Диффузия: определение и примеры в окружающем мире. Молекулярная диффузия

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, - к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ - «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных х, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени ΔT, равно числу молекул, находящихся к началу интервала ΔT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v ΔT. (Заметим, что здесь v - настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n_vΔT, где n_ - число особых молекул в единичном объеме слева от площадки (с точностью до множителя ˜ 1 / 6 , но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n + vΔT, где n + - плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

А что понимать под n_ и n + ? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n_ - это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n + - плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим n а . Под n а (х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда разность (n + –n_) можно представить в виде

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n_, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1 / 3 . Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль у-и z-направлений.

С помощью макроскопических наблюдений можно измерить ток J x и градиент плотности dn a /dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D. Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l .

Если в уравнение (43.25) подставить l =vτ и τ=µm, то получится

Ho mv 2 зависит только от температуры. Мы еще помним, что

так что

Таким образом, D, коэффициент диффузии, равен произведению kТ на µ, коэффициент подвижности:

Оказывается, что (43.31) - это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности µ скорость дрейфа дается соотношением

Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):

или

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем J x + J др = 0, или

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр (-U/kT), где U - потенциальная энергия. Если говорить о плотности молекул n а , то это значит:

Дифференцируя (43.37) по х, получаем

или

В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна -Fx, a-dU/dx = F. Уравнение (43.39) принимает вид

[Это в точности уравнение (40.2), из которого мы и вывели exp(–U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

Определение 1

Диффузия молекул характеризуется процессом переноса распределяемого вещества, при этом она обусловлена хаотичным перемещением самих молекул.

Диффузия молекул выполняется без визуального перемещения участков фазы, молекулярное движение при этом будет тепловым. Молекулярная диффузия представляет процесс транспортировки веществ в самопроизвольного характера под воздействием градиента их концентрации.

Концентрационной диффузия будет называться при условии, если ее спровоцировало неоднородное распределение концентрации компонентов смеси.

Суть молекулярной диффузии

Молекулярная диффузия хорошо описана в законе Фика (первом). Согласно указанному закону, количество вещества $dM$, которое продиффундировало за определенное время $dt$ сквозь элементарную поверхность $dF$, станет пропорциональным градиенту концентрации $\frac{dc}{dn}$ такого вещества:

$dM = -{DdFdx}\frac{dc}{dn}$ (1)

$M = -{DFx}\frac{dc}{dn}$ (2)

Из второй формулы следует, что удельный поток переносимого молекулярной диффузией вещества через единицу поверхности $F$ равнозначна единице, в единицу времени $t$ (скорость молекулярной диффузии) составит:

$q_m = \frac{M}{Fx} = -{D}\frac{dc}{dn}$ (3)

Согласно своей структуре закон Фика подобен закону Фурье, в чьи задачи входит описание передачи тепла за счет теплопроводности. При этом в качестве аналога градиента температур в данном случае выступит градиент концентраций, характеризующий изменение концентрации продиффундировавшего вещества на единицу длины нормали между поверхностями постоянных, однако неодинаковых концентраций.

Коэффициент диффузии молекул

Что касается коэффициента пропорциональности $D$, то в выражении закона Фика он будет называться коэффициентом диффузии молекул. Согласно первой формуле (1), коэффициент диффузии выражается таким образом:

$D = \left(\frac{Mdn}{dcFx}\right) = \frac{м^2}{с}$ (4)

Коэффициент диффузии показывает то количество вещества, которое будет диффундировать в единицу времени через поверхность при единичном градиенте концентрации. Коэффициент диффузии $D$ можно считать аналогом коэффициента температуропроводности $а$.

Коэффициент молекулярной диффузии считается физической постоянной, характеризующей свойство проникновения данного вещества посредством процесса диффузии в неподвижную среду. Таким образом, величина $D$ не будет зависимой от гидродинамических условий, в которых наблюдается протекание процесса.

Значения коэффициента диффузии $D$ начнут повышаться при увеличении таких показателей, как давление и температура. Значение $D$ в каждом отдельно рассмотренном случае будет определяться, согласно теоретическим или полуэмпирическим уравнениям, с обязательным учетом давления и температуры.

Замечание 1

Коэффициенты диффузии газа в иную газовую среду получат значения 0,1 – 1 $см^3/с$. В то же время, если газ будет диффундировать в жидкость, они составят приблизительно 1 $см^3/сутки$. Таким образом, диффузия молекул представляет довольно медленный процесс, особенно в жидкой среде.

Примеры диффузии молекул

Замечание 2

Диффузия считается в физике процессом, осуществляемым на молекулярном уровне и определяющимся случайным характером отдельно перемещающихся молекул. Скорость диффузии оказывается пропорциональной, таким образом, средней скорости молекул. Процесс диффузии определяет максимальная тепловая скорость молекул. Имеется в виду скорость молекул самой маленькой массы.

Диффузию характеризует процесс переноса энергии (или материи) из среды высокой концентрации в такую же, только с низкой. Наиболее распространенным примером диффузии считается процесс перемешивания газов (жидкостей) (можно привести пример с попаданием капли чернил в воду и ее последующим равномерным окрашиванием).

В качестве еще одного яркого примера диффузии молекул может выступать эксперимент с твердым телом. Так, при нагревании одного конца стержня или его электрической зарядки, начнет распространяться тепло (а также электрический ток) в направлении от горячей части, которая зарядилась, к холодной (не заряженной).

В ситуации с металлическим стержнем фиксируется быстрое развитие тепловой диффузии при практически мгновенном перемещении тока. В случае с синтетическим стержнем, мы наблюдаем медленное протекание тепловой диффузии и очень медленную диффузию электрически заряженных частиц.

Диффузия молекул как процесс будет происходить еще более медленными темпами. К примеру, кусок сахара (при условии его попадания в воду и без последующего перемешивания) станет однородной с водой массой только спустя несколько недель.

Более медленным будет процесс диффузии одного твердого вещества в иное. Так, медь, покрытая золотым слоем, пролежит еще несколько тысяч лет, прежде чем впитает в свою поверхность золотосодержащий слой. При этом глубина проникновения спустя это время составит только несколько микрометров.

1.Знакомимся с тепловым движением

В соответствии с современными представлениями, атомы и молеку­лы, из которых состоит вещество, находятся в беспрерывном хаотичес­ком движении. Такое движение называется тепловым.

Тепловое движение невозможно увидеть невооруженным глазом, ведь размеры молекул очень малы.

Однако существует много физических явлений, объяснить которые мож­но только опираясь на тот факт, что молекулы постоянно двигаются.

Рис. 2.15. Воспользовавшись во­ронкой с длинным носиком, можно аккуратно налить раствор медного купороса на дно стакана с водой

Рис. 2.16. Наблюдение явления диффузии в жидкостях: в результате диффузии резкая граница между раствором медного купороса и водой постепенно исчезает

2. Вспоминаем определение диффузии

Бесспорным доказательством движения молекул служит физичес­кое явление , хорошо известное вам из курса природоведения,- диффузия (от лат. diffusio - распространение, растекание).

Напомним, что диффузией называют взаимное проникновение соприка­сающихся веществ друг в друга, происходящее в результате теплового (ха­отического) движения молекул (атомов).

3. Наблюдаем диффузию в газах и жидкостях

Вспомните, что происходит, если где-то в комнате разлить ароматное вещество, например духи,- его запах в скором времени будет ощущаться повсюду. Это значит, что молекулы ароматного вещества, двигаясь, попада­ют в промежутки между молекулами воздуха, которым заполнена комна­та, т. е. наблюдается диффузия . Именно в результате диффузии в газах мы ощущаем запах свежеиспеченного хлеба из булочной или запах прогретой солнцем травы.

Диффузию можно наблюдать и в жидкостях. Проведем такой опыт. В про­зрачный сосуд с чистой водой с помощью воронки нальем раствор медного купороса так, чтобы жидкости не смешались (рис. 2.15). Сначала мы наблю­даем резкую границу между водой и раствором медного купороса. Оставив сосуд в покое на несколько дней, мы увидим, что вся жидкость в сосуде при­обрела бирюзовый цвет (рис. 2.16). Причем перемешивание жидкостей произо­шло без вмешательства извне. Схематически процесс диффузии изображен на рис. 2.17. Многочисленные опыты свидетельствуют, что диффузия в жидкос­тях протекает значительно медленнее, чем в газах. Еще медленнее происхо­дит диффузия в твердых телах. Почему? Ответ на этот вопрос следует искать в особенностях расположения молекул газов, жидкостей и твердых тел.

4. Выясняем, как связаны скорость движения молекул и температура

Приготовим два сосуда, как показано на рис. 2.15. Один из сосудов поставим в теплое место, второй - в холодное. Посмотрев через некоторое время на сосуды, мы убедимся, что в теплом растворе диффузия произошла намно­го быстрее.

В случае повышения температуры скорость диффузии в газах также увеличивается.

Зависимость скорости диффузии от тем­пературы особенно заметна для твердых тел. Так, английский металлург Вильям Роберт Ос­тин провел следующий опыт. Он наплавил тон­кий диск золота на свинцовый цилиндр (рис. 2.18, а) и на несколько дней поместил этот ци­линдр в печь, где поддерживалась температура около 400 °С. Оказалось, что золото продиффундировало через весь цилиндр (рис. 2.18, б); тем временем при комнатной температуре диф­фузия практически не наблюдалась.

Таким образом, мы выяснили, что чем выше температура вещества , тем быстрее происходит диффузия, т. е. молекулы быстрее двигаются.

Довольно сложные эксперименты показыва­ют, что при любой температуре в веществе есть молекулы, двигающиеся довольно медленно, и молекулы, скорость которых высока. Если ко­личество молекул вещества, имеющих высокую скорость, увеличивается, т. е. увеличивается средняя скорость молекул, то это значит, что температура вещества также увеличивается.

5. Узнаем о диффузии в природе и ее применении в технике

Явление диффузии очень распространено в природе. Благодаря диффузии углекислый газ попадает в листву растений; кислород из воздуха - на дно водохранилищ; питательные вещества впитываются в кишечнике; кислород из легких попадает в кровь, а из крови - в тка­ни и т. д.

Диффузию широко применяют в технике. Одним из примеров является диффузное свари­вание металлов. Куски металлов крепко при­жимают друг к другу, нагревают до высокой температуры, но ниже температуры плавления. В месте соединения проис­ходит диффузия, и куски металлов как будто срастаются.

Рис. 2.17. Схематическое изображение процесса диффу­зии: молекулы одной жидкости проникают в промежутки между молекулами другой и в результа­те со временем жидкости полно­стью перемешиваются


Рис. 2.11 Опыт по наблюдению диффузии в твердых телах: а - свинцовый цилиндр с напаян­ной золотой пластинкой; б - тот же цилиндр в конце опыта

  • Подводим итоги

Атомы и молекулы, из которых состоит вещество, находятся в бес­прерывном хаотическом движении. Такое движение называется тепловым, поскольку увеличение температуры вещества соответствует увеличению средней скорости движения его молекул (атомов).

Одним из доказательств движения частиц вещества является физическое явление, которое называется диффузией. Диффузия - взаимное проникно­вение соприкасающихся веществ друг в друга, происходящее в результате теплового хаотического движения молекул (атомов).

  • Контрольные вопросы

1. Что называют тепловым движением?

2. Дайте определение диф­фузии.

3. Приведите примеры диффузии в газах, жидкостях и твер­дых телах.

4. От чего зависит скорость диффузии? Объясните при­чины этой зависимости.

5. Приведите примеры диффузии в природе.


Упражнения

1. В чем отличие холодной воды от горячей на «молекулярный взгляд»?
2. В каком состоянии вещества (газообразном, твердом или жидком) диффузия происходит быстрее? Почему?
3. Углекислый газ более тяжелый, чем другие газы, однако он при­сутствует в верхних слоях атмосферы. Объясните это явление.
4. Запрещено перевозить вместе с пищей такие вещества, как керо­син, бензин, краски. Почему?
5. Скорость движения молекул газа составляет несколько сотен мет­ров в секунду. Почему же мы ощущаем запах разлитой жидкости не мгновенно, а спустя некоторое время?
6 Почему чай заваривают кипят­ком, а не холодной водой? 7. Почему сушеная слива разбу­хает в воде? 8 В два стакана с водой одновре­менно опустили по одинаковому кусочку сахара (см. рисунок). В каком стакане начальная температура воды была выше?
9. Ощутив опасность, кальмар выбрасывает темно-синюю защитную жидкость. Почему через некоторое время вода, окрашен­ная этой жидкостью, даже в спокойном состоянии снова становится прозрачной?

10. Правильным ли, по вашему мнению, является утверждение, что запах свежего хлеба из пекарни распространяется лишь в том на­правлении, куда дует ветер? Обоснуйте свой ответ.

  • Экспериментальные задания

1. Надуйте два воздушных шарика. Один шарик поместите в теплое место, вто­рой - в холодное. Через сутки срав­ните, какой шарик оказался меньше сдутым. Почему?
2. Приготовьте крепкий раствор кухонной соли. Налейте в стакан чистую воду, потом с помощью воронки осторож­но налейте раствор соли на дно стака­на (см. рисунок). Попробуйте верхнюю жидкость на вкус, убедитесь, что она несоленая. Отставьте стакан на сутки, а потом снова попробуйте воду. Какой результат вы получили? Объясните его.


3. Возьмите два тонкостенных стакана. В один из них налейте холод­ную воду, в другой - горячую. С помощью пипетки опустите на дно каждого стакана несколько капель крепкого чая. Объясните результаты.

  • Физика и техника в Украине

Иван Павлович Пулюй (1845- 1918) родился на Тернополь­щине.

Ученые особенно отмечают работы Ивана Пулюя в области молекулярной физики - данные о коэффициентах внутреннего трения и диффузии газов и пара. Эти данные являются исходны­ми при вычислении таких микроскопических величин, как сред­няя длина свободного пробега молекул, их количество в одной грамм-молекуле и т. п. В области электротехники Иван Пулюй усовершенствовал технологию изготовления осветительных ламп, первым исследовал неоновый свет. При участии Пулюя запущен ряд электростанций на постоянном токе в Австро-Венг­рии, а также первая в Европе на переменном токе. Значительный вклад был внесен Пулюем в исследование рентгеновских лучей.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации
Поделиться: