает, если число уравнений меньше числа переменных. Тогда можно наверняка сказать, что, либо система несовместна (то есть не имеет корней), или количество её решений стремится к бесконечности. Если у нас второй случай - то нужно записать общее решение системы линейных уравнений. Оно будет содержать как минимум одну переменную.

Заключение

Вот мы и подошли к концу. Подведём итоги: мы разобрали, что такое система и матрица, научились находить общее решение системы линейных уравнений. Помимо этого рассмотрели другие варианты. Выяснили, как решается система линейных уравнений: метод Гаусса и Поговорили о сложных случаях и других способах нахождения решений.

На самом деле эта тема гораздо более обширна, и если вы хотите лучше в ней разобраться, то советуем почитать больше специализированной литературы.

Даны матрицы

Найти: 1) aA - bB,

Решение : 1) Находим последовательно, используя правила умножения матрицы на число и сложения матриц..


2. Найдите А*В, если

Решение : Используем правило умножения матриц

Ответ:

3. Для заданной матрицы найдите минор М 31 и вычислите определитель.

Решение : Минор М 31 – это определитель матрицы, которая получается из А

после вычеркивания строки 3 и столбца 1. Находим

1*10*3+4*4*4+1*1*2-2*4*10-1*1*4-1*4*3 = 0.

Преобразуем матрицу А, не изменяя её определителя (сделаем нули в строке 1)

-3*, -, -4*
-10 -15
-20 -25
-4 -5

Теперь вычисляем определитель матрицы А разложением по строке 1


Ответ: М 31 = 0, detA = 0

Pешить методом Гаусса и методом Крамера.

2х 1 + х 2 + x 3 = 2

x 1 + х 2 + 3x 3 = 6

2x 1 + x 2 + 2x 3 = 5

Решение : Проверим


Можно применить метод Крамера


Решение системы: х 1 = D 1 /D = 2, х 2 = D 2 /D = -5, х 3 = D 3 /D = 3

Применим метод Гаусса.

Расширенную матрицу системы приведём к треугольному виду.

Для удобства вычислений поменяем строки местами:

Умножим 2-ю строку на (k = -1 / 2 = -1 / 2 ) и добавим к 3-й:

1 / 2 7 / 2

Умножим 1-ю строку на (k = -2 / 2 = -1 ) и добавим к 2-й:

Теперь исходную систему можно записать как:

x 1 = 1 - (1 / 2 x 2 + 1 / 2 x 3)

x 2 = 13 - (6x 3)

Из 2-ой строки выражаем

Из 1-ой строки выражаем

Решение то же.

Ответ: (2 ; -5 ; 3)

Найти общее решение системы и ФСР

13х 1 – 4х 2 – х 3 - 4х 4 - 6х 5 = 0

11х 1 – 2х 2 + х 3 - 2х 4 - 3х 5 = 0

5х 1 + 4х 2 + 7х 3 + 4х 4 + 6х 5 = 0

7х 1 + 2х 2 + 5х 3 + 2х 4 + 3х 5 = 0

Решение : Применим метод Гаусса. Расширенную матрицу системы приведём к треугольному виду.

-4 -1 -4 -6
-2 -2 -3
x 1 x 2 x 3 x 4 x 5

Умножим 1-ю строку на (-11). Умножим 2-ю строку на (13). Добавим 2-ю строку к 1-й:

-2 -2 -3

Умножим 2-ю строку на (-5). Умножим 3-ю строку на (11). Добавим 3-ю строку к 2-й:

Умножим 3-ю строку на (-7). Умножим 4-ю строку на (5). Добавим 4-ю строку к 3-й:

Второе уравнение есть линейная комбинация остальных

Найдем ранг матрицы.

-18 -24 -18 -27
x 1 x 2 x 3 x 4 x 5

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 2.

Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 , значит, неизвестные x 1 ,x 2 – зависимые (базисные), а x 3 ,x 4 ,x 5 – свободные.

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:

18x 2 = 24x 3 + 18x 4 + 27x 5

7x 1 + 2x 2 = - 5x 3 - 2x 4 - 3x 5

Методом исключения неизвестных находим общее решение :

x 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5

x 1 = - 1 / 3 x 3

Находим фундаментальную систему решений (ФСР), которая состоит из (n-r) решений. В нашем случае n=5, r=2, следовательно, фундаментальная система решений состоит из 3-х решений, причем эти решения должны быть линейно независимыми.

Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 3.

Достаточно придать свободным неизвестным x 3 ,x 4 ,x 5 значения из строк определителя 3-го порядка, отличного от нуля, и подсчитать x 1 ,x 2 .

Простейшим определителем, отличным от нуля, является единичная матрица.

Но здесь удобнее взять

Находим, используя общее решение:

а) х 3 = 6, х 4 = 0, х 5 = 0 Þ х 1 = - 1 / 3 x 3 = -2, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = -4 Þ

I решение ФСР: (-2; -4; 6; 0;0)

б) х 3 = 0, х 4 = 6, х 5 = 0 Þ х 1 = - 1 / 3 x 3 = 0, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = - 6 Þ

II решение ФСР: (0; -6; 0; 6;0)

в) х 3 = 0, х 4 = 0, х 5 = 6 Þ х 1 = - 1 / 3 x 3 = 0, х 2 = - 4 / 3 x 3 - x 4 - 3 / 2 x 5 = -9 Þ

III решение ФСР: (0; - 9; 0; 0;6)

Þ ФСР: (-2; -4; 6; 0;0), (0; -6; 0; 6;0), (0; - 9; 0; 0;6)

6. Дано: z 1 = -4 + 5i, z 2 = 2 – 4i. Найти: a) z 1 – 2z 2 б) z 1 z 2 в) z 1 /z 2

Решение : a) z 1 – 2z 2 = -4+5i+2(2-4i) = -4+5i+4-8i = -3i

б) z 1 z 2 = (-4+5i)(2-4i) = -8+10i+16i-20i 2 = {i 2 = -1} = 12 + 26i


Ответ: а) -3i б) 12+26i в) -1.4 – 0.3i

Вы можете заказать подробное решение вашей задачи !!!

Чтобы понять, что такое фундаментальная система решений вы можете посмотреть видео-урок для этого же примера кликнув . Теперь перейдем собственно к описанию всей необходимой работы. Это поможет вам более детально разобраться в сути данного вопроса.

Как найти фундаментальную систему решений линейного уравнения?

Возьмём для примера такую систему линейных уравнений:

Найдём решение этой линейной системы уравнений . Для начала нам надо выписать матрицу коэффициентов системы.

Преобразуем эту матрицу к треугольной. Первую строку переписываем без изменений. И все элементы, что стоят под $a_{11}$, надо сделать нулями. Что бы сделать ноль в место элемента $a_{21}$, надо от второй строки вычесть первую, и разность записать во второй строке. Что бы сделать ноль в место элемента $a_{31}$, надо от третьей строки вычесть первую и разность записать в третьей строке. Что бы сделать ноль в место элемента $a_{41}$, надо от четвёртой строки вычесть первую умноженную на 2 и разность записать в четвёртой строке. Что бы сделать ноль в место элемента $a_{31}$, надо от пятой строки вычесть первую умноженную на 2 и разность записать в пятой строке.

Первую и вторую строку переписываем без изменений. И все элементы, что стоят под $a_{22}$, надо сделать нулями. Что бы сделать ноль в место элемента $a_{32}$, надо от третьей строки вычесть вторую умноженную на 2 и разность записать в третьей строке. Что бы сделать ноль в место элемента $a_{42}$, надо от четвёртой строки вычесть вторую умноженную на 2 и разность записать в четвёртой строке. Что бы сделать ноль в место элемента $a_{52}$, надо от пятой строки вычесть вторую умноженную на 3 и разность записать в пятой строке.

Видим, что последние три строки – одинаковые , поэтому если от четвёртой и пятой вычесть третью, то они станут нулевыми.

По этой матрице записываем новую систему уравнений .

Видим, что линейно независимых уравнений у нас, только три, а неизвестных пять, поэтому фундаментальная система решений будет состоять из двух векторов . Значит, нам надо перенести две последние неизвестные вправо .

Теперь, начинаем выражать те неизвестные, что стоят в левой части через те, что стоят в правой части. Начинаем с последнего уравнения, сначала выразим $x_3$, потом полученный результат подставим во второе уравнение и выразим $x_2$, а потом в первое уравнение и тут выразим $x_1$. Таким образом мы все неизвестные, что стоят в левой части, выразили через неизвестные, что стоят в правой части.

После чего вы вместо $x_4$ и $x_5$, можем подставлять любые числа и находить $x_1$, $x_2$ и $x_3$. Каждая такая пятёрка чисел будет корнями нашей изначальной системы уравнений. Что бы найти векторы, что входят в ФСР нам надо вместо $x_4$ подставить 1, а вместо $x_5$ подставить 0, найти $x_1$, $x_2$ и $x_3$, а потом наоборот $x_4=0$ и $x_5=1$.

Однородная система всегда совместна и имеет тривиальное решение
. Для существования нетривиального решения необходимо, чтобы ранг матрицыбыл меньше числа неизвестных:

.

Фундаментальной системой решений однородной системы
называют систему решений в виде векторов-столбцов
, которые соответствуют каноническому базису, т.е. базису, в котором произвольные постоянные
поочередно полагаются равными единице, тогда как остальные приравниваются нулю.

Тогда общее решение однородной системы имеет вид:

где
- произвольные постоянные. Другими словами, общее решение есть линейная комбинация фундаментальной системы решений.

Таким образом, базисные решения могут быть получены из общего решения, если свободным неизвестным поочередно придавать значение единицы, полагая все остальные равные нулю.

Пример . Найдем решение системы

Примем , тогда получим решение в виде:

Построим теперь фундаментальную систему решений:

.

Общее решение запишется в виде:

Решения системы однородных линейных уравнений имеют свойства:

Другими словами, любая линейная комбинация решений однородной системы есть опять решение.

Решение систем линейных уравнений методом Гаусса

Решение систем линейных уравнений интересует математиков несколько столетий. Первые результаты были получены в XVIII веке. В 1750 г. Г.Крамер (1704 –1752) опубликовал свои труды по детерминантам квадратных матриц и предложил алгоритм нахождения обратной матрицы. В 1809 г. Гаусс изложил новый метод решения, известный как метод исключения.

Метод Гаусса, или метод последовательного исключения неизвестных, заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида. Такие системы позволяют последовательно находить все неизвестные в определенном порядке.

Предположим, что в системе (1)
(что всегда возможно).

(1)

Умножая поочередно первое уравнение на так называемые подходящие числа

и складывая результат умножения с соответствующими уравнениями системы, мы получим эквивалентную систему, в которой во всех уравнениях, кроме первого, будет отсутствовать неизвестная х 1

(2)

Умножим теперь второе уравнение системы (2) на подходящие числа, полагая, что

,

и складывая его с нижестоящими, исключим переменную из всех уравнений, начиная с третьего.

Продолжая этот процесс, после
шага мы получим:

(3)

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство противоречиво и система (1) несовместна. Обратно, для любой совместной системы числа
равны нулю. Число- это ни что иное, как ранг матрицы системы (1).

Переход от системы (1) к (3) называется прямым ходом метода Гаусса, а нахождение неизвестных из (3) – обратным ходом .

Замечание : Преобразования удобнее производить не с самими уравнениями, а с расширенной матрицей системы (1).

Пример . Найдем решение системы

.

Запишем расширенную матрицу системы:

.

Прибавим к строкам 2,3,4 первую, умноженную на (-2), (-3), (-2) соответственно:

.

Поменяем строки 2 и 3 местами, затем в получившейся матрице добавим к строке 4 строку 2, умноженную на :

.

Прибавим к строке 4 строку 3, умноженную на
:

.

Очевидно, что
, следовательно, система совместна. Из полученной системы уравнений

находим решение обратной подстановкой:

,
,
,
.

Пример 2. Найти решение системы:

.

Очевидно, что система несовместна, т.к.
, а
.

Достоинства метода Гаусса :

    Менее трудоемкий, чем метод Крамера.

    Однозначно устанавливает совместность системы и позволяет найти решение.

    Дает возможность определить ранг любых матриц.

Поделиться: