Поверхности и тела вращения. Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i. Криволинейная поверхность вращения образуется при вращении лю-

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.


В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения .

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости перпендикулярной оси вращения (рис. 42).

Эти окружности называются параллелями . Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям . Линия пересечения поверхности вращения плоскостью Σ , проходящей через ось, называется меридианом .

Меридиан, который является результатом пересечения поверхности вращения с плоскостью уровня, называетсяглавным . Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения.

М

Рис. 42 Элементы поверхности вращения

ножество всех параллелей или меридианов представляет собой непрерывныйкаркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку.

При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

Вращением прямой линии образуются:

цилиндр вращения , если прямая l параллельна оси i (рис. 43 а );

конус вращения , если прямая l пересекает ось i (рис. 43 б );

однополостный гиперболоид , если прямая l скрещивается с осью i (рис. 43 в ).

Рис. 43 Линейчатые поверхности вращения

К поверхностям вращения, образованным вращением кривых второго порядка вокруг оси относятся:

сфера образуется вращением окружности вокруг ее диаметра (рис. 44 а );

эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси (44 б , в );

тор образуется вращением окружности вокруг внешней оси (рис. 44 г );

Рис. 44 Поверхности вращения второго порядка

параболоид вращения образуется вращением параболы вокруг ее оси (рис. 44 д );

однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 44 е ).

Каналовые и циклические поверхности

Каналовой называют поверхность, образованную непрерывным каркасом замкнутых плоских сечений, определенным образом ориентированных в пространстве. Площади этих сечений могут оставаться постоянными или монотонно изменяться в процессе перехода от одного сечения к другому. На рис. 45 приведены два изображения каналовой поверхности. В инженерной практике наибольшее распространение получили два способа ориентирования плоскостей образующих:

– параллельно какой-либо плоскости – каналовые поверхности с плоскостью параллелизма ;

– перпендикулярно к направляющей линии – прямые каналовые поверхности .

Каналовая поверхность может быть использована для создания переходных участков между двумя поверхностями типа трубопроводов, имеющих:

– различную форму, но одинаковую площадь нормального сечения;

– одинаковую форму, но различные площади сечения;

– различную форму и различные площади поперечных сечений.

Циклическую поверхность можно рассматривать как частный случай каналовой поверхности. Она образуется с помощью окружности, центр которой перемещается по криволинейной направляющей. В процессе движения радиус окружности монотонно меняется. Пример циклической поверхности показан на рис. 46.

Трубчатая поверхность относится к группе нелинейчатых поверхностей с образующей постоянного вида и является частным случаем циклической и каналовой поверхностей. Она обладает свойствами, присущими этим видам поверхностей. У циклической поверхности она позаимствовала форму образующей, а у каналовой – закон движения этой образующей. На рис. 47 приведен пример трубчатой поверхности.

Поверхности вращения и ограничиваемые ими тела имеют весьма широкое применение во всех областях техники. В качестве примеров на рис. 8.11 показаны баллон электронно-лучевой трубки (а), сосуд Дьюара для хранения жидкого воздуха (б), центр токарного станка (в), коллектор электронов мощного электронно-лучевого прибора (г),

объемный сверхвысокочастотный резонатор электромагнитных колебаний (∂).

В зависимости от вида образующей поверхности вращения могут быть линейчатыми, нелинейчатыми или состоять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии вокруг неподвижной прямой – оси поверхности. На чертежах ось изображают штрихпунктирной линией. Образующаяся линия может в общем случае иметь как криволинейные, так и прямолинейные участки. Поверхность вращения на чертеже можно задать образующей и положением оси. На рис. 8.12 изображена поверхность вращения, которая образована вращением образующей ABCD (ее фронтальная проекция А "В"CD") вокруг оси OO1 (фронтальная проекция О"О"), перпендикулярной плоскости π,. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вращения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. На виде сверху (рис. 8.12) показаны проекции окружностей, описываемых точками А, В, С, D, проходящие через проекции А", В",С, D". Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, аналогично наименьшую – горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридианальной, линию ее пересечения с поверхностью вращения – меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений. Так, если ось поверхности вращения параллельна плоскости π2, то главный меридиан проецируется на плоскость π 2 без искажений. Если ось поверхности вращении перпендикулярна плоскости π, то горизонтальная проекция поверхности имеет очерк в виде окружности.

Наиболее удобным для выполнения изображений поверхностей вращения являются случаи, когда их оси перпендикулярны плоскости Jt1, плоскости π2 или плоскости π3.

Некоторые поверхности вращения являются частными случаями поверхностей, рассмотренных в § 8.1, например цилиндр вращения, конус вращения . Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в одной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения – поверхности, бесконечные в направлении их образующих, поэтому на изображениях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проекций или какими-либо из параллелей. Из стереометрии известно, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными оси поверхности. Меридиан такого цилиндра – прямоугольник, конуса – треугольник.

Такая поверхность вращения, как сфера , является ограниченной и может быть изображена на чертеже полностью. Экватор и меридианы сферы – равные между собой окружности. При ортогональном проецировании на все три плоскости проекций сфера проецируется в круги.

Тор . При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность, называемая тором. На рис. 8.13 приведены:

а – открытый тор или круговое кольцо; б – закрытый тор; в, г – самопересекающийся тор. Тор вида г называют также лимоновидным. На рис. 8.13 они изображены в положении, когда ось тора перпендикулярна плоскости проекций π1. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных его оси, и в плоскостях, проходящих через ось тора. При этом в плоскостях, перпендикулярных оси тора, в свою очередь имеются два семейства окружностей – линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора (рис. 8.13, г) имеется только первое семейство окружностей.

Точки на поверхности вращения. Положение точки на поверхности вращения определяют с помощью окружности, проходящей через эту точку на поверхности вращения. В случае линейчатых поверхностей для этой цели возможно применение и прямолинейных образующих.

Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рис. 8.12. Если дана проекция М", то проводят фронтальную проекцию параллели, а затем радиусом проводят окружность – горизонтальную проекцию параллели – и на ней находят проекцию M". M ", то следовало бы провести радиусом

окружность, по точке F" построить F" и провести – фронтальную проекцию параллели и на ней в проекционной связи отметить точку М". Если дана проекция N" на линейчатом (коническом) участке поверхности вращения, то проводят фронтальную проекцию D"G" очерковой образующей и через проекцию N" фронтальную проекцию G "К" образующей на поверхности конуса. Затем на горизонтальной проекции G"K" этой образующей строят проекцию N". Если бы была задана горизонтальная проекция N", то следовало бы провести через нее горизонтальную проекцию G "K" образующей, по проекциям К " и G" (построение ее было рассмотрено выше) построить фронтальную проекцию G "К" и на ней в проекционной связи отметить проекцию N".

На рис. 8.14 показано построение проекций точки К, принадлежащей поверхности тора. Стрелками указано построение горизонтальной проекции К " по заданной фронтальной проекции К ". Если задана горизонтальная проекция, то построение выполняют в обратном порядке.

На рис. 8.15 показано построение по заданной фронтальной проекции M" точки на поверхности сферы ее горизонтальной M" и профильной M проекций. Проекция M" построена с помощью окружности – параллели, проходящей через M". Ее радиус – ОТ. Проекция M"" построена с помощью окружности, плоскость которой па

раллельна профильной плоскости проекций, проходящей через проекцию М". Ее радиус – О ""2

Построение проекций линий на поверхностях вращения может быть выполнено также с помощью окружностей – параллелей, проходящих через точки, принадлежащие этой линии.

На рис. 8.16 показано построение горизонтальной проекции А "В" линии, заданной фронтальной проекцией А "В" на поверхности вращения, состоящей из частей поверхностей сферы, тора, конической. Для более точного вычерчивания горизонтальной проекции линии продолжим ее фронтальную проекцию вверх и вниз и отметим проекции 6" и 5 " крайних точек. Горизонтальные проекции 6 ", Г,3",4",5" построены с помощью линий связи. Проекции В", 2", 7", 8", А " построены с помощью параллелей, фронтальные проекции которых проходят через проекции /?",2", 7", 8", А "этихточек. Количество и расположение промежуточных точек выбирают исходя из формы линии и требуемой точности построения. Горизонтальная проекция линии состоит из участков: В"–Г – части эллипса, 3 "8 "А "4 части другого эллипса, 1 "2"7"3"– кривой четвертого порядка (проекция кривой на поверхности тора).

Теорема.

Расстояние от точки до прямой , заданной точкой и направляющим вектором может быть найдено по формуле

.

А расстояние между двумя скрещивающимися прямыми находится по формуле

.

Поверхностью вращения называется поверхность, которая вместе с каждой своей точкой содержит всю окружность, полученную вращением этой точки вокруг некоторой фиксированной прямой . Прямая , вокруг которой производится вращение, называется осью вращения . Вращение точки вокруг оси происходит в плоскости, перпендикулярной оси. В сечении поверхности вращения плоскостями, перпендикулярными оси вращения, получаются окружности, которые называются параллелями . Плоскости, проходящие через ось вращения, пересекают поверхность вращения по линиям, называемым меридианами .

Теорема. В прямоугольной системе координат уравнение

есть уравнение поверхности вращения, образованной вращением вокруг оси линии, заданной уравнениями

.

Цилиндрической поверхностью или цилиндром называется поверхность, которая вместе с каждой точкой содержит всю прямую, проходящую через точку , параллельно данному ненулевому вектору . Прямые, параллельные вектору и принадлежащие цилиндрической поверхности, называются образующими этой поверхности.

Цилиндрическая поверхность может быть образована следующим образом. Пусть - некоторая линия, а - ненулевой вектор. Поверхность, образованная всеми прямыми, каждая из которых проходит через некоторую точку линии параллельно вектору , будет цилиндрической. В этом случае линия называется направляющей это поверхности.

Если прямоугольная система координат выбрана так, что образующие цилиндрической поверхности второго порядка были параллельны оси , а направляющая в системе имела каноническое уравнение, то цилиндрические поверхности определяются следующим образом.

- эллиптический цилиндр;

- гиперболический цилиндр;

- параболический цилиндр;

-цилиндр, распавшийся на пару пересекающихся по оси плоскостей;

- цилиндр, распавшийся на пару параллельных плоскостей;

- цилиндр, представляющий собой пару слившихся плоскостей.

Эти уравнения называются каноническими уравнениями соответствующих цилиндрических поверхностей второго порядка.

Если в каноническом уравнении эллиптического цилиндра , то направляющей цилиндра служит окружность , лежащая в плоскости . В этом случае поверхность является цилиндром вращения .

Конической поверхностью или конусом с вершиной в точке называется поверхность, которая обладает тем свойством, что вместе с каждой своей точкой , отличной от точки , эта поверхность содержит прямую .



Прямые проходящие через вершину конуса и лежащие на нем, называются образующими этого конуса.

Рассмотрим в пространстве линию и точку , не лежащую на линии . Поверхность, образованная всеми прямыми, каждая из которых проходит через точку и через некоторую точку линии , является конической поверхностью с вершиной .

В этом случае линия называется направляющей .

Рассмотрим коническую поверхность с вершиной в начале прямоугольной системы координат , направляющая которой служит эллипс :

.

Найдем уравнение этой поверхности. Пусть точка , отличная от точки , принадлежит конусу . Тогда прямая пересечет направляющую в некоторой точке . Так как и векторы и коллинеарны, то найдется такое вещественное число , что , или в координатах:

Отсюда находим

.

Подставив полученные выражения в первое из равенств, после несложных преобразований найдем:

.

Итак, координаты любой точки конуса удовлетворяют этому уравнению. Нетрудно убедиться также, что если точка не принадлежит конусу, то ее координаты не удовлетворяют этому уравнению.

Таким образом, мы получили уравнение второй степени, поэтому конус называется конусом второго порядка. А само уравнение называется каноническим уравнением конической поверхности второго порядка .

В случае, когда направляющая конической поверхности второго порядка является окружностью, то есть когда , уравнение принимает вид

.

Поверхность, определяемая этим уравнением в прямоугольной системе координат, называется круговой конической поверхностью или круговым конусом.


Практические занятия:

Тема 1:

Тема 2:

Тема 3:

Тема 4:

Тема 5:

Тема 6:

Тема 7:

Тема 8:

Тема 9:

Тема 10:

Тема 11.

Тема 12.

Тема 13.

Тема 14.

Тема 15.

Самостоятельная работа студентов:

Тема 1: Бинарные операции на множестве. Понятие группы, кольца и поля. Примеры. Поле комплексных чисел. № 101 – 113, 17 – 18 б. ; № 2.8, 2.10, 2.13, 2.15-2.21, 18-20 б.

Тема 2: Операции над комплексными числами. Алгебраическая и тригонометрическая форма комплексного числа. № 118 – 119, 136 – 140, 19 -20 б., № 2.22 – 2.23, 2.26 – 2.28, 2.46-2.50 , 20 – 23 б.

Тема 3: Перестановки и подстановки. Группа подстановок. Циклические подстановки. № 219 -221, 223, № 410 / 28 – 29, 55 -56 б. № 3.2 – 3.6, 3.38 / 26 – 27, 33 б

Тема 4: Матрицы и действия над ними. Определители второго и третьего порядка. № 235 – 240, 243 – 245, 231-232 /31-32 б., № 3.24-3.27, 3.30(1,2)/29-30б.

Тема 5: Определители и их свойства. Миноры и алгебраические дополнения. Определители n-го порядка № 231–232, 266–267, 273–280, № 374, 31, 35–37, 48 б., № 442 / 61 б. , № 3.30–3.31 / 30–31 б., № 4.24–4.28 / 44-45 б.

Тема 6: Обратная матрица и методы ее вычисления. Матричные уравнения. № 400, 410–411 / 55–56 б. , № 3.38–3.40 / 33–34 б.

Тема 7: Системы линейных уравнений. Арифметическое n-мерное векторное пространство. Метод Гаусса. Правило Крамера. № 443– 447 / 62 – 64 б. , № 4.18–4.19, 4.64 / 41 – 43, 51 б.

Тема 8: Многочлены от одной переменной НОД многочленов. Корни многочленов. Формулы Виета. Основная теорема алгебры и ее следствие. № 400– 402 / 53 – 54 б. , № 443–447, 449 / 62 – 64 б. № 3.55-3.59, 4.18 - 4.19, 4.64 /36-37, 41-43, 51 б.

Тема 9: Векторы. Базис векторного пространства. № 650, 167, 173 /89, 22 – 23 б. , № 11.59, 11.60, 11.65, 11.74 – 11.77, 11.81 – 11.86 / 123 – 125 б.

Тема 10: Скалярное, векторное и смешанное произведение векторов. 104, 114, 117, 118, 124, 424, 428, 445(1,3,6), 446(1,3), 454, 462, 468(1,3), 473, 487(1), 489(1,3) .

Тема 11. Прямая линия на плоскости. Различные виды уравнений на плоскости. Расстояние от точки до плоскости. Взаимное расположение двух прямых. 279(а, в), 282(а, в), 289(а, в), 294(а), 552, 553.

Тема 12. Кривые второго порядка. Эллипс, гипербола, парабола. Вывод канонических уравнений. 376, 379, 392, 403, 477(а, в), 479, 486, 507(а), 515, 558(1,3), 559(1,3), 564(1, 3), 567, 584(1), 585(1), 598, 600(1).

Тема 13. Плоскость в пространстве. Различные виды уравнения плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. 756, 758(а, в), 764(а, в), 765(а, в), 767(а, в), 794(а, в), 796(а, в), 798, 713, 715, 718(1), 719(1), 728(1, 3), 730(1), 733(1, 3).

Тема 14. Прямая линия в пространстве. Различные виды уравнения. Взаимное расположение двух прямых. 1058(а), 1059(а, в), 1060(а), 1066(а), 1068(а), 1113(а), 1116(а), 1122(а) , 624(1, 3), 625(1,3), 630(1), 632, 645(1).

Тема 15. Поверхности 2-го порядка. Поверхности вращения. Цилиндрические поверхности. Конические поверхности. 1252, 1254(а, в), 1256 , 769, 770(1), 771, 775(1).

8.ПОВЕРХНОСТИ ВРАЩЕНИЯ

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения (рис.2.3.45).

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка, например В(В 1 , В 2), образующей линии l(l 1 , l 2)при вращении вокруг оси i(i 1 , i 2) описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения (рис. 2.3.45). Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия, например, m(m 1 , m 2) пересечения поверхности вращения плоскостью ( 1), проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны. Меридиан l(l 1 , l 2), который является результатом пересечения поверхности вращения с плоскостью уровня ( 1), называется главным. Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения. Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения i и образующей линии l. Чертеж поверхности вращения будет простейшим, если ось вращения расположить перпендикулярно одной из плоскостей проекций, а в качестве образующей линии взять главный меридиан (рис. 2.3.45, б). Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей l вокруг оси i и построения каркаса параллелей необходимой плотности. При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

а. Поверхности, образуемые вращением прямой (линейчатые поверхности вращения)

Вращением прямой линии образуются: 1) цилиндр вращения, если прямая l параллельна оси i (рис. 2.3.46); 2)конус вращения, если прямая l пересекает ос i (рис. 2.3.47); 3)однополостный гиперболоид вращения, если прямая l(ВС) скрещивается с осью i (рис. 2.3.48).

Рис. 2.3.46

Поверхность (рис. 2.3.48) имеет две образующие линии l(ВС) и l"(В"С"), наклоненные в разные стороны и пересекающиеся в точке (А), принадлежащей наименьшей параллели. Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые.

Рис. 2.3.47

Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола. Все рассмотренные линейчатые поверхности вращения являются поверхностями второго порядка. Построение проекций точки, принадлежащей каждой из них, можно выполнить при помощи параллели или прямолинейной образующей, проходящих через нее.

Рис. 2.3.48

б. Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфера образуется вращением окружности вокруг ее диаметра (рис. 2.3.49). 2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси. 3. Параболоид вращения образуется вращением параболы вокруг ее оси.

Рис. 2.3.49

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 2.3.48 справа). 5. Двуполостный гиперболоид вращения образуется вращением гиперболы вокруг ее действительной оси. При вращении асимптот гиперболы образуется конус вращения, который называется асимптотическим по отношению к поверхности гиперболоида. Все рассмотренные поверхности вращения являются поверхностями второго порядка. Построение проекции точки, принадлежащей каждой из них, можно выполнить при помощи параллели, проходящей через эту точку. в. Поверхности, образуемые вращением кривых второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости Существует теорема: "При вращении плоской или пространственной алгебраической кривой n-го порядка вокруг произвольной оси образуется алгебраическая поверхность вращения, имеющая в общем случае порядок 2n". Из этой теоремы следует, что при вращении кривой второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости, образуется поверхность четвертого порядка. Наиболее распространенной поверхностью четвертого порядка является тор.

Рис. 2.3.50

Тором называется поверхность, образованная вращением окружности вокруг оси, принадлежащей плоскости окружности, но не проходящей через ее центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем - открытым, или кольцом. На рис. 2.3.50 изображены проекции тора-кольца. Являясь поверхностью четвертого порядка, тор пересекается произвольной прямой в четырех точках, произвольной плоскостью по кривой четвертого порядка.

Рис. 2.3.50,1(анимационный) Эта кривая распадается на две окружности (параллели), если плоскость перпендикулярна оси тора (плоскость на рис. 2.3.50), на две окружности (меридиан), если плоскость проходит через ось тора(плоскости Г и Г" на рис. 2.3.50), на две окружности, если плоскость проходит через центр тора и касается его меридиана (плоскость). Проекции точки, например М, принадлежащей поверхности тора, можно построить при помощи параллели (рис. 2.3.50). На рис. 2.3.51 показана динамическая сцена формообразования поверхности тора.

Линия пересечения двух поверхностей второго порядка в общем случае представляет собой алгебраическую кривую четвертого порядка. В частных случаях она может распадаться на линии низших порядков, сумма порядков которых равна четырем: а) на четыре прямые - 1 + 1 + 1 + 1 (рис. 4.56, a). Общие образующие m, m", n, n", по которым пересекаются два цилиндра с параллельными осями, являются частями распавшейся кривой;

б) на две прямые и кривую второго порядка - 1 + 1 +2 (рис. 4.56, б); в) на прямую и кривую третьего порядка - 1 + 3; г) на две кривые второго порядка - 2+2 (рис. 4.57, 4.58, 4.59). Признаки распадения кривой четвертого порядка на две кривые второго порядка сформулированы в следующих теоремах: Теорема 1 . Если две поверхности второго порядка пересекаются по одной плоской кривой (1 - 5 - 2 - 6 на рис. 4.57), то они пересекаются еще по одной кривой, которая тоже будет плоской (3 - 5 - 4 - 6 на рис. 4.57).

Примечание. Плоская кривая, принадлежащая поверхности второго порядка, является кривой второго порядка. Теорема 2. Если две поверхности второго порядка имеют касание в двух точках (1 и 2 на рис. 4.58), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания. Сфера, имеющая двойное касание с поверхностью второго порядка (рис. 4.59), может быть использована для нахождения круговых сечений тех поверхностей второго порядка, которые их имеют. Пусть требуется найти круговые сечения эллиптического цилиндра (рис. 4.59). Проведем сферу с центром на оси цилиндра и диаметром, равным длине отрезка /1 - 2/ - большой оси эллипса. Эта сфера будет касаться двух образующих цилиндра в точках 1 и 2. Линия пересечения со сферой распадается на две окружности, расположенные в профильно проецирующих плоскостях и". Полученные окружности определяют два семейства круговых сечений эллиптического цилиндра.Теорема 3 (теорема Монжа ). Если две поверхности второго порядка описаны около третьей или вписаны в не<(рис. 4.60), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (прямая 5 - 6). Теорема Монжа является частным случаем теоремы 2. Построение проекций указанных выше кривых второго порядка (рис. 4.58, 4.58, 4.59, 4.60) ясно из чертежей.

Заканчивая рассмотрение второй позиционной задачи на пересечение поверхностей, приведем несколько динамических сцен, демонстрирующих процесс взаимного пересечения поверхностей. На рис.4.61 показано пересечение поверхностей сферы и эллиптическогo цилиндра. На рис. 4.62 сфера пересекается с пирамидой, а на рис. 4.63 показано пересечение двух кривых поверхностей.

Поделиться: