Сжатый воздух как он есть…. Применение сжатого воздуха

>>Применение сжатого воздуха

Сжатый воздух может занимать значительно меньше места, чем при обычных условиях. Поэтому при хранении и перевозке воздух сжимают. При этом давление воздуха повышается, и поэтому приходится использовать специальные, достаточно прочные стальные баллоны (рис. 91). В таких баллонах, например, содержат сжатый воздух в подводных лодках, а также кислород, используемый при сварке металлов.

Рисунок 91. Стальные баллоны.

На применении сжатого воздуха основано действие различных пневматических устройств (от латинского слова "пневматикос" - воздушный). К ним относятся, например, отбойный молоток и пневматический тормоз.

Устройство отбойного молотка показано на рисунке 92. По шлангу 1 подается сжатый воздух. Устройство 2, называемое золотником, направляет его поочередно то в верхнюю, то в нижнюю часть цилиндра. Под действием этого воздуха боек 3 начинает быстро перемешаться то в одну, то в другую сторону, периодически (с частотой 1000-1500 ударов в минуту) воздействуя на пику 4. Удары последней используют для разрыхления мерзлых грунтов, откалывания от массива кусков горных пород, угля и т. д.

Рисунок 92. Отбойный молоток.

На рисунке 93 показано устройство пневматического тормоза железнодорожного вагона. Магистраль 1, тормозной цилиндр 4 и резервуар 3 заполняют сжатым воздухом. При открывании стоп-крана сжатый воздух выходит из магистральной трубы, и давление в правой части тормозного цилиндра становится меньше, чем в левой (из которой сжатый воздух благодаря клапану 2 выйти не может). В результате этого поршень тормозного цилиндра перемещается вправо и прижимает тормозную колодку 5 к ободу колеса 6, которое при этом затормаживается.

Рисунок 93. Пневматический тормоз.

Давление сжатого воздуха используется и при добыче нефти . На рисунке 94 показаны два способа ее добычи: а - нефть фонтанирует под давлением подземных газов и вод; б - нефть идет из скважины под давлением сжатого воздуха, накачиваемого в нефтеносный пласт.

Рисунок 94. Применение сжатого воздуха при добыче нефти.

Вопросы.

1. Почему сжатые газы содержат в специальных стальных баллонах?

2. Как действует отбойный молоток?

3. Опишите принцип действия пневматического тормоза.

4. Расскажите о способах добычи нефти из скважины

Отослано читателями из интернет-сайтов

Вся физика онлайн , курсы физики для учителей и школьников, онлайн рефераты , все материалы школьнику для подготовки к урокам физики, готовые домашние задания, календарно тематический план по физике

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Использование сжатого воздуха

ПНЕВМООБОРУДОВАНИЕ

Использование сжатого воздуха

На троллейбусе используется энергия сжатого воздуха для привода в работу определенной группы аппаратов. Используемое давление 8 атм. Допустимый перепад – 1,5 атм. При этом перепаде (6,5-8,0атм.) аппараты продолжают нормально работать.

Аппарата, в зависимости от выполняемой функции, объединены в три системы:

I. Тормозная – для привода в действие колод.тормоза барабанного типа

  1. Два тормозных резервуара
  2. Четыре тормозных цилиндра
  3. Камазовский тормозной кран
  4. Нижние стрелки манометров

II. Вспомогательная – для поддержания кузова на одинаковом расстоянии от дороги (рабочая высота пневмоэлементов 290мм)

  1. 6 пневмоэлементов
  2. Вспомогательный резервуар (возможен и резервуар привода дверей)
  3. Три регулятора уровня пола
  4. Редуктор давления

III.Напорная (накопительная) – для сжатия, очистки и накопления воздуха

  1. Двигатель-компрессор
  2. Напорный (накопительный) резервуар (магистральный)
  3. Регулятор давления (автомат компрессора)
  4. Влагомаслоотделитель
  5. Противозамораживатель
  6. Обратный клапан
  7. Предохранительный клапан
  8. Буксирный клапан
  9. Верхние стрелки манометров

-ВОЗДУХОПРОВОДЫ – стальные и медные трубки разного диаметра соединяют между собой аппараты пневмосистемы. К аппаратам, меняющим свое положение относительно шасси подведены резиновые шланги (регулятор давления, тормозные цилиндры, влагомаслоотделитель)

-РЕЗЕРВУАРЫ - для накопления, охлаждения сжатого воздуха и отдачи его по системам. При охлаждении в резервуарах скапливается конденсат, его необходимо периодически удалять через установленные на днище сливные краны при наличии давления в системе.

Представляют собой стальные цилиндрические емкости со сферическими днищами, внутри покрыты антикоррозийные покрытием.

Емкость одного резервуара 25л.

Новые резервуары испытываются заливкой масла, давлением – 13 атм.

Установлены: Два тормозных – под кабиной; два (три) остальных – под средней площадкой.

Уход :

1. После 1000 км. пробега проверять наличие утечки воздуха через краны

2. Не реже 1 раза в год снимать, очищать паром и горячей водой внутри.

3. Производить внешний осмотр при эксплуатации постоянно

ВЛАГОМАСЛООТДЕЛИТЕЛЬ

Служит для освобождения от влаги и масла воздуха, поступающего в систему

Cостоит из корпуса 7, имеющего верхнее и нижнее днище 2, 9. В корпус вмонтированы диффузор 6, решетка 3, входной патрубок 5, переходящий в направляющую спираль 4. Снизу установлен сливной кран.

1.Штуцер сливного крана 2. Днище

5. Входной патрубок 6. Диффузор

7. Выходной патрубок 8. Днище.

Работа: Сжатый воздух от компрессора поступает через входной патрубок 5 нижний отсек, там он расширяется, разгоняясь по спирали 4 . Тяжелые капли влаги и масла оседают на стенках и решетке 3 , стекают в углубление нижнего днища 2 . Затем воздух по диффузору поднимается вверх, оставляя на нем капли влаги и масла и через выходной патрубок 8 уходит в систему. Капли стекают по диффузору через решетку в нижнее днище и там накапливаются. Получившийся конденсат нужно периодически сливать через сливной кран, имеющий шаровый клапан и тягу.

Области применения сжатого воздуха и энергоемкость его производства

Самым большим среди отраслей потребителем воздуха является черная металлургия . В ней сосредоточены наиболее крупные технологические блоки, использующие сжатый воздух: доменные печи, конверторы, мартеновские печи, прокатные станы, вагранки. В черной металлургии сосредоточены и самые крупные компрессорные агрегаты. Такие ТКУ, как К-5000 и К-7000 созданы специально для воздухоснабжения доменных печей.

В этой отрасли наибольший процент турбокомпрессоров из общего количества компрессорных машин, а доля поршневых машин составляет примерно 20 % и имеется тенденция к ее уменьшению. Доля энергозатрат на производство сжатого воздуха здесь составляет 5-7 % от общего расхода энергии на производство основного продукта.

Сопоставимой по масштабам потребления воздуха является цветная металлургия . Здесь нет таких крупных единичных потребителей воздуха, как доменные печи, но требуется большое разнообразие нагнетателей с различными давлениями нагнетания. Доля энергопотребления на сжатие воздуха в отрасли колеблется от 8-10 % до 60 % в шахтных выработках и рудниках.

Крупным потребителем сжатого воздуха является машиностроение . Большое разнообразие мелких потребителей, индивидуализация режимов их работы определяют сложные графики воздухопотребления со значительной суточной и недельной неравномерностью. На предприятиях этой отрасли расход электроэнергии на привод компрессоров достигает 20-25 % общего энергопотребления.

Потребление сжатого воздуха в химической промышленности отличается большим разнообразием требуемых параметров, качества, масштабов и режимов подачи. Здесь в равной степени находят применение поршневые, винтовые и турбокомпрессорные установки. Воздухоснабжение в этой отрасли может осуществляться как от центральной станции, так и от отдельных установок, входящих в состав технологического оборудования.



Очень крупными потребителями сжатого воздуха являются горнодобывающая и угольная промышленность. Доля энергопотребления систем воздухоснабжения в этой отрасли достигает примерно 25 % общего расхода энергии в ней.

В классификации отраслей промышленности особое место занимают воздухоразделительные установки. Они могут быть как самостоятельными предприятиями, так и подотраслью металлургии, химической промышленности и т.п. Здесь на сжатие воздуха тратится от 70 до 90 % общего энергопотребления.

Классификация потребителей

Практически на любом предприятии для тех или иных целей нужен сжатый воздух. Он используется:

а) для привода различных пневмомеханизмов, инструментов, пневмотранспорта и т.п., т.е. для получения механической энергии;

б) для получения газов, из которых состоит воздух (азот, кислород, аргон, и др. инертные газы);

в) для технологических нужд – при проведении реакций окисления, горении, сушке и т.п.;

г) для пневматических систем измерения, контроля и регулирования на взрывоопасных производствах (химическая промышленность, горнодобывающая и др.).

Воздух для технологических целей не является энергоносителем. Он является исходным продуктом (или компонентом) для получения новых веществ (продуктов). Потребителями сжатого воздуха как энергоносителя (пневмоприемниками ) являются механизмы и устройства, использующие воздух для различных производственных операций и технологических процессов.

По способу преобразования энергии сжатого воздуха все пневмопотребители можно разбить на три группы.

1-я группа . Устройства для преобразования потенциальной энергии сжатого воздуха в механическую работу:

а) с продольно-возвратным движением рабочего органа. Это молоты, отбойные и клепальные молотки, трамбовки вибраторы, подъемники, толкатели, долбежные машины и т.п.;

б) с вращательным движением рабочего органа. Это устройства с турбинным или поршневым приводом: сверлильные, шлифовальные (фортуны), отрезные полировальные, винтозавертывающие и другие машины.

2-я группа . Устройства для преобразования потенциальной энергии в кинетическую. Это различные обдувные устройства (песко- и дробеструйные установки), эжекторы, форсунки, краскораспылители, пульверизаторы, пневмотранспортные установки и др.

3-я группа . Устройства, использующие сжатый воздух без преобразования его энергии. Это различные пневматические приспособления: поддержки, патроны, зажимы, устройства регулирования и автоматизации, мерные устройства и т.д.

По назначению и способу применения различают две основные группы пневмоприемников:

а) пневмоинструменты ;

б) пневмооборудование .

К пневмоинструментам относятся устройства, предназначенные для механизации производственных процессов (замена ручного труда). Это переносной агрегат, приводимый в действие пневмодвигателем. Пневмоинструменты отличаются кратковременными режимами работы.

Пневмооборудование – это, как правило, стационарные установки с длительными режимами работы.

Параметры потребляемого сжатого воздуха

Давление.

Анализ паспортных данных различных промышленных пневмоприемников показывает, что необходимое давление сжатого воздуха перед ними не превышает 0,7-0,8 МПа. В большинстве случаев оно требуется еще меньше – 0,4-0,7 МПа.

Понижение давления (ниже паспортного) ведет к понижению мощности и производительности пневмомеханизма. При этом из-за нерасчетных режимов работы, как правило, возрастают удельные расходы воздуха.

Повышение давления воздуха (сверх необходимого) влечет увеличение утечек, которые и так часто выше допустимых. Так, вместо обычных потерь в 20-30 %, при превышении давления они доходят до 50-60 % от общего расхода сжатого воздуха.

Если пневмосеть находится в нормальном состоянии, то потери давления из-за гидравлического сопротивления не превышают 0,05 МПа, даже для самых удаленных точек (норма 0,01-0,03 МПа). Таким образом, в системах, не оснащенных системой осушки воздуха, давление развиваемое компрессором не должно превышать требуемое пневмоприемником более чем на 0,05 МПа. Если такого давления недостаточно, это означает, что имеется:

Чрезмерный износ оборудования;

Чрезмерные потери давления в распределительных устройствах, шлангах, местных сопротивлениях;

Чрезмерные утечки (в стыках, шлангах, запорных устройствах пневмомеханизмов и т.п.).

Выбор компрессоров для КС с завышенными развиваемыми давлениями приводит:

Для поршневых компрессоров (ПК) – к недоиспользованию мощности;

Для центробежных компрессоров (ЦБК) – к снижению экономичности, так как компрессор в этом случае работает в нерасчетном режиме с более низкими значениями КПД.

Температура воздуха.

Температура воздуха на входе в пневмоприемник оказывает сильное влияние на его потребление. Работоспособность 1 кг сжатого воздуха при его адиабатном расширении в пневмомеханизме от давления P 1 до давления P 2 определяется выражением, кДж/кг:

где – изобарная теплоемкость воздуха, кДж/(кг×К); Т 1 – температура сжатого воздуха на входе в механизм, К; Р 1 , Р 2 – давления воздуха на входе и выходе пневмомеханизма соответственно, МПа.

Таким образом, за счет подогрева сжатого воздуха перед его использованием можно снизить его потребление при неизменном количестве совершаемой работы.

На практике в большинстве случаев воздух в концевом воздухоохладителе КУ охлаждается до температуры 40-45 °С, что недостаточно для конденсации влаги и масла и в то же время этим существенно снижается его работоспособность. Это указывает на необходимость рассмотрения целесообразности использования концевого воздухоохладителя в каждом конкретном случае.

Как показывают расчеты, температуру сжатого воздуха можно доводить до 60-70 °С, при этом температура ручного инструмента не превысит значений 35-40 °С, а экономия электроэнергии при этом составит 10-15 % по сравнению с исходным вариантом.

Вопрос о выборе оптимального влагосодержания должен решаться на основании технико-экономического обоснования. От правильности решения этого вопроса зависит экономичность применения сжатого воздуха.

Если воздух используется для химических реакций, для транспортирования гигроскопических веществ и т.п., то его влагосодержание должно удовлетворять специфическим требованиям таких процессов, оговариваемых в технологическом регламенте. Так, например, в автомобилестроении в соответствии с ГОСТ 9.010-80 «Воздух, сжатый для распыления лакокрасочных материалов» влагосодержание воздуха с давлением 0,6 МПа ограничено значением 1,6 г/м 3 .

К сжатому воздуху для питания пневматических систем и устройств, работающих при давлении до 2,5 МПа, требования к влагосодержанию оговариваются в ГОСТ 17433-80 «Сжатый воздух. Классы загрязнения». В пересчете на условия t в =20°С и P в =0,9 МПа устанавливается следующее влагосодержание: для классов загрязненности 0 и 1 d в £0,156 г/кг, а для классов 3, 5, 7, 9, 11 и 13 d в £0,9 г/кг. Для остальных классов влагосодержание (точка росы) не регламентируется.

При применении сжатого воздуха в машиностроительной, металлургической и горнодобывающей промышленности важно, чтобы отсутствовала конденсация водяного пара во время транспортировки сжатого воздуха от компрессорной станции до потребляющего оборудования. То есть необходимо, чтобы возможная минимальная температура воздуха в пневмосети всегда была выше точки росы осушенного воздуха.

Считается экономически приемлемой точка росы сжатого воздуха 2-3°С (под рабочим давлением). Именно такая степень осушки принята повсеместно на большинстве предприятий горнодобывающей промышленности, машиностроения и др.

Загрязнение воздуха.

Опыт эксплуатации пневмооборудования, инструмента, пневматических приводов и пневматических систем управления показал, что повышение надежности и долговечности их работы невозможно без качественной подготовки сжимаемого воздуха, очистки его от загрязнений.

Загрязнения, содержащиеся в воздухе, могут оказывать физическое и химическое воздействие на пневматические устройства в виде:

1) закупорки отверстий и сопел влагой, льдом и механическими частицами;

2) смывания смазки, коррозии металлических и разрушения резиновых деталей;

3) повреждения прокладок и рабочих поверхностей клапанов, мембран, золотников;

4) износы и заклинивания трущихся поверхностей.

Идеальным случаем является полное удаление загрязнений сжатого воздуха, что в большинстве случаев экономически нецелесообразно.

Требования к очистке воздуха зависят от эксплуатационных условий. Необходимая степень очистки определяется опытным путем, обобщается и гостируется.

Контрольные вопросы

1. Какие отрасли промышленности являются наиболее крупными потребителями сжатого воздуха?

2. Для каких целей используется сжатый воздух?

3. Какими достоинствами обладает сжатый воздух как энергоноситель?

4. Какие параметры характеризуют сжатый воздух, используемый в качестве энергоносителя?

5. К чему приводит превышение требуемых значений давления воздуха в системе?

6. К чему приводит заниженное давление воздуха в коллекторе потребителя?

7. Какие последствия могут возникнуть при использовании воздуха с повышенной влажностью?

8. Какие виды воздействий на элементы систем воздухоснабжения оказывают загрязнения сжатого воздуха?


РЕЖИМЫ ВОЗДУХОПОТРЕБЛЕНИЯ

Технологические цехи металлургического завода являются потребителями большого количества сжатого воздуха. Сжатый воздух используют для дутья в доменные печи, для работы пневматических машин и пневмоинструмента, для сжигания топлива в обжиговых, нагревательных и термических печах.

Расход сжатого воздуха в доменных цехах значительно превышает расход воздуха в каких-либо других производствах. Так, для получения 1т чугуна необходимо около 3000 м3 воздуха при нормальных условиях. Для дутья в доменные печи необходим воздух давлением 0,3-0,4 МПа, он вырабатывается на паровоздуходувных станциях ПВС, обычно совмещенных с ТЭЦ (ТЭЦ-ПВС).

Воздуходувные агрегаты, предназначенные для подачи воздуха в доменные печи, устанавливают на воздуходувных станциях.

Эти станции бывают разного исполнения:

    паровоздуходувные (ПВС), включающие котлоагрегаты, паровые турбины и агрегаты доменного дутья;

    комбинированные, паровоздуходувные и электрические (ПВС в составе ТЭЦ-ПВС), состоящие из агрегатов доменного дутья и паровых турбин;

    ПВС или ТЭЦ-ПВС, имеющие в своем составе компрессоры доменного дутья с электроприводом;

    воздуходувные станции, включающие только компрессоры воздушного дутья с электроприводом (ЭВС).

Воздуходувные станции оборудованы многоступенчатыми центробежными воздуходувными машинами. Количество ступеней определяется величиной требуемого давления. Основным элементом центробежных воздуходувных машин является рабочее колесо с лопатками, отбрасывающими воздух при вращении колеса за счет центробежных сил от центра к периферии, при этом воздуху сообщается энергия, повышающая его давление. Из-за значительного нагрева воздуха компрессоры снабжают водяным охлаждением.

Основной тип привода доменных воздуходувок - паровая турбина. Турбины, используемые для этих целей, работают на паре давлением 3,5 МПа или 9 МПа с температурой, соответственно, 435 0 С или 535 0 С. Иногда применяют приводы других типов. Перед подачей в доменную печь воздух после сжатия нагревают до температуры около 1000 0 С в доменных воздухонагревателях (кауперах).

Основной производитель центробежных компрессорных машин, используемых в качестве вохдуходувных агрегатов, Невский машиностроительный завод, г. Санкт-Петербург. Производительность выпускаемых этим предприятием машин от 2500 до 6900 м 3 /мин, давление воздуха 0,45-0,53 Мпа, привод – паровая конденсационная турбина мощностью 12-30МВт.

Для привода пневмомашин и пневмоинструмента используют воздух давлением 0,6-1,0 МПа. Сжатый воздух таких давлений получают централизованно на компрессорных станциях с помощью поршневых и центробежных компрессоров. Центробежные компрессоры предпочтительней, так как обеспечивают непрерывную подачу газа, надёжны и просты в обслуживании, не загрязняют сжатый воздух маслом. Поршневые компрессоры обеспечивают большую степень сжатия газа при одинаковых габаритах с центробежными компрессорами, но имеют меньшую производительность и менее надежны. В связи с этим современные компрессорные станции, как правило, оборудуют центробежными компрессорными машинами. Невский машиностроительный завод выпускает компрессоры производительностью от 345 до 3200 м 3 /мин, давление воздуха до 1,4 МПа.

Сжатый воздух к потребителям транспортируют с помощью развитой сети воздухопроводов, с воздуходувной и компрессорной станций раздельно. Воздухопроводы к доменной печи теплоизолированы, так как температура воздуха после сжатия повышается до 200 0 С. Эти воздухопроводы имеют диаметры, достигающие 2500 мм.

Для сжигания топлива в обжиговых, нагревательных и термических печах используют сжатый воздух давлением 0,003-0,01 МПа, подаваемый центробежными нагнетателями (вентиляторами), устанавливаемыми в непосредственной близости от потребителя.

Общее требование для сжатого воздуха - отсутствие механических примесей, влаги, паров масла. Очистка от механических примесей осуществляется с помощью фильтров, а от влаги и паров масла - путём охлаждения сжатого воздуха. Однако при этом не вся влага конденсируется, и её наличие в трубопроводах может привести к образованию зимой ледяных пробок.

Получение сжатого воздуха требует значительных затрат (так, стоимость доменного дутья - 30% стоимости чугуна).

Сжатый воздух

Сжатый воздух - это воздух, который находится под некоторым давлением, обычно превышающим атмосферное. В странах Европы около 10 % электроэнергии расходуется промышленностью на производство сжатого воздуха. Это соответствует 80 терраватт-часов в год.

Применение

По своей роли в экономике сжатый воздух находится в одном ряду с электроэнергией, природным газом и водой. Но единица энергии, запасённая в сжатом воздухе, стоит дороже, чем энергия, запасённая в любом из трёх указанных ресурсов. .

сжатый воздух может быть использован для следующих целей:

  • пневмопривод - привод машин и механизмов посредством пневматической энергии (пример пнвмопривода - отбойный молоток).
  • хранение энергии.
  • в дайвинге для заправки баллонов с воздухом.
  • пневматические транспортирующие установки - перемещение сыпучих грузов при помощи потока воздуха.
  • очистка компонентов электроники, которые нельзя очищать при помощи воды.
  • пневматические тормоза
  • запуск дизельных двигателей как альтернатива пуска при помощи стартёра.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Сжатый воздух" в других словарях:

    СЖАТЫЙ ВОЗДУХ, воздух, который содержится под давлением, намного превосходящим атмосферное. Это достигается путем накачивания воздуха насосом или КОМПРЕССОРОМ в резервуар. Сжатый воздух широко применятся для приведения в действие механизмов,… … Научно-технический энциклопедический словарь

    СЖАТЫЙ ВОЗДУХ - воздух энергоноситель, находящийся при избыточном давлении (обычно до 588 кПа), сжатый поршневыми или турбинными компрессорами. Использование сжатого воздуха с относительно низким давлением вызвано простотой компрессорного оборудования, малым… … Металлургический словарь

    сжатый воздух - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN compressed air …

    сжатый воздух - suslėgtasis oras statusas T sritis fizika atitikmenys: angl. compressed air; heavy air vok. Druckluft, f; Preßluft, f rus. сжатый воздух, m pranc. air comprimé, m … Fizikos terminų žodynas

    сжатый воздух - suslėgtas oras statusas T sritis ekologija ir aplinkotyra apibrėžtis Įvairaus suslėgimo laipsnio oras, naudojamas technologiniams tikslams. Suslegiama kompresoriais, kai reikia gauti >0,3 MPa slėgį; mažesniu slėgiu suslegia ventiliatoriai ir… … Ekologijos terminų aiškinamasis žodynas

    сжатый воздух низкого давления - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN service airSA … Справочник технического переводчика

    ГОСТ Р 53977-2010: Сжатый воздух пневматических систем железнодорожного подвижного состава. Требования к качеству - Терминология ГОСТ Р 53977 2010: Сжатый воздух пневматических систем железнодорожного подвижного состава. Требования к качеству оригинал документа: 3.3 вспомогательное пневматическое оборудование: Часть пневматической системы, обеспечивающая… …

    ГОСТ ИСО 8573-5-2006: Сжатый воздух. Часть 5. Методы контроля содержания паров масла и органических растворителей - Терминология ГОСТ ИСО 8573 5 2006: Сжатый воздух. Часть 5. Методы контроля содержания паров масла и органических растворителей оригинал документа: 3.1 зернистость (mesh): Мера размера частиц, применяемая при сортировке твердых тел с… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р ИСО 8573-2-2005: Сжатый воздух. Часть 2. Методы контроля содержания масел в виде аэрозолей - Терминология ГОСТ Р ИСО 8573 2 2005: Сжатый воздух. Часть 2. Методы контроля содержания масел в виде аэрозолей оригинал документа: 3.1 пристеночное течение (wall flow): Часть потока сжатого воздуха, в котором загрязнение маслами уже не может… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р ИСО 8573-1-2005: Сжатый воздух. Часть 1. Загрязнения и классы чистоты - Терминология ГОСТ Р ИСО 8573 1 2005: Сжатый воздух. Часть 1. Загрязнения и классы чистоты оригинал документа: 3.2 агломерат (agglomerate): Скопление, состоящее из соединений двух или более частиц. Определения термина из разных документов:… … Словарь-справочник терминов нормативно-технической документации

Поделиться: