Метод свертки критериев.

Целью изучения данной темы является ознакомление студентов с методами многокритериального выбора.

Задачи:

Ознакомить студентов с методами измерения показателей, используемых в качестве критериев при принятии управленческих решений.

Описать подходы к формированию системы показателей, используемых при многокритериальном выборе.

Дать представление о методах многокритериального выбора и особенностях их применения.

1. Шкалы измерения

Наиболее «простой», точнее говоря, слабой является номинальная шкала. “Nome на латыни – имя, то есть речь идёт о шкале наименований. В этой шкале различаются только классы объектов, например, резиденты и нерезиденты. Разумеется, шкала может содержать и больше классов (отраслевой классификатор и т.п.), хотя дихотомическое деление является важным частным случаем.

Номинальная шкала используется, в основном, для решения двух задач:

  • определение принадлежности к классу на основании некоторого признака (например, пол),
  • выявление количества проявлений признака.

Во втором случае накопленная статистика подвергается обработке численными методами с целью анализа того или иного явления.

Более «сильной» является ординальная (порядковая) шкала. Её также часто называют шкалой рангов. Задача, решаемая с помощью ординальной шкалы, - это упорядочивание объектов (альтернатив, с точки зрения процесса принятия управленческого решения) по предпочтению. Различают отношения нестрогого предпочтения (этот объект не хуже того) и строгого («больше – меньше»).

Измерения в ранговой шкале не отвечают на вопрос «насколько больше?». Отчасти эта проблема решается увеличением числа рангов. Общая рекомендация при конструировании ранговых шкал состоит в составлении не слишком дробной шкалы, так как в противном случае затрудняется экспертное оценивание, однако количество рангов должно быть достаточным, чтобы улавливать все существенные различия.

Типичным примером измерений в ранговых шкалах являются различные рейтинги. Определённую роль играет использование этой шкалы в микроэкономике, так как позволяет снять некоторые спорные постулаты о природе ценностей.

Следует учесть, что расстояние в ранговых шкалах задаются не так, как в привычной, абсолютной. Например, один из способов введения расстояния в ранговой шкале – определение количества попарных перестановок соседних рангов, которое необходимо для получения нормативного упорядочивания.

Следующая «по силе» - интервальная шкала. Эта шкала классифицирует объекты по принципу «больше на определённое количество единиц – меньше на определённое количество единиц». Следует различать абсолютную и относительную величину интервалов. Например, если студент А решил задачу за 2 сек., а студент Б за 22 сек., то в абсолютном выражении интервал будет таким же, как и в том случае, когда студент В решает задачу за 222 сек., а Г - за 242 сек. Понятно, что «значимость» интервала в 20 сек. в рассмотренных случаях может быть различной.

Интервальная шкала даёт точное представление об отношении длин отрезков, однако в ней даже зная расстояние между 1-ой и 2-ой и 2-ой и 3-ей точкой нельзя точно указать расстояние между 1-ой и 3-ей точками, так как их взаимное расположение не определено однозначно. В интервальной шкале в этой ситуации можно делать однозначные заключения только о соотношении длин отрезков, но не их удалённости от какой-либо точки.

Абсолютная шкала получается из интервальной введением точки отсчёта. Это решает обсуждавшиеся выше проблемы. Именно для абсолютной шкалы справедливы обычно используемые на практике операции с расстояниями.

2. Требования к построению системы критериев

Наряду с проблемой измерения важной проблемой является построение системы показателей, отражающих генеральную цель. В литературе 1 сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Полнота

Система показателей должна включать критерии, характеризующие все основные аспекты деятельности хозяйственной системы. Смысл этого требования сводится к тому, чтобы дать возможность ЛПР принять управленческое решение.

Действенность (операционность)

Используемые показатели должны быть однозначно понимаемы, измеримы и доступны оценке.

Разложимость

Это требование связано с ограниченными возможностями человека. Исследования показали, что одновременная работа с числом объектов более семи неоправданна. Таким образом, при большом числе критериев система может разбиваться на более мелкие группы показателей. Например, системы, оценивающие качество продукции, разбиваются на группы показателей, характеризующие функциональные свойства изделий, их надёжность, эргономичность, а также показатели стандартизации и унификации. Получается «дерево критериев», и ЛПР одновременно работает только с одной «веткой».

Неизбыточность

Дублирование показателей «засоряет» информационные каналы, снижает как скорость, так и качество сбора и обработки информации.

Минимальная размерность

Смысл этого требования также заключается в повышении эффективности работы ЛПР. В систему показателей должно входить минимально возможное число критериев. В данном случае это достигается за счёт снижения количества показателей благодаря агрегированию информации, отсечению не принципиальных характеристик и т.п.

3. Методы многокритериального выбора

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Лексикографический метод

Лексикографический метод предполагает, что имеющийся ряд критериев упорядочен по важности.

Для сравниваемых объектов сначала измеряются значения наиболее важного критерия. Предпочтительным оказывается тот объект, для которого значение этого критерия лучше.

В том случае, когда значения сравниваемых объектов по наиболее важному критерию совпадают, то переходят к сравнению на основании следующего по важности критерия.

Процедура заканчивается на той итерации, на которой удаётся упорядочить объекты по предпочтительности, или когда проведены сравнения по всем критериям.

Наверное, наиболее известный пример использования лексикографического метода – определение места команды в спортивном состязании, например, чемпионате по футболу. В этом случае победитель определяется по количеству набранных очков. В случае их равенства последовательно используются дополнительные показатели - количество побед, разность мячей, результаты очных встреч и т.п.

Выделение множества Парето

В наибольшей степени идеологии многокритериального выбора соответствует процедура выделения множества Парето (ядра графа).

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Предполагается, что каждый из критериев характеризует качественно отличный от других аспект, свойство объекта и т.п. Так как сравнение разнокачественных вещей не имеет смысла, то упорядочиванию подлежат только те пары объектов, в которых один не хуже другого по всем параметрам. Если при этом по одному или нескольким критериям один объект будет лучше другого, то говорят, что он доминирует. В множестве Парето ни один объект не доминирует над другим. Собственно, процедура нахождения множества Парето и заключается в нахождении доминирующих объектов и их исключении из рассмотрения.

В таблице 1 приведены значения двух важнейших критериев, характеризующих инвестиционные проекты: прибыль и сумма капитальных вложений для семи проектов.

Таблица 1.

Характеристика инвестиционных проектов

Показатель

Проект №1

Проект №2

Проект №3

Проект №4

Проект №5

Проект №6

Проект №7

Прибыль, млн. руб.

Кап. вложения, млн. руб.

Попарное сравнение проектов показывает, что проект №5 доминирует проект №2, а проект №1 доминирует проект №3. Эти проекты должны быть исключены из рассмотрения. Каждый из остальных проектов в каком-то смысле лучше другого оставшегося, а в каком-то хуже: или он даёт больше прибыли, но требует больших капитальных вложений, или наоборот. Проекты 1, 4, 5, 6 и 7 оптимальны по Парето. Выбор одного из них требует дополнительных соображений.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.

Вопросы для самопроверки

  1. Какие шкалы используются для измерения значений показателей – критериев при принятии управленческих решений?
  2. В каких целях используются номинальная шкала?
  3. Каковы особенности измерения в ранговой шкале?
  4. Какие требования предъявляются к системе показателей, являющихся критериями при принятии управленческого решения?
  5. Какие существуют методы многокритериального выбора?
  6. Каковы особенности процедуры свёртки критериев?
  7. Практикумы

    Название практикума Аннотация

    Презентации

    Название презентации Аннотация

Метод свертывания критериев предполагает преобразование набора имеющихся частных критериев в один суперкритерий.

Т.е. мы получаем новый суперкритерий F, который является функцийот частных критериев. В общем случае, функциюназывают сверткой частных критериев .

К основным этапом свертывания относятся:

1. Обоснование допустимости свертки

При обосновании допустимости свертки, мы в первую очередь должны подтвердить, что критерии, которые мы сворачиваем, должны быть однородными. Выделяют такие группы показателей эффективности;

Показатели результативности;

Показатели ресурсоемкости;

Показатели оперативности.

Критерии, которые мы сворачиваем, должны относиться к одной и той же группе, нельзя сворачивать критерии, которые относятся, например, один из них к показателям оперативности, а другой к показателям результативности. Т.е. для каждой группы свертывание частных критериев следует выполнять отдельно. При нарушении этого принципа теряется смысл критерия .

2. Нормировка критериев

Правила нормализации критериев, мы рассматривали ранее в предыдущем разделе.

3. Учет приоритетов критериев

Учет приоритетов обычно задается некоторым векторам весовых коэффициентов, которые отображают важность того или иного критерия для решаемой задачи.

4. Построение функции свертки

Для свертывания критериев, используют такие основные типы функций:

Аддитивные функции свертки;

Мультипликативные;

Агрегированные, а также могут быть другие варианты сверток.

Аддитивная свертка

Аддитивную свертку критериев можно рассматривать как реализацию принципа справедливой компенсации абсолютных значений нормированных частных критериев . В этом случае, суперкритерий обычно строятся как взвешенная сумма частных критериев

(2.9)

Весовые коэффициенты выбираются такими, чтобы их сумма была равна единицы. В методе равномерной оптимизации, который является частным случаем аддитивной свертке, весовые коэффициенты берутся равными друг другу. Иногда оказывается более удобным другой подход к определению весовых коэффициентов, их определяет соответствие с такой таблицей:

таблица 2.1.

Таблица относительной важности критериев

Мультипликативная свертка

Мультипликативная свертка базируется на принципе справедливой компенсации относительных изменений частных критериев. При этом, суперкритерий имеет вид: , произведение частных критериев, каждый из которых возведен в степень. При этом сумма весовых коэффициентовдолжна быть равна единицы, а каждый из весовых коэффициентов должен быть не отрицательной величиной.

При использовании мультипликативных критериев не требуется нормировка частных критериев, и это является их преимуществом .

Выбор между аддитивными и мультипликативными критериями определяется важностью учета абсолютных или относительных изменений значений частных критериев.

Агрегирование частных критериев используют также различные варианты агрегирование. В частности, если компенсация значений одних показателей эффективности другими недопустима, то используют функции агрегирования вида:

Для каждого частного критерия, находится его нормированное значение и умножается на весовой коэффициент. А потом из всех полученных величин выбирается либо максимальное, либо минимальное значение.

Если первые mпоказателей надо увеличить, а остальные – уменьшить, то используют функцию агрегирования вида:

(2.11)

В числители находятся произведение тех критериев, значение которых нам надо максимизировать, а в знаменателе находятся произведение тех критериев, значение которых нам надо минимизировать. И поэтому мы получаем новый критерий, который нам надо будет максимизировать .

Методы свертывания критериев широко используются в решение задач многокритериальной оптимизации. Однако они имеют также проблемы и недостатки. В частности трудно обосновать выбор метода свертывания критериев, а от выбора метода часто зависит получаемый результат. Другим недостатком является трудность обоснование выбора весовых коэффициентов, часто для этого привлекается эксперты, проводятся опросы, потом обрабатываются полученные результаты, однако это требует много времени и затраты других ресурсов. Еще одна проблема связана с тем, что эти методы, как правила дает возможность компенсировать малые значения одних критериев большими значениями других, что часто бывает неприемлемо для конкретных решений .

Рассмотрим в качестве примера такую задачу:

Перед тем как преобразовывать эти критерии в 1, мы должны привести их в однородном состоянии. Т.е. в данном случае нужно максимизировать f2→ f2" = -f2. И тогда получим: . После этого суммируем частных критериевв один, и можем дальше решить задачу обычным путем.

Также нужно учитывать и весовые коэффициенты, при этом их сумма должна быть = 1, и каждый из весовых коэффициентов должен быть неотрицательной величиной. Весовые коэффициенты распределяется по важности этих самих частных критериев . В данном случае, весовые коэффициенты будут распределяться следующим образом: 0,5; 0,2; 0,3.

После подсчета вместе с весовыми коэффициентами, мы получим целевую функцию такого вида: или.

Открываем электронную книгу Excel и, как и для решения однокритериальной задачи определяем ячейки под переменные . Для этого в ячейку А3 вводим подпись «Переменные», а соседние три ячейки В2, С2 и D2 вводим значения переменных. Это могут быть произвольные числа, например единицы или нули, далее они будут оптимизироваться. В нашем случае это единицы.

рис.2.11. Определение переменных, целевых и ограничений

В четвертой строке задаем целевую функцию. В А4 вводим подпись «Целевая», а в В4, С4, D4 наши значения.

В ячейку F6,F7и F8 вводим формулы «=B6*$B$3+C6*$C$3+D6*$D$3», «=B7*$B$3+C7*$C$3+D7*$D$3»,«=B8*$B$3+C8*$C$3+D8*$D$3» соответственно.

После открытия окна «Поиск решения» в поле «Оптимизировать целевую функцию» ставим курсор и делаем ссылку на ячейку «F4». В окне появится $F$4. В связи с тем, что целевая функция максимизируется, далее нужно проверить, что флажок ниже поля стоит напротив надписи «Максимум».

После ставим курсор в поле «Изменяя ячейки переменных» и обводим ячейки с переменными В3, С3 и D3, выделяя ячейки с переменными. В поле появиться $B$3:$D$3.

В нижней части окна находится поле «Ограничения». Добавляем все необходимые ограничения, «F6» «» «F6», «F7:F8» «≤» и «G7:G8».

Вводим дополнительное ограничение, и получим следующую формулу «B3:D3», «», «0».

рис.2.12. Параметры поиска решения

Далее выбираем метод решения «Поиск решения линейных задач симплекс-методом». Для запуска вычислений нажимаем кнопку «Найти решение». Появляется надпись, что решение найдено. Выбираем «Сохранить найденное решение» и «ОК» видим результат.

рис.2.13. Окончательный результат решения по методу свертывания критериев

Существующие методы предназначены в основном для сравнения заданных альтернатив и выбора лучшей из них. Довольно часто критерии, по которым оцениваются альтернативы, противоречивы, для них используются разные методы и шкалы оценок.

С математической точки зрения не существует идеального способа или метода решения многокритериальных задач оптимизации. Тем не менее, эти методы помогают подготовить всю необходимую для принятия решения информацию таким образом, чтобы помочь лицам принимающее решение максимально точно разобраться в ситуации и принять наиболее обоснованное решение.

Многокритериальная задача выбора формулируется в следующем виде. Дано множество допустимых альтернатив, каждая из которых оценивается множеством критериев.

Требуется определить наилучшую альтернативу. При ее решении основная трудность состоит в неоднозначности выбора наилучшего решения. Для ее устранения используются две группы методов. В методах первой группы стремятся сократить число критериев, для чего вводят дополнительные предположения, относящиеся к процедуре ранжирования критериев и сравнения альтернатив. В методах второй группы стремятся сократить число альтернатив в исходном множестве, исключив заведомо плохие альтернативы.

К методам первой группы относятся метод свертки, метод главного критерия, метод пороговых критериев, метод расстояния. Следует отметить, что строгое обоснование этих методов отсутствует и их применение определяется условиями задачи и предпочтением ЛПР.

Метод свертки состоит в замене исходных критериев (их называют также локальными или частными) Kj одним общим критерием K. Эта операция называется сверткой или агрегированием частных критериев. Метод целесообразно применять, если по условиям задачи частные критерии можно расположить по убыванию важности так, что важность каждой пары соседних критериев различается не сильно, либо, если альтернативы имеют существенно различающиеся оценки по разным критериям. Наиболее часто используются следующие виды сверток: аддитивная, мультипликативная, расстояние до идеала.

Алгоритм метода линейной свертки

  • 1. Определяем коэффициенты важности (веса для каждой функции). Для этого используем метод пропорциональных коэффициентов.
  • 2. заменяем знаки функций, для того чтобы перейти от задачи минимизации к задаче максимизации.
  • 3. Выполнить нормировку критериев по формуле.

4. Строим функцию взвешенной аддитивной свертки и исследуем ее.

Решение

Используя пропорциональный метод, определим коэффициенты важности.

В многокритериальных задачах, когда из первоначальной постановки не удается выделить критерий, преобладающий по важности над другими - главный критерий, довольно часто критерии искусственно комбинируют посредством агрегирующей функции, с параметрами - весовыми коэффициентами, назначаемыми каждому критерию согласно его относительной важности. Этот подход часто называют скаляризацией или сверткой векторного критерия. А получающуюся при этом параметризованную функцию, сводящую исходную многокритериальную задачу к однокритериальной, - обобщенным, агрегированным, глобальным критерием или суперкритерием. Наиболее широко распространенным видом обобщенного критерия является линейная свертка, когда глобальный критерий представляется в виде суммы (иногда произведения) частных критериев, умноженных на соответствующие весовые коэффициенты.

При применении этого способа определенные трудности вызывает правильный выбор весовых коэффициентов, проблематична интерпретация получаемых результатов. Использовать рассмотренный прием образования обобщенного критерия имеет смысл только в тех случаях, когда интерес представляет сумма отдельных критериальных функций. В общем же случае происходит просто замена одних неопределенностей другими, замаскированная математическими выкладками .

Существуют также случаи, когда довольно проблематично назначить каждому критерию определенный весовой коэффициент, соответствующий его важности относительно остальных. Тогда прибегают к свертке критериев где весовые коэффициенты не отражают относительной важности критериев, а изменяясь в определенных пределах, способствуют тем самым локализации точек в множестве Парето. При этом еще больше возрастает роль ЛПР, т.к. при выборе весовых коэффициентов он руководствуется в основном собственным опытом и интуицией, что также требует от него определенной квалификации.

Неоднократно отмечались ошибки и противоречия, которые делает человек при назначении весов критериев. Достаточно обстоятельный обзор различных методов назначения весов подводит к выводу, что не существует корректных методов решения человеком этой задачи. Такое поведение человека при решении многокритериальных зада является повторяющимся и устойчивым.

Имеются результаты экспериментов, из которых следует, что человек назначает веса критериев с существенными ошибками по сравнению с объективно известными, что назначаемые веса противоречат его непосредственным оценкам альтернатив и т.д. Хотя дискуссия о возможности использования весов в методах принятия решений еще продолжается, полученных данных уже достаточно, чтобы считать эту операцию достаточно сложной для ЛПР .

Суммируя сказанное можно сделать следующий вывод. Метод сверток применялся и применяется наиболее часто, но имеет труднопреодолимые недостатки :

  • - не всегда потеря качества по одному критерию компенсируется приращением по другому. «Оптимальное» по свертке решение может характеризоваться низким качеством некоторых частных критериев и в связи с этим будет неприемлемым;
  • - не всегда можно задать веса критериев. Зачастую известна лишь сопоставимая важность критериев, иногда нет никакой информации о важности;
  • - результат сильно зависит от предпочтений ЛПР, который чаще всего назначает веса, исходя из интуитивного представления о сравнительной важности критериев;
  • - величина функции цели, полученная по свертке, не имеет никакого физического смысла;
  • - многократный запуск алгоритма по свертке может давать только несколько различных точек Парето (или одну и ту же) даже в случае, когда в действительности этих точек очень много;
  • - данный подход не способен генерировать истинные Парето-оптимальные решения в условиях невыпуклых поисковых пространств, что является серьезным препятствием при решении многих практических задач.

Итак, для решения любой многокритериальной задачи необходимо учитывать сведения об относительной важности частных критериев.

В некоторых многокритериальных задачах частные критерии строго упорядочены по важности так, что следует добиваться приращения более важного критерия за счет любых потерь по всем остальным менее важным критериям. Но в большинстве случаев возникает ситуация, когда выделить главный или упорядочить критерии по важности не удается. Тогда зачастую прибегают к свертке критериев в обобщенный критерий. Применение данного подхода к формированию множества Парето, также как методов последовательных уступок и выделения основного частного критерия, связано с рядом возникающих при этом трудностей, что ставит вопрос о целесообразности использования подобных подходов и необходимости разработки методов, лишенных их недостатков.

К тому же, характерной чертой, объединяющей 3 рассмотренных подхода, является то, что в каждом из них задача многокритериальной оптимизации сводится к одной или нескольким задачам однокритериальной оптимизации.

Таким образом, теряется суть решаемой задачи, ее отличительная особенность - одновременный учет многих критериев. А сами методы должны работать многократно, чтобы сгенерировать множество точек Парето с тем, чтобы дальше выполнить оценку решения, значительно увеличивая затрачиваемые при этом вычислительные ресурсы.

Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где j - нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он - несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где j - нормирующие множители,

вj - весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 - альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве? называется произвольное подмножество R множества? Х? , где? Х? - это множество всех упорядоченных пар (ai ;aj) , где ai , aj ? . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки - это вершины графа, стрелки между точками - это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е - непустое конечное множество элементов (вершин), е - конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества? по бинарному отношению R называется такой элемент х? , что у? выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент - это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества? по бинарному отношению R называется такой элемент х? , что у? для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества - это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент - это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 - в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 - из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 - из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 - из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 - в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа - это квадратная матрица размера m x m (m - это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето - одно удовольствие! Максимальные элементы - это те, чьи строки состоят из всех единиц (кроме себя самих - там может быть как нуль, так и единица). А оптимальные по Парето элементы - это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа - это матрица, строки которой соответствуют вершинам, а столбцы - дугам. При этом предполагается, что граф не должен иметь петель.

Элементы матрицы инцидентности будут такими:

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов - нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы - это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы - это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Поделиться: