Загадочный беспорядок: история фракталов и области их применения. Что такое фракталы

Муниципальное бюджетное образовательное учреждение

«Сиверская средняя общеобразовательная школа №3»

Исследовательская работа

по математике.

Выполнил работу

ученик 8-1 класса

Емелин Павел

Научный руководитель

учитель математики

Тупицына Наталья Алексеевна

п. Сиверский

2014 год

Математика вся пронизана красотой и гармонией,

Только эту красоту надо увидеть.

Б. Мандельброт

Введение____________________________________3-4стр.

Глава 1.история возникновения фракталов._______5-6стр.

Глава 2. Классификация фракталов._____________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"______11-13стр.

Глава 4. Применение фракталов_______________13-15стр.

Глава 5 Практические работы__________________16-24стр.

Заключение_________________________________25.стр

Список литературы и интернет ресурсов________26стр.

Введение

Математика,

если на нее правильно посмотреть,

отражает не только истину,

но и несравненную красоту.

Бертранд Рассел


Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Изучение фракталов открывает замечательные возможности, как в исследовании бесконечного числа приложений, так и в области математики. Применение фракталов очень обширно! Ведь эти объекты настолько красивы, что их используют дизайнеры, художники, с помощью них в графике рисуются многие элементы деревья, облака, горы и т.д. А ведь фракталы используются даже как антенны во многих сотовых телефонах.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта,

Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

До появления фрактальной геометрии наука имела дело с системами, заключенными в трех пространственных измерениях. Благодаря Эйнштейну стало понятно, что трехмерное пространство - только модель действительности, а не сама действительность. Фактически наш мир расположен в четырехмерном пространственно-временном континууме.
Благодаря Мандельброту стало понятно, как выглядит четырехмерное пространство, образно выражаясь, фрактальное лицо Хаоса. Бенуа Мандельброт обнаружил, что четвертое измерение включает в себя не только первые три измерения, но и (это очень важно!) интервалы между ними.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

Жидкость, газ, твердое тело - три привычных физических состояния вещества, существующего в трехмерном мире. Но какова размерность клуба дыма, облака, точнее, их границ, непрерывно размываемых турбулентным движением воздуха?

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов

Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.


Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Т
акже ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.



В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

П



ример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

И
нтересный факт
, некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Д
ля ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если же предположить, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладывается текстура и фотореалистичные горы готовы

Е
сли посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы. На обычный конус нужно наложить плазму и мы получим рельеф горы. Такие операции можно выполнять со многими другими объектами в природе, благодаря стохастическим фракталам можно описать саму природу.

Теперь поговорим о геометрических фракталах.

.

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно".

(Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов". Но существует и другой, более абстрактный или возвышенный, аспект красоты фракталов, открытый, по словам Р. Фейнмана, только умственному взору теоретика, в этом смысле фракталы прекрасны красотой трудной математической задачи. Бенуа Мандельброт указал современникам (и, надо полагать, потомкам) на досадный пробел в "Началах" Евклида, по которому, не замечая упущения, почти два тысячелетия человечества постигало геометрию окружающего мира и училось математической строгости изложения. Разумеется, оба аспекта красоты фракталов тесно взаимосвязаны и не исключают, а взаимно дополняют друг друга, хотя каждый из них самодостаточен.

Фрактальная геометрия природы по Мандельброту - самая настоящая геометрия, удовлетворяющая определению геометрии, предложенному в "Эрлангенскрй программе" Ф. Клейна. Дело в том, что до появления неевклидовой геометрии Н.И. Лобачевского - Л. Больяи, существовала только одна геометрия - та, которая была изложена в "Началах", и вопрос о том, что такое геометрия и какая из геометрий является геометрией реального мира, не возникал, да и не мог возникнуть. Но с появлением еще одной геометрии возник вопрос, что такое геометрия вообще, и какая из множества геометрий отвечает реальному миру. По Ф.Клейну, геометрия занимается изучением таких свойств объектов, которые инвариантны относительно преобразований: евклидова - инвариантов группы движений (преобразований, не изменяющих расстояния между любыми двумя точками, т.е. представляющих суперпозицию параллельных переносов и вращений с изменением или без изменения ориентации), геометрия Лобачевского-Больяи - инвариантов группы Лоренца. Фрактальная геометрия занимается изучением инвариантов группы самоаффинных преобразований, т.е. свойств, выражаемых степенными законами.

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:


Морские раковины


Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны


Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.


Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.


Лёд, морозные узоры на окнах это тоже фракталы


О
т увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

О
дни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений. Современная физика и механика только начинают изучать поведение фрактальных объектов.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации (плохого качества изображения – большими квадратами). Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.

Т
акже фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Коэн вырезал из алюминиевой фольги фигуру в форме кривой Коха и затем наклеил ее на лист бумаги, а затем присоединил к приемнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы такой антенны не изучены до сих пор, это не помешало Коэну обосновать собственную компанию и наладить их серийный выпуск. В данный момент американская фирма “Fractal Antenna System”разработала антенну нового типа. Теперь можно отказаться от использования в мобильных телефонах торчащих наружных антенн. Так называемая фрактальная антенна располагается прямо на основной плате внутри аппарата.

Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону. Т.е. фигуру можно увеличивать, взяв всего одну маленькую дугу, а можно уменьшать, рассматривая построение ее из более мелких.


рис. 7.

Фрактал «Ожерелье»

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.


Рис.8. Фрактал «Победа»

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.


Рис.9.Фрактал «Квадрат»

Фрактал был назван «Роза» (рис. 10), в силу внешнего сходства с данным цветком. Построение фрактала связано с построением ряда концентрических окружностей, радиус которых изменяется пропорционально заданному отношению (в данном случае R м / R б = ¾ = 0,75.). После чего в каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.



Рис. 11. Фрактал «Роза * »

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Введём элемент творчества и наш фрактал примет вид более наглядного объекта (рис. 13).


Р
ис. 12. Фрактал «Пентаграмма».

Рис. 13. Фрактал «Пентаграмма * »


Рис. 14 фрактал «Черная дыра»

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения. В программе Adobe Photoshop я создал небольшую подпрограмму или action , особенность этого экшена заключается в том, что он повторяет действия, которые я проделываю, и так у меня получается фрактал.


Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.




С ледующим шагом будет запись скрипта.

продублируем слой (layer > duplicate ) и изменим тип смешивания на "Screen " .

Назовём его "fr1 ". Скопируем этот слой ("fr1 ") еще 2 раза.

Теперь надо переключиться на последний слой (fr3 ) и дважды слить его с предыдущим (Ctrl+E ). Уменьшить яркость слоя (Image > Ajustments > Brightness/Contrast , яркость установить 50% ). Опять слить с предыдущим слоем и обрезать края всего рисунка, чтобы убрать невидимые части.

Последним шагом я копировал это изображение и вставлял его с уменьшением и поворотом. Вот что получилось в конечном результате.


Заключение

Данная работа является введением в мир фракталов. Мы рассмотрели только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств. Фракталы очень сильно облегчают рисование компьютерной графики, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В нашей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хотим только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи. Может быть, в первое время данное увлечение фракталами было даже слишком бурным и попытки все объяснять с помощью теории фракталов были неоправданными. Но, без сомнения, данная теория имеет право на существование, и мы сожалеем, что в последнее время она как-то забылась и осталась уделом избранных. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Таким образом, концепция фракталов становится не только частью “чистой” науки, но и элементом общечеловеческой культуры. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html


Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.
Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.
Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому".

Существует большое число математических объектов называемых фракталами (треугольник Серпинского, снежинка Коха, кривая Пеано, множество Мандельброта и лоренцевы аттракторы). Фракталы с большой точностью описывают многие физические явления и образования реального мира: горы, облака, турбулентные (вихревые) течения, корни, ветви и листья деревьев, кровеносные сосуды, что далеко не соответствует простым геометрическим фигурам. Впервые о фрактальной природе нашего мира заговорил Бенуа Мандельброт в своей основополагающей работе "Фрактальная геометрия природы" .
Термин фрактал введен Бенуа Мандельбротом в 1977 году в его фундаментальной работе "Фракталы, Форма, Хаос и Размерность" . Согласно Мандельброту, слово фрактал происходит от латинских слов fractus - дробный и frangere - ломать, что отражает суть фрактала, как "изломанного", нерегулярного множества.

Классификация фракталов.

Для того, чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации. Существует три класса фракталов.

1. Геометрические фракталы.

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается геометрический фрактал.

Рассмотрим на примере один из таких фрактальных объектов - триадную кривую Коха.

Построение триадной кривой Коха.

Возьмем прямолинейный отрезок длины 1. Назовем его затравкой . Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть и заменим ее ломаной из двух звеньев длиной 1/3.

Мы получим ломаную, состоящую из 4 звеньев с общей длиной 4/3 , - так называем первое поколение .

Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена отбросить и заменить среднюю часть. Соответственно длина второго поколения будет 16/9, третьего - 64/27. если продолжить этот процесс до бесконечности, то в результате получится триадная кривая Коха.

Рассмотрим теперь св-ва триадной кривой Коха и выясним, почему же фракталы называли «монстрами».

Во-первых, эта кривая не имеет длины - как мы убедились, с числом поколений ее длина стремится к бесконечности.

Во-вторых, к этой кривой невозможно построить касательную - каждая ее точка является точкой перегиба, в которой производная не существует, - эта кривая не гладкая.

Длина и гладкость - фундаментальные св-ва кривых, которые изучаются как евклидовой геометрией, так и геометрией Лобачевского, Римана. К триадной кривой Коха традиционные методы геометрического анализа оказались неприменимы, поэтому кривая Коха оказалась чудовищем - «монстром» среди гладких обитателей традиционных геометрий.

Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рисунке представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Кривая, при n стремящемуся к бесконечности, называется драконом Хартера-Хейтуэя.
В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

2.Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.
Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта. Алгоритм его построения достаточно прост и основан на простом итеративном выражении: Z = Z[i] * Z[i] + C , где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки с прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z[i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z[i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z[i] оставалась внутри окружности, можно установить цвет точки C (если Z[i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).

3.Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе хаотически менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.
Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

О применении фракталов

Прежде всего, фракталы - область удивительного математического искусства, когда с помощью простейших формул и алгоритмов получаются картины необычайной красоты и сложности! В контурах построенных изображений нередко угадываются листья, деревья и цветы.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. Современная физика и механика только-только начинают изучать поведение фрактальных объектов. И, конечно же, фракталы применяются непосредственно в самой математике.
Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.
Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.
Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами, например фрактальные облака из 3D studio MAX, фрактальные горы в World Builder. Фрактальные деревья, горы и целые пейзажи задаются простыми формулами, легко программируются и не распадаются на отдельные треугольники и кубики при приближении.
Нельзя обойти стороной и применения фракталов в самой математике. В теории множеств множество Кантора доказывает существование совершенных нигде не плотных множеств, в теории меры самоаффинная функция "Канторова лестница" является хорошим примером функции распределения сингулярной меры.
В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.
При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

О построении фракталов

Метод последовательных приближений

Глядя на эту картинку, нетрудно понять, как можно построить самоподобный фрактал (в данном случае пирамиду Серпинского). Нужно взять обычную пирамиду (тетраэдр), затем вырезать ее середину (октаэдр), в результате чего у нас получается четыре маленьких пирамидки. С каждой из них мы проделываем ту же самую операцию и т.д. Это несколько наивное, но наглядное объяснение.

Рассмотрим суть метода более строго. Пусть имеется некоторая IFS-система, т.е. система сжимающих отображений S ={S 1 ,...,S m } S i:R n ->R n (например, для нашей пирамидки отображения имеют вид S i (x)=1/2*x+o i , где o i - вершины тетраэдра, i=1,..,4). Затем выбираем некоторое компактное множество A 1 в R n (в нашем случае выбираем тетраэдр). И определяем по индукции последовательность множеств A k:A k+1 =S 1 (A k) U...U S m (A k). Известно, что множества A k с ростом k, всё лучше приближают искомый аттрактор системы S .

Заметим, что каждая из этих итераций является аттрактором рекуррентной системы итерированных функций (английский термин Digraph IFS , RIFS и также Graph-directed IFS ) и поэтому их легко построить с помощью нашей программы.

Построение по точкам или вероятностный метод

Это наиболее лёгкий для реализации на компьютере метод. Для простоты рассмотрим случай плоского самоаффинного множества. Итак, пусть {S

} - некоторая система аффинных сжатий. Отображения S

представимые в виде: S

Фиксированная матрица размера 2x2 и o

Двумерный вектор столбец.

  • Возьмем неподвижную точку первого отображения S 1 в качестве начальной точки:
    x:= o1;
    Здесь мы пользуемся тем, что все неподвижные точки сжатий S 1 ,..,S m принадлежат фракталу. В качестве начальной точки можно выбрать произвольную точку и порожденная ею последовательность точек стянется к фракталу, но тогда на экране появятся несколько лишних точек.
  • Отметим текущую точку x=(x 1 ,x 2) на экране:
    putpixel(x 1 ,x 2 ,15);
  • Выберем случайным образом число j от 1 до m и пересчитаем координаты точки x:
    j:=Random(m)+1;
    x:=S j (x);
  • Переходим на шаг 2, либо, если сделали достаточно большое число итераций, то останавливаемся.

Примечание. Если коэффициенты сжатия отображений S i разные, то фрактал будет заполняться точками неравномерно. В случае, если отображения S i являются подобиями, этого можно избежать небольшим усложнением алгоритма. Для этого на 3-ем шаге алгоритма число j от 1 до m надо выбирать с вероятностями p 1 =r 1 s ,..,p m =r m s , где r i обозначают коэффициенты сжатия отображений S i , а число s (называемое размерностью подобия) находится из уравнения r 1 s +...+r m s =1. Решение этого уравнения можно найти, например, методом Ньютона.

О фракталах и их алгоритмах

Фрактал происходит от латинского прилагательного "fractus", и в переводе означает состоящий из фрагментов, а соответствующий латинский глагол "frangere" означает разбивать, то есть создавать неправильные фрагменты. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Термин был предложен Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «The Fractal Geometry of Nature» - «Фрактальная геометрия природы». В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф).

Коррективы

Позволю себе внести некоторые коррективы в алгоритмы предложенные в книге Х.-О. Пайтгена и П.Х.Рихтера "Красота фракталов" М. 1993 сугубо для искоренения опечаток иоблегчения понимания процессов поскольку после их изучения многое осталось для меня загадкой. К сожалению эти "понятные" и "простые" алгоритмы ведут качующий образ жизни.

В основе построения фракталов лежит некая нелинейная функция комплексного процесса с обратной связью z=> z 2 +c поскольку z и с -комплексные числа, то z=x+iy, c=p+iq необходимо разложить его на х и у чтобы перейти в более реальную для простого человека плоскость:

x(k+1)=x(k) 2 -y(k) 2 + p,
y(k+1)=2*x(k)*y(k) + q.

Плоскость, состоящая из всех пар (x,y), может рассматриваться, как при фиксированных значениях р и q , так и при динамических. В первом случае перебирая по закону все точки (х,у) плоскости и окрашивая их в зависимости от количества повторений функции необходимых для выхода из итерационного процесса или не окрашивая (черный цвет) при привышении допустимого максимума повторений мы получим отображение множества Жюлиа. Если, напротив, определить начальнуюя пару значений (x,y) и проследить ее колористическую судьбу при динамически изменяющихся значениях параметров p и q, то получаим изображения, называемые множествами Мандельброта.

К вопросу об алгоритмах раскраски фракталов.

Обычно тело множества представляют в виде черного поля, хотя очевидно, что черный цвет может быть заменен на любой другой, но это тоже мало интересный результат. Получить изображение множества раскрашенного во все цвета - задача которая не может решаться при помощи циклических операций т.к. количество итерации формирующих тело множества равно максимально возможному и всегда одно и тоже. Раскрасить множество в разные цвета возможно применив в качестве номера цвета результат проверки условия выхода из цикла (z_magnitude) или подобный ему, но с другими математическими действиями.

Применение "фрактального микроскопа"

для демонстрации пограничных явлений.

Аттракторы - центры ведущие борьбу за доминирование на плоскости. Между аттракторами возникает граница представляющая витееватый узор. Увеличивая масштаб рассмотрения в пределах границ множества можно получать нетривиальные узоры отражаюшие состояние детерминированного хаоса - обычного явления в мире природы.

Исследуемые географами объекты образуют систему с весьма сложно организованными границами, в связи с чем их проведение становится не простой практической задачей. Природные комплексы имеют ядра типичности выступающие в качестве аттракторов теряющих силу влияния на территорию по мере ее удаления.

Используя фрактальный микроскоп для множеств Мандельброта и Жюлиа можно сформировать представление о пограничных процессах и явлениях, одинаково сложных не зависимо от масштаба рассмотрения и таким образом подготовить восприятие специалиста к встрече с динамичным и на первый взгляд хаотичным в пространстве и времени природным объектом, к пониманию фрактальной геометрии природы. Многоцветие красок и фрактальная музыка определенно оставят глубокий след в сознании учащихся.

Фракталам посвящены тысячи публикаций и огромные ресурсы интернет, однако для многих специалистов далеких от информатики данный термин представляется абсолютно новым. Фракталы, как объекты представляющие интерес для специалистов различных отраслей знания, должны получить надлежащее место в курсе информатики.

Примеры

РЕШЕТКА СЕРПИНСКОГО

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского , возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.

КРИВАЯ КОХА

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

ФРАКТАЛ МАНДЕЛЬБРОТА

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5.

ПЯТИУГОЛЬНИК ДАРЕРА

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Вариант этого фрактала можно получить при использовании в качестве инициатора шестиугольника. Этот фрактал называется Звезда Давида и он довольно похож на шестиугольную версию Снежинки Коха. Фрактальная размерность пятиугольника Дарера ln6/ln(1+g), где g - отношение длины большей стороны треугольника к длине меньшей. В данном случае, g - это Золотая Пропорция, так что фрактальная размерность приблизительно равна 1.86171596. Фрактальное измерение Звезды Давида ln6/ln3 или 1.630929754.

Сложные фракталы

Фактически, если вы увеличите маленькую область любого сложного фрактала а затем проделаете то же самое с маленькой областью этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

Рис 1. Приближение множества Мандельброта

Сравните, например приведенные здесь картинки множества Мандельброта, одна из которых получена при увеличении некоторой области другой. Как видно, они абсолютно не являются идентичными, хотя на обоих мы видим черный круг, от которого в разные стороны идут пылающие щупальца. Эти элементы повторяются бесконечно долго во множестве Мандельброта в уменьшающейся пропорции.

Детерминистские фракталы являются линейными, тогда как сложные фракталы таковыми не являются. Будучи нелинейными, эти фракталы генерируются тем, что Мандельброт назвал нелинейными алгебраическими уравнениями. Хороший пример - это процесс Zn+1=ZnІ + C, что является уравнением, используемым для построения множества Мандельброта и Жулии второй степени. Решение этих математических уравнений вовлекает комплексные и мнимые числа. Когда уравнение интерпретируется графически на комплексной плоскости, результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.

Как можно увидеть, смотря на картинки, сложные фракталы действительно очень сложны и их невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. В отличии от детерминистских фракталов, сложные фракталы не вычисляются за 5-10 итераций. Практически каждая точка на экране компьютера как отдельный фрактал. Во время математической обработки, каждая точка рассматривается как отдельный рисунок. Каждой точке соответствует определенное значение. Уравнение встраивается, применительно к каждой точке и производится, к примеру 1000 итераций. Для получения сравнительно неискаженного изображения за приемлемый для домашних компьютеров промежуток времени, для одной точки возможно проводить 250 итерации.

Большинство фракталов, которые мы видим сегодня, красиво раскрашены. Возможно фрактальные изображения получили такое большое эстетическое значение именно благодаря своим цветовым схемам. После того, как уравнение посчитано, компьютер анализирует результаты. Если результаты остаются стабильными, или колеблются вокруг определенного значения, точка обычно принимает черный цвет. Если значение на том или ином шаге стремится к бесконечности, точку закрашивают в другой цвет, может быть в синий или красный. Во время этого процесса, компьютер назначает цвета для всех скоростей движения.

Обычно, быстро движущиеся точки закрашивают в красный цвет, тогда как более медленные в желтый и так далее. Темные точки, вероятно, самые стабильные.

Сложные фракталы отличаются от детерминистских в том смысле, что они бесконечно сложные, но, при этом, могут быть сгенерированы очень простой формулой. Детерминистским фракталам не нужны формулы или уравнения. Просто возьмите чертежную бумагу и вы можете построить решето Серпинского до 3 или 4 итерации без каких-либо затруднений. Попробуйте сделать это с множеством Жулиа! Легче пойти мерить длину береговой линии Англии!

МНОЖЕСТВО МАНДЕЛЬБРОТА

Рис 2. Множество Мандельброта

Множества Мандельброта и Жулиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.
Рис 3. Появление пузырьков при a=3.5

Также популярен процесс Z=Z*tg(Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

МНОЖЕСТВО ЖУЛИА

Удивительно, но множества Жулиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жулиа было изобретено французским математиком Гастоном Жулиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жулиа это "если оба фрактала сгенерированы по одной формуле, почему они такие разные?" Сначала посмотрите на картинки множества Жулиа. Достаточно странно, но существуют разные типы множеств Жулиа. При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жулиа.

Рис 4. Множество Жулиа

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жулиа, соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жулиа. Множества Жулиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жулиа. Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жулиа, соответствующий определенной точке фрактала Мандельброта.

Хаос - это порядок, который нужно расшифровать.

Жозе Сарамаго, «Двойник»

«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем» . Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.

Новое - это хорошо забытое старое

Позволю себе еще одну цитату из Глейка:

Мысль о внутреннем подобии, о том, что великое может быть вложено в малое, издавна ласкает человеческую душу... По представлениям Лейбница, капля воды содержит в себе весь блистающий разноцветьем мир, где искрятся водяные брызги и живут другие неизведанные вселенные. «Увидеть мир в песчинке» - призывал Блейк, и некоторые ученые пытались следовать его завету. Первые исследователи семенной жидкости склонны были видеть в каждом сперматозоиде своего рода гомункулуса, т. е. крошечного, но уже полностью сформировавшегося человечка.

Ретроспективу подобных воззрений можно обратить гораздо дальше в глубь истории. Один из основных принципов магии - неотъемлемой ступени развития любого общества - состоит в постулате: часть подобна целому. Он проявлялся в таких действиях, как захоронение черепа животного вместо всего животного, модели колесницы вместо самой колесницы и т. д. Сохраняя череп предка, родственники считали, что он продолжает жить рядом с ними и принимать участие в их делах.

Еще древнегреческий философ Анаксагор рассматривал первичные элементы мироздания как частицы, подобные другим частицам целого и самому целому, «бесконечные и по множеству, и по малости». Аристотель характеризовал элементы Анаксагора прилагательным «подобочастные» .

А наш современник, американский кибернетик Рон Эглэш, исследуя культуру африканских племен и южноамериканских индейцев, сделал открытие: с древних времен некоторые из них использовали фрактальные принципы построения в орнаментах, узорах, наносимых на одежду и предметы быта, в украшениях, ритуальных обрядах и даже в архитектуре. Так, структура деревень некоторых африканских племен представляет собой круг, в котором находятся маленькие круги - дома, внутри которых еще более мелкие круги - дома духов. У иных племен вместо кругов элементами архитектуры служат другие фигуры, но они также повторяются в разных масштабах, подчиненных единой структуре. Причем эти принципы построения не были простым подражанием природе, но согласовывались с бытующим мировоззрением и социальной организацией .

Наша цивилизация, казалось бы, ушла далеко от первобытного существования. Однако мы продолжаем жить в том же мире, нас по-прежнему окружает природа, живущая по своим законам, несмотря на все попытки человека приспособить ее к своим нуждам. Да и сам человек (не будем забывать об этом) остается частью этой природы.

Герт Эйленбергер, немецкий физик, занявшийся изучением нелинейности, как-то заметил:

Почему силуэт согнувшегося под напором штормового ветра обнаженного дерева на фоне мрачного зимнего неба воспринимается как прекрасный, а очертания современного многофункционального здания, несмотря на все усилия архитектора, вовсе не кажутся такими? Сдается мне, что... наше чувство прекрасного «подпитывается» гармоничным сочетанием упорядоченности и беспорядка, которое можно наблюдать в естественных явлениях: облаках, деревьях, горных цепях или кристаллах снежинок. Все такие контуры суть динамические процессы, застывшие в физических формах, и для них типична комбинация устойчивости и хаотичности.

У истоков теории хаоса

Что мы понимаем под хаосом ? Невозможность предсказать поведение системы, беспорядочные скачки в разных направлениях, которые никогда не превратятся в упорядоченную последовательность.

Первым исследователем хаоса считается французский математик, физик и философ Анри Пуанкаре. Еще в конце XIX в. при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются от конкретной точки, и не приближаются к ней.

Традиционные методы геометрии, широко используемые в естественных науках, основаны на аппроксимации структуры исследуемого объекта геометрическими фигурами, например линиями, плоскостями, сферами, метрическая и топологическая размерности которых равны между собой. В большинстве случаев свойства исследуемого объекта и его взаимодействие с окружающей средой описываются интегральными термодинамическими характеристиками, что приводит к утрате значительной части информации о системе и к замене ее на более или менее адекватную модель. Чаще всего подобное упрощение вполне оправдано, однако известны многочисленные ситуации, когда применение топологически неадекватных моделей недопустимо. Пример такого несоответствия привел в своей кандидатской диссертации (теперь уже доктор химических наук) Владимир Константинович Иванов: оно обнаруживается при измерении площади развитой (например, пористой) поверхности твердых тел с помощью сорбционных методов, регистрирующих изотермы адсорбции. Оказалось, что величина площади зависит от линейного размера молекул-«измерителей» не квадратично, чего следовало бы ожидать из простейших геометрических соображений, а с показателем степени, иногда вплотную приближающемся к трем .

Прогнозирование погоды - одна из проблем, над которой человечество бьется с древних времен. Существует известный анекдот на эту тему, где прогноз погоды передается по цепочке от шамана - оленеводу, затем геологу, потом редактору радиопередачи, и наконец круг замыкается, поскольку выясняется, что шаман узнал прогноз по радио. Описание такой сложной системы, как погода, со множеством переменных, невозможно свести к простым моделям. С данной задачи началось использование компьютеров для моделирования нелинейных динамических систем. Один из основоположников теории хаоса, американский метеоролог и математик Эдвард Нортон Лоренц много лет отдал проблеме прогнозирования погоды. Еще в 60-х годах прошлого века, пытаясь понять причины ненадежности прогнозов погоды, он показал, что состояние сложной динамической системы может сильно зависеть от начальных условий: незначительное изменение одного из многих параметров способно кардинально изменить ожидаемый результат. Лоренц назвал эту зависимость эффектом бабочки: «Сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке» . Ему принесла известность работа, посвященная общему круговороту атмосферы. Исследуя описывающую процесс систему уравнений с тремя переменными, Лоренц графически отобразил результаты своего анализа: линии графика представляют собой координаты точек, определяемых решениями в пространстве этих переменных (рис. 1). Полученная двойная спираль, названная аттрактор Лоренца (или «странный аттрактор»), выглядела как нечто бесконечно запутанное, но всегда расположенное в определенных границах и никогда не повторяющееся. Движение в аттракторе абстрактно (переменными могут быть скорость, плотность, температура и др.), и тем не менее оно передает особенности реальных физических явлений, таких как движение водяного колеса, конвекция в замкнутой петле, излучение одномодового лазера, диссипативные гармонические колебания (параметры которых играют роль соответствующих переменных).

Из тысяч публикаций, составивших специальную литературу по проблеме хаоса, вряд ли какая-либо цитировалась чаще, чем написанная Лоренцем в 1963 г. статья «Детерминистский непериодический поток» . Хотя благодаря компьютерному моделированию уже во времена этой работы предсказание погоды из «искусства превратилось в науку», долгосрочные прогнозы по-прежнему оставались недостоверными и ненадежными. Причина этого заключалась в том самом эффекте бабочки.

В тех же 60-х годах математик Стивен Смэйл из Калифорнийского университета собрал в Беркли исследовательскую группу из молодых единомышленников. Ранее он был удостоен медали Филдса за выдающиеся исследования в области топологии. Смэйл занимался изучением динамических систем, в частности нелинейных хаотических осцилляторов. Для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве он создал структуру, известную под названием «подкова» - пример динамической системы, имеющей хаотическую динамику.

«Подкова» (рис. 2) - точный и зримый образ сильной зависимости от начальных условий: никогда не угадаешь, где окажется начальная точка после нескольких итераций. Этот пример послужил толчком к изобретению русским математиком, специалистом по теории динамических систем и дифференциальных уравнений, дифференциальной геометрии и топологии Дмитрием Викторовичем Аносовым «диффеоморфизмов Аносова» . Позже из этих двух работ выросла теория гиперболических динамических систем. Прошло десятилетие, прежде чем результаты работы Смэйла удостоились внимания представителей других дисциплин. «Когда это все же случилось, физики поняли, что Смэйл повернул целый раздел математики лицом к реальному миру» .

В 1972 г. математик из Мэрилендского университета Джеймс Йорк прочитал вышеупомянутую статью Лоренца, которая поразила его. Йорк увидел в статье живую физическую модель и посчитал своей святой обязанностью донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он направил копию статьи Лоренца Смэйлу. Тот изумился, обнаружив, что безвестный метеоролог (Лоренц) десятью годами раньше обнаружил ту неупорядоченность, которую он сам посчитал однажды математически невероятной, и разослал копии всем своим коллегам.

Биолог Роберт Мэй, друг Йорка, занимался изучением изменений численности популяций животных. Мэй шел по стопам Пьера Ферхлюста, который еще в 1845 г. обратил внимание на непредсказуемость изменения численности животных и пришел к выводу, что коэффициент прироста популяции - величина непостоянная. Иными словами, процесс оказывается нелинейным. Мэй пытался уловить, что случается с популяцией в момент приближения колебаний коэффициента роста к некоторой критической точке (точке бифуркации). Варьируя значения этого нелинейного параметра, он обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего. При определенных условиях периодичность уступала место хаосу, колебаниям, которые никогда не затухали.

Йорк математически проанализировал описанные явления в своей работе, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами (плавными подъемами и спадами значений какого-либо параметра), то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. (Как выяснилось через несколько лет после опубликования статьи на международной конференции в восточном Берлине, советский (украинский) математик Александр Николаевич Шарковский несколько опередил Йорка в своих исследованиях ). Йорк написал статью для известного научного издания «Американский математический ежемесячник» . Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно описывающиеся трудными для решения дифференциальными уравнениями, могут быть представлены с помощью наглядных графиков.

Мэй пытался привлечь внимание биологов к тому, что популяции животных переживают не одни лишь упорядоченные циклы. На пути к хаосу возникает целый каскад удвоения периодов. Именно в точках бифуркации некоторое увеличение плодовитости особей могло привести, например, к смене четырехгодичного цикла популяции непарного шелкопряда восьмигодичным. Американец Митчел Фейгенбаум решил начать с подсчета точных значений параметра, порождавших такие изменения. Его расчеты показывали, что не имело значения, какова начальная популяция, - она все равно неуклонно приближалась к аттрактору. Затем, с первым удвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Потом происходило следующее умножение периодов, и каждая точка аттрактора вновь начинала делиться. Число - инвариант, полученный Фейгенбаумом, - позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора - в двух, четырех, восьми точках... Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Так Фейгенбаум открыл в 1976 г. «каскад удвоения периода», опираясь на работу Мэя и свои исследования турбулентности. Его теория отражала естественный закон, который относится ко всем системам, испытывающим переход от упорядоченного состояния к хаосу. Йорк, Мэй и Файгенбаум первыми на Западе в полной мере осознали важность удвоения периодов и сумели передать эту идею всему научному сообществу. Мэй заявлял, что хаос необходимо преподавать.

Советские математики и физики продвигались в своих исследованиях независимо от зарубежных коллег. Начало изучению хаоса положили работы А. Н. Колмогорова 50-х годов. Но и идеи зарубежных коллег не оставались без их внимания. Пионерами теории хаоса считаются советские математики Андрей Николаевич Колмогоров и Владимир Игоревич Арнольд и немецкий математик Юрген Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Другой наш выдающийся соотечественник, блестящий физик и математик Яков Григорьевич Синай, применил в термодинамике соображения, аналогичные «подкове Смейла». Едва в 70-х годах с работой Лоренца познакомились западные физики, как она приобрела известность и в СССР. В 1975 г., когда Йорк и Мэй еще прилагали немалые усилия к тому, чтобы добиться внимания коллег, Синай и его товарищи организовали в Горьком исследовательскую группу для изучения этой проблемы.

В прошлом веке, когда узкая специализация и разобщение между различными дисциплинами стали в науке нормой, математики, физики, биологи, химики, физиологи, экономисты бились над схожими задачами, не слыша друг друга. Идеи, требующие изменения привычного мировоззрения, всегда с трудом пробивают себе путь. Однако постепенно стало ясно, что такие вещи, как изменение популяций животных, колебания цен на рынке, перемена погоды, распределение небесных тел по размерам и многое, многое другое, - подчиняются одним закономерностям. «Осознание этого факта заставило менеджеров пересмотреть отношение к страховке, астрономов - под другим углом зрения взглянуть на Солнечную систему, политиков - изменить мнение о причинах вооруженных конфликтов» .

К середине 80-х годов ситуация сильно изменилась. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Для исследователей хаоса математика стала экспериментальной наукой, компьютеры заменили собой лаборатории. Графические изображения приобрели первостепенную важность. Новая наука дала миру особый язык, новые понятия: фазовый портрет, аттрактор, бифуркация, сечение фазового пространства, фрактал...

Бенуа Мандельброт, опираясь на идеи и работы предшественников и современников, показал, что такими сложными процессами, как рост дерева, образование облаков, вариации экономических характеристик или численности популяций животных управляют сходные, по сути, законы природы. Это определенные закономерности, по которым живет хаос. С точки зрения природной самоорганизации они намного проще, чем искусственные формы, привычные цивилизованному человеку. Сложными их можно признать лишь в контексте евклидовой геометрии, поскольку фракталы определяются посредством задания алгоритма, и, следовательно, могут быть описаны с помощью небольшого объема информации.

Фрактальная геометрия природы

Давайте попробуем разобраться, что же такое фрактал и «с чем его едят». А съесть некоторые из них действительно можно, как, например, типичного представителя, показанного на фотографии.

Слово фрактал происходит от латинского fractus - дробленый, сломанный, разбитый на куски. Под фракталом подразумевается математическое множество, обладающее свойством самоподобия, т. е. масштабной инвариантности.

Термин «фрактал» был придуман Мандельбротом в 1975 г. и получил широкую популярность с выходом в 1977 г. его книги «Фрактальная геометрия природы» . «Дайте чудовищу какое-нибудь уютное, домашнее имя, и вы удивитесь, насколько легче будет его приручить!» - говорил Мандельброт. Это стремление сделать исследуемые объекты (математические множества) близкими и понятными привело к рождению новых математических терминов, таких как пыль , творог , сыворотка , наглядно демонстрирующих их глубинную связь с природными процессами.

Математическое понятие фрактала выделяет объекты, обладающие структурами различных масштабов, как больших, так и малых, и, таким образом, отражает иерархический принцип организации. Конечно, различные ветви дерева, например, не могут быть точно совмещены друг с другом, но их можно считать подобными в статистическом смысле. Точно так же формы облаков, очертания гор, линия морского берега, рисунок пламени, сосудистая система, овраги, молния, рассматриваемые при различных масштабах, выглядят подобными. Хотя эта идеализация и может оказаться упрощением действительности, она существенно увеличивает глубину математического описания природы.

Понятие «природный фрактал» Мандельброт ввел для обозначения естественных структур, которые могут быть описаны с помощью фрактальных множеств. Эти природные объекты включают в себя элемент случайности. Созданная Мандельбротом теория позволяет количественно и качественно описывать все те формы, которые ранее назывались спутанными, волнистыми, шероховатыми и т. д.

Динамические процессы, о которых шла речь выше, так называемые процессы с обратной связью, возникают в различных физических и математических задачах. Все они имеют одно общее - конкуренцию нескольких центров (получивших имя «аттракторы») за доминирование на плоскости. То состояние, в котором система оказалась после некоторого числа итераций, зависит от ее «места старта». Поэтому каждому аттрактору соответствует некоторая область начальных состояний, из которых система обязательно попадет в рассматриваемое конечное состояние. Таким образом, фазовое пространство системы (абстрактное пространство параметров, ассоциированных с конкретной динамической системой, точки в котором однозначно характеризуют все возможные ее состояния) разбивается на области притяжения аттракторов. Налицо своеобразный возврат к динамике Аристотеля, согласно которой каждое тело стремится к предназначенному ему месту . Простые границы между «сопредельными территориями» в результате такого соперничества возникают редко. Именно в этой пограничной области и происходит переход от одной формы существования к другой: от порядка к хаосу. Общий вид выражения для динамического закона очень прост: х n+1 → f х n C . Вся сложность состоит в нелинейной зависимости между начальным значением и результатом. Если начать итерационный процесс указанного вида с некоторого произвольного значения \(x_0 \), то результатом его будет последовательность \(x_1 \), \(x_2 \), ..., которая либо будет сходиться к некоторому предельному значению \(X \), стремясь к состоянию покоя, либо придет к некоторому циклу значений, которые будут повторяться вновь и вновь, либо будет все время вести себя беспорядочно и непредсказуемо . Именно такие процессы исследовали еще во время Первой мировой войны французские математики Гастон Жюлиа и Пьер Фато.

Изучая множества, открытые ими, Мандельброт в 1979 г. пришел к изображению на комплексной плоскости образа, который является, как будет ясно из дальнейшего, своего рода оглавлением целого класса форм, именующегося множествами Жюлиа. Множество Жюлиа - это множество точек, возникающее в результате итерирования квадратичного преобразования: х n → х n−1 2 + C , динамика в окрестности которых неустойчива по отношению к малым возмущениям начального положения. Каждое последовательное значение \(x \) получается из предыдущего; комплексное число \(C \) называется управляющим параметром . Поведение последовательности чисел зависит от параметра \(C \) и начальной точки \(x_0 \). Если зафиксировать \(C \) и изменять \(x_0 \) в поле комплексных чисел, мы получим множество Жюлиа. Если же зафиксировать \(x_0 \) = 0 и изменять \(C \), получим множество Мандельброта (\(M \)). Оно подсказывает нам, какого вида множества Жюлиа следует ожидать при конкретном выборе \(C \). Каждое комплексное число \(C \) либо принадлежит области \(M \) (черной на рис. 3), либо нет. \(C \) принадлежит \(M \) тогда и только тогда, когда «критическая точка» \(x_0 \) = 0 не стремится к бесконечности. Множество \(M \) состоит из всех точек \(C \), которые ассоциируются со связными множествами Жюлиа, если же точка \(C \) лежит вне множества \(M \), ассоциированное с ней множество Жюлиа несвязно. Граница множества \(M \) определяет момент математического фазового перехода для множеств Жюлиа х n → х n−1 2 + C . Когда параметр \(C \) покидает \(M \), множества Жюлиа теряют свою связность, образно говоря, взрываются и превращаются в пыль. Качественный скачок, происходящий на границе \(M \), влияет и на примыкающую к границе область. Сложную динамическую структуру пограничной области можно приближенно показать, окрашивая (условно) в разные цвета зоны с одинаковым временем «убегания в бесконечность начальной точки \(x_0 \) = 0». Те значения \(C \) (один оттенок), при которых критической точке требуется данное число итераций, чтобы оказаться вне круга радиусом \(N \), заполняют промежуток между двумя линиями. По мере приближения к границе \(M \) необходимое число итераций увеличивается. Точка все большее время вынуждена блуждать извилистыми путями вблизи множества Жюлиа. Множество Мандельброта воплощает в себе процесс перехода от порядка к хаосу.

Интересно проследить путь, которым Мандельброт шел к своим открытиям. Бенуа родился в Варшаве в 1924 г., в 1936 семья эмигрировала в Париж. Окончив Политехническую школу, а затем и университет в Париже, Мандельброт переехал в США, где отучился еще и в Калифорнийском технологическом институте. В 1958 г. он устроился в научно-исследовательский центр IBM в Йорктауне. Несмотря на чисто прикладную деятельность компании, занимаемая должность позволяла ему вести исследования в самых разных областях. Работая в области экономики, молодой специалист занялся изучением статистики цен на хлопок за большой период времени (более 100 лет). Анализируя симметрию длительных и кратковременных колебаний цен, он заметил, что эти колебания в течение дня казались случайными и непредсказуемыми, однако последовательность таких изменений не зависела от масштаба. Для решения этой задачи он впервые использовал свои разработки будущей фрактальной теории и графическое отображение исследуемых процессов.

Интересуясь самыми разными областями науки, Мандельброт обратился к математической лингвистике, затем наступил черед теории игр. Он также предложил собственный подход к экономике, указав на упорядоченность масштабов в распространении малых и больших городов. Изучая малоизвестную работу английского ученого Льюиса Ричардсона, вышедшую после смерти автора, Мандельброт столкнулся с феноменом береговой линии. В статье «Какова длина береговой линии Великобритании?» он подробно исследует этот вопрос, над которым мало кто задумывался до него, и приходит к неожиданным выводам: длина береговой линии равна... бесконечности! Чем точнее вы стараетесь ее измерить, тем большим получается ее значение!

Для описания подобных явлений Мандельброту пришло в голову отталкиваться от идеи размерности. Фрактальная размерность объекта служит количественной характеристикой одной из его особенностей, а именно - заполнения им пространства.

Определение понятия фрактальной размерности восходит к работе Феликса Хаусдорфа, опубликованной в 1919 г., и было окончательно сформулировано Абрамом Самойловичем Безиковичем. Фрактальная размерность - мера детализации, изломанности, неровности фрактального объекта. В евклидовом пространстве топологическая размерность всегда определяется целым числом (размерность точки - 0, линии - 1, плоскости - 2, объемного тела - 3). Если проследить, например, проекцию на плоскость движения броуновской частицы, которая вроде бы должна состоять из отрезков прямой, т. е. иметь размерность 1, очень скоро окажется, что след ее заполняет почти всю плоскость. Но размерность плоскости - 2. Расхождение между этими величинами и дает нам право отнести данную «кривую» к фракталам, а ее промежуточную (дробную) размерность называть фрактальной. Если рассмотреть хаотическое движение частицы в объеме, фрактальная размерность траектории окажется больше 2, но меньше 3. Артерии человека, например, имеют фрактальную размерность примерно 2,7. Упомянутые в начале статьи результаты Иванова, относящиеся к измерению площади пор силикагеля, которые не могут быть истолкованы в рамках обычных евклидовых представлений, при использовании теории фракталов находят разумное объяснение .

Итак, с математической точки зрения, фракталом называется множество, для которого размерность Хаусдорфа - Безиковича строго больше его топологической размерности и может быть (а чаще всего и является) дробной.

Необходимо особо подчеркнуть, что фрактальная размерность объекта не описывает его форму, и объекты, имеющие одинаковую размерность, но порожденные различными механизмами образования, зачастую совершенно не похожи друг на друга. Физические фракталы обладают скорее статистическим самоподобием.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости, шероховатости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее длины, обладает присущей только ей шероховатостью. Мандельброт указал пути расчета дробных измерений объектов окружающей действительности. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, которые встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах.

Особую разновидность фракталов составляют временные фракталы . В 1962 г. Мандельброт столкнулся с задачей по устранению шумов в телефонных линиях, которые вызвали проблемы для компьютерных модемов. Качество передачи сигнала зависит от вероятности возникновения ошибок. Инженеры бились над проблемой уменьшения шумов, придумывая головоломные и дорогостоящие приемы, но не получали впечатляющих результатов. Опираясь на работу основателя теории множеств Георга Кантора, Мандельброт показал, что возникновения шумов - порождения хаоса - невозможно избежать в принципе, поэтому предложенные способы борьбы с ними не принесут результата. В поисках закономерности возникновения шумов он получает «канторову пыль» - фрактальную последовательность событий. Интересно, что тем же закономерностям подчиняется распределение звезд в Галактике:

«Вещество», однородно распределенное вдоль инициатора (единичный отрезок временной оси), подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала... Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится - в результате створаживания - чрезвычайно концентрированной.

Хаотические явления, такие как турбулентность атмосферы, подвижность земной коры и т. д., демонстрируют сходное поведение в различных временных масштабах подобно тому, как объекты, обладающие инвариантностью к масштабу, обнаруживают сходные структурные закономерности в различных пространственных масштабах.

В качестве примера приведем несколько характерных ситуаций, где полезно использовать представления о фрактальной структуре. Профессор Колумбийского университета Кристофер Шольц специализировался на изучении формы и строения твердого вещества Земли, он изучал землетрясения. В 1978 г. он прочитал книгу Мандельброта «Фракталы: форма, случайность и размерность» и попытался применить теорию к описанию, классификации и измерению геофизических объектов. Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Фрактальное измерение ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Металлурги обнаружили то же самое на другом масштабном уровне - применительно к поверхностям различных типов стали. В частности, фрактальное измерение поверхности металла зачастую позволяет судить о его прочности. Огромное количество фрактальных объектов продуцирует явление кристаллизации. Самый распространенный тип фракталов, возникающих при росте кристаллов, - дендриты, они чрезвычайно широко распространены в живой природе. Ансамбли наночастиц часто демонстрируют реализацию «пыли Леви». Эти ансамбли в сочетании с абсорбированным растворителем образуют прозрачные компакты - стекла Леви, потенциально важные материалы фотоники .

Поскольку фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур, понятно, что такая область математики стала развиваться семимильными шагами вместе с появлением и развитием мощных компьютеров. Хаос, в свою очередь, вызвал к жизни новые компьютерные технологии, специальную графическую технику, которая способна воспроизводить удивительные структуры невероятной сложности, порождаемые теми или иными видами беспорядка. В век Интернета и персональных компьютеров то, что представляло значительную сложность во времена Мандельброта, стало легко доступным любому желающему. Но самым важным в его теории стало, разумеется, не создание красивых картинок, а вывод, что данный математический аппарат пригоден для описания сложных природных явлений и процессов, которые раньше не рассматривались в науке вообще. Репертуар алгоритмических элементов неисчерпаем.

Овладев языком фракталов, можно описать форму облака так же четко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. <...> Прошло всего несколько десятилетий с тех пор, как Бенуа Мандельброт заявил: «Геометрия природы фрактальна!», на сегодняшний день мы уже можем предположить намного больше, а именно что фрактальность - это первоочередной принцип построения всех без исключения природных объектов.

В заключение позвольте представить вашему вниманию набор фотографий, иллюстрирующих этот вывод, и фракталов, построенных с помощью компьютерной программы Fractal Explorer . А проблеме использования фракталов в физике кристаллов будет посвящена наша следующая статья.

Post Scriptum

С 1994 по 2013 г. в пяти томах вышел уникальный труд отечественных ученых «Атлас временных вариаций природных антропогенных и социальных процессов» - не имеющий аналогов источник материалов, который включает в себя данные мониторинга космоса, биосферы, литосферы, атмосферы, гидросферы, социальной и техногенной сфер и сферы, связанной со здоровьем и качеством жизни человека. В тексте подробно приводятся данные и результаты их обработки, сопоставляются особенности динамики временных рядов и их фрагментов. Унифицированное представление результатов дает возможность получить сопоставимые результаты для выявления общих и индивидуальных черт динамики процессов и причинно-следственных связей между ними. На экспериментальном материале показано, что процессы в разных сферах, во-первых, схожи, а во-вторых, в большей или меньшей степени связаны друг с другом.

Итак, атлас обобщил результаты междисциплинарных исследований и представил сравнительный анализ совершенно различных данных в широчайшем диапазоне времени и пространства. Книга показывает, что «протекающие в земных сферах процессы обусловлены большим числом взаимодействующих факторов, которые в разных областях (и в разное время) вызывают разную реакцию», что говорит о «необходимости комплексного подхода к анализу геодинамических, космических, социальных, экономических и медицинских наблюдений». Остается выразить надежду на то, что эти фундаментальные по значимости работы будут продолжены.

. Юргенс Х., Пайтген Х.-О., Заупе Д. Язык фракталов // В мире науки. 1990. № 10. С. 36–44.
. Атлас временных вариаций природных антропогенных и социальных процессов. Т. 1: Порядок и хаос в литосфере и других сферах. М., 1994; Т. 2: Циклическая динамика в природе и обществе. М., 1998; Т. 3: Природные и социальные сферы как части окружающей среды и как объекты воздействий. М., 2002; Т. 4: Человек и три окружающие его среды. М., 2009. Т. 5: Человек и три окружающие его среды. М., 2013.

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. В основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций - копирования и масштабирования

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно так называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств:

  • обладает сложной структурой при любом увеличении;
  • является (приближенно) самоподобной;
  • обладает дробной хаусдорфовой (фрактальной) размерностью , которая больше топологической;
  • может быть построена рекурсивными процедурами.

На рубеже XIX и XX веков изучение фракталов носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс построил пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха» .

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал - С-кривая Леви . Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов .

Другой класс - динамические (алгебраические) фракталы , к которым относится и множество Мандельброта . Первые исследования в этом направлении относятся к началу XX века и связаны с именами французских математиков Гастона Жюлиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный труд Жюлиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жюлиа - целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жюлиа среди математиков того времени, о ней довольно быстро забыли.

Вновь внимание к работам Жюлиа и Фату обратилось лишь полвека спустя, с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов. Ведь Фату никогда не мог посмотреть на изображения, которые мы сейчас знаем как изображения множества Мандельброта, потому что необходимое количество вычислений невозможно провести вручную. Первым, кто использовал для этого компьютер был Бенуа Мандельброт.

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными то появилось даже целое направление в искусстве - фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.

Поделиться: