Поляризованный луч. Поляризация света для "чайников": определение, суть явления и сущность

Полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны (перпендикулярно лучу). Поэтому для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов. Обычно все рассуждения ведутся относительно светового вектора — вектора напряженности электрического поля (это название обусловлено тем, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис. 272, а ; луч перпендикулярен плоскости рисунка). В данном случае равномерное распределение векторов объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов — одинаковой (в среднем) интенсивностью излучения каждого из атомов . Свет со всевозможными равновероятными ориентациями вектора (и, следовательно, ) называется естественным .

Свет , в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным . Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора (рис. 272, б ), то имеем дело с частично поляризованным светом . Свет , в котором вектор (и, следовательно, ) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в ), называется плоскополяризованным (линейно поляризованным).

Плоскость, проходящая через направление колебаний светового вектора плос-кополяризованной волны и направление распространения этой волны, называется плоскостью поляризации . Плоскополяризованный свет является предельным случаем эллиптически поляризованного света — света, для которого вектор (вектор ) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается (см. § 145) в прямую (при разности фаз , равной нулю или ), то имеем дело с рассмотренным выше плоскополяризованным светом, если в окружность (при ( = ± /2 и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кругу) светом . Степенью поляризации называется величина


где и — максимальная и минимальная интенсивности света, соответствующие двум взаимно перпендикулярным компонентам вектора . Для естественного света = и Р = 0, для плоскополяризованного = 0 и Р = 1.

Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы , пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора , например кристаллы (их анизотропия известна, см. §70). Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.

Рассмотрим классические опыты с турмалином (рис.273). Направим естественный свет перпендикулярно пластинке турмалина T 1 , вырезанной параллельно так называемой оптической оси 00 (см. §192).

Вращая кристалл Т 1 вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина Т 2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла между оптическими осями кристаллов по закону Малюса (Э. Малюс (1775—1812) — французский физик):

(190.1)

где и — соответственно интенсивности света, падающего на второй кристалл и вышедшего из него. Следовательно, интенсивность прошедшего через пластинки света изменяется от минимума (полное гашение света) при = /2 (оптические оси пластинок перпендикулярны) до максимума при = 0 (оптические оси пластинок параллельны). Однако, как это следует из рис. 274, амплитуда световых колебаний, прошедших через пластинку Т 2 , будет меньше амплитуды световых колебаний , падающих на неё:

Так как интенсивность света пропорциональна квадрату амплитуды, то и получается выражение (190.1).

Результаты опытов с кристаллами турмалина объясняются довольно просто, если исходить из изложенных выше условий пропускания света поляризатором. Первая пластинка турмалина пропускает колебания только определенного направления (на рис. 273 это направление показано стрелкой АВ) т. е. преобразует естественный свет в плоскополяризованный. Вторая же пластинка турмалина в зависимости от ее ориентации из поляризованного света пропускает большую или меньшую его часть, которая соответствует компоненту , параллельному оси второго турмалина. На рис. 273 обе пластинки расположены так, что направления пропускаемых ими колебаний АВ и А"В" перпендикулярны друг другу. В данном случае Т 1 пропускает колебания, направленные по АВ, а Т 2 их полностью гасит, т. е. за вторую пластинку турмалина свет не проходит.

Пластинка Т 1 , преобразующая естественный свет в плоскополяризованный, является поляризатором . Пластинка Т 2 , служащая для анализа степени поляризации света, называется анализатором . Обе пластинки совершенно одинаковы (их можно поменять местами).

Если пропустить естественный свет через два поляризатора, плоскости которых образуют угол , то из первого выйдет плоскополяризованный свет, интенсивность которого , из второго, согласно (190.1), выйдет свет интенсивностью . Следовательно, интенсивность света, прошедшего через два поляризатора,

откуда (поляризаторы параллельны) и = 0 (поляризаторы скрещены).

Свет, излучаемый отдельным атомом, представляет собой электромагнитную волну, т. е. совокупность двух поперечных взаимно перпендикулярных волн - электрической (образованной колебанием вектора напряженности электрического поля и магнитной (образованной колебанием вектора напряженности магнитного поля идущих вдоль общей прямой называемой световым лучом (рис. 337).

Луч (свет), у которого электрические колебания совершаются все время в одной и только одной плоскости, называется поляризованным лучом (светом); разумеется, что при этом магнитные колебания совершаются в другой (перпендикулярной) плоскости (названной плоскостью поляризации света). Из данного определения следует, что свет, излучаемый отдельным атомом, является поляризованным (во всяком случае в течение всего периода излучения этого атома).

Опыт и теория показывают, что химическое, физиологическое и другие виды воздействия света на вещество обусловлены главным образом электрическими колебаниями. Поэтому, а также для упрощения рисунков, изображающих световую волну (или луч), мы будем в дальнейшем говорить только об электрических колебаниях, а плоскость, в которой они совершаются, называть плоскостью световых колебаний, или просто плоскостью колебаний. Тогда луч поляризованного света можно схематически изобразить так, как это сделано на рис. 338, а (луч перпендикулярен плоскости рисунка; векторы соответствуют амплитудным значениям напряженности электрического поля

На практике мы никогда не встречаемся со светом от одного отдельного атома, поскольку всякий реальный источник света (светящееся тело) состоит из множества атомов, излучающих беспорядочно, т. е. испускающих световые волны со всевозможными ориентациями плоскости колебаний. Эти волны налагаются друг на друга, в результате чего любому лучу, исходящему от реального (естественного) источника света, будет соответствовать множество разнообразно ориентированных плоскостей колебания (рис. 338, б). Такой луч (свет) является неполяризованным и называется естественным лучом (светом).

Обычно интенсивность излучения каждого из атомов, составляющих светящееся тело, в среднем одинакова; поэтому у естественного света амплитудные (максимальные) значения вектора одинаковы во всех плоскостях колебания. Бывают, однако, случаи, когда у светового луча амплитудные значения вектора оказываются неодинаковыми для различных плоскостей колебания; такой луч называется частично поляризованным. На рис. 338, в изображен частично поляризованный луч, у которого колебания совершаются преимущественно в вертикальной плоскости.

В отличие от естественного поляризованный свет характеризуется не только интенсивностью (зависящей от амплитуды напряженности поля и цветом (зависящим от длины волны X), но еще и положением

плоскости колебаний. Поэтому, например, поляризованные лучи 1, 2 и 3 (рис. 339), интенсивность и цвет которых одинаковы, не тождественны друг другу. Однако человеческий глаз не обнаруживает различия между поляризованными лучами, имеющими различную ориентацию плоскости колебания, и вообще не отличает поляризованного света от естественного.

Естественный свет можно поляризовать, т. е. превратить его в поляризованный свет. Для этого надо создать такие условия, при которых колебания вектора напряженности электрического поля могли бы совершаться только вдоль одного определенного направления. Подобные условия могут, например, иметь место при прохождении естественного света через среду, анизотропную в отношении электрических колебаний. Как известно, анизотропия свойственна кристаллам (см. § 51). Поэтому можно ожидать поляризации света, проходящего через кристалл. Действительно, опыт показывает, что многие природные и искусственно созданные кристаллы поляризуют проходящий через них естественный свет.

В самых общих чертах физическая сущность процесса поляризации света, проходящего через кристалл, состоит в следующем. Согласно электромагнитной теории Максвелла (см. § 105), переменное электрическое поле световой волны вызывает в кристаллическом диэлектрике переменный поляризационный ток, т. е. переменное смещение заряженных частиц (атомов, ионов), составляющих кристаллическую решетку. Поляризационный ток выделяет джоулево тепло; следовательно, в кристалле происходит превращение световой энергии в теплоту.

Благодаря анизотропии кристалла возможная величина смещения его частиц, а следовательно, и сила поляризационного тока оказываются неодинаковыми для различных плоскостей кристаллической решетки. Очевидно, что световая волна, идущая в плоскости, соответствующей значительным возможным смещениям частиц, вызывает сильный поляризационный ток и потому практически полностью поглощается кристаллом. Если же световая волна идет в плоскости, соответствующей малым смещениям частиц, то она вызывает слабый поляризационный ток и проходит через кристалл без существенного поглощения.

Таким образом, из электрических колебаний естественного света, имеющих всевозможные направления, через кристалл проходят (без поглощения) только те, которые совершаются в плоскости, соответствующей минимуму поляризационного тока; остальные колебания в той или иной мере ослабляются, так как через кристалл проходят только их проекции на эту плоскость. В результате у света, прошедшего через кристалл, электрические колебания совершаются лишь в одной определенной плоскости, т. е. свет оказывается поляризованным.

К природным кристаллам, поляризующим свет, относится, например, турмалин. Естественный луч, прошедший через пластинку турмалина вырезанную параллельно оптической оси кристалла, полностью поляризуется и имеет электрические колебания только в главной плоскости в плоскости, содержащей оптическую ось и луч (рис. 340).

В каждом кристалле имеется направление, относительно которого атомы (или ионы) кристаллической решетки расположены симметрично; оно называется оптической осью кристалла. Подчеркнем, что оптическая ось - это не какая-то одна линия, а определенное направление в кристалле; все прямые, проведенные в кристалле параллельно этому направлению, являются оптическими осями.

Если естественный луч идет вдоль оптической оси, то все его электрические колебания перпендикулярны ей. В таком случае (благодаря симметричному расположению частиц кристалла относительно оптической оси) все электрические колебания совершаются в одинаковых условиях и все они проходят через кристалл. Поэтому естественный луч, идущий вдоль оптической оси, не поляризуется. При всех иных направлениях луча имеет место его поляризация.

Если за пластинкой 1 помещена вторая пластинка турмалина 2, ориентированная так, что ее оптическая ось перпендикулярна оптической оси пластинки то через вторую пластинку луч не пройдет (так как его электрические колебания перпендикулярны главной плоскости пластинки 2). Если же оптически оси пластинок 1 и 2 составляют угол а, отличный от то свет (луч) проходит через пластинку 2. Однако, как это следует из рис. 341, амплитуда световых колебаний, прошедших через пластинку 2, будет меньше амплитуды световых колебаний, падающих на эту пластинку:

Так как интенсивность света пропорциональна квадрату амплитуды световых колебаний, то

где интенсивность света, падающего на пластинку 2, У - интенсивность света, прошедшего через эту пластинку. Соотношение (12) называется законом Малюса.

Таким образом, поворот пластинки 2 вокруг поляризованного луча сопровождается изменением интенсивности света, прошедшего через эту пластинку; максимум интенсивности имеет место при минимум (соответствующий полному гашению света) - при

Пластинка 7, поляризующая естественный свет, называется поляризатором, а пластинка 2, посредством которой изменяется интенсивность поляризованного света (и тем самым обнаруживается факт поляризации), называется анализатором. Понятно, что обе пластинки совершенно одинаковы (их можно поменять местами); данные названия характеризуют лишь назначение пластинок.

Следует отметить, что турмалин обладает значительным селективным поглощением - пропускает преимущественно зеленый свет; это является недостатком турмалина как поляризатора (и анализатора).

В последние годы для поляризации света широко применяются так называемые поляроиды (поляризационные фильтры). Поляроид представляет собой прозрачную полимерную пленку толщиной около содержащую множество мелких искусственных кристалликов - поляризаторов, например кристалликов герапатита (сульфат иодистого хинина). Оптические оси всех кристалликов герапатита ориентируются в одном направлении в процессе изготовления поляроида. Поляроидная пленка сравнительно недорога, весьма эластична, имеет большую площадь, обладает почти одинаковым (незначительным) поглощением для всех длин волн видимого света.

Одним из интересных практических применений поляроида является его использование на автотранспорте для защиты водителей от слепящего действия фар встречных автомашин. С этой целью на ветровое стекло и на стекла фар наклеиваются поляроидные пленки, оптические оси которых параллельны и составляют 45° с горизонтом. Тогда, как это видно на рис. 342, оптическая ось поляроида ветрового стекла одной машины будет перпендикулярна оптической

оси поляроида фар встречной машины (ориентация оптических осей показана на рисунке стрелками). Согласно закону Малюса, при такой ориентации оптических осей поляроидов поляризованный свет фар не пройдет через ветровое стекло встречной машины; следовательно, водитель практически не видит света фар встречных машин (но увидит, конечно, эти машины в свете фар своего автомобиля).

Доктор технических наук А. ГОЛУБЕВ.

Две совершенно одинаковые пластинки из слегка затемнённого стекла или гибкого пластика, сложенные вместе, практически прозрачны. Но стоит повернуть какую-нибудь одну на 90 о, как перед глазом окажется сплошная чернота. Это может показаться чудом: ведь каждая пластинка прозрачна при любом повороте. однако внимательный взгляд обнаружит, что при определённых углах её поворота блики от воды, стекла и полированных поверхностей исчезают. Это же можно наблюдать, рассматривая экран компьютерного ЖК-монитора через пластинку: при её повороте яркость экрана меняется и при определённых положениях гаснет совсем. «Виновник» всех этих (и многих других) любопытных явлений - поляризованный свет. Поляризация - это свойство, которым могут обладать электромагнитные волны, в том числе видимый свет. Поляризация света имеет множество интересных применений и заслуживает того, чтобы о ней поговорить подробнее.

Наука и жизнь // Иллюстрации

Механическая модель линейной поляризации световой волны. Щель в заборе пропускает колебания верёвки только в вертикальной плоскости.

В анизотропном кристалле световой луч расщепляется на два, поляризованные во взаимно-перпендикулярных (ортогональных) направлениях.

Обыкновенный и необыкновенный лучи пространственно совмещены, амплитуды световых волн одинаковы. При их сложении возникает поляризованная волна.

Так свет проходит через систему из двух поляроидов: а - когда они параллельны; б - скрещены; в - расположены под произвольным углом.

Две равные силы, приложенные в точке А во взаимно-перпендикулярных направлениях, заставляют маятник двигаться по круговой, прямолинейной или эллиптической траектории (прямая - это «вырожденный» эллипс, а окружность - его частный случай).

Наука и жизнь // Иллюстрации

Физпрактикум. Рис. 1.

Физпрактикум. Рис. 2.

Физпрактикум. Рис. 3.

Физпрактикум. Рис. 4.

Физпрактикум. Рис. 5.

Физпрактикум. Рис. 6.

Физпрактикум. Рис. 7.

Физпрактикум. Рис. 8.

Физпрактикум. Рис. 9.

В природе существует множество колебательных процессов. Один из них - гармонические колебания напряжённостей электрического и магнитного полей, образующие переменное электромагнитное поле, которое распространяется в пространстве в виде электромагнитных волн. Волны эти поперечные - векторы е и н напряжённостей электрического и магнитного полей взаимно-перпендикулярны и колеблются поперек направления распространения волны.

Электромагнитные волны условно разделяют на диапазоны по длинам волн, образующих спектр. Наибольшую его часть занимают радиоволны с длиной волны от 0,1 мм до сотен километров. Небольшой, но очень важный участок спектра - оптический диапазон. Он делится на три области - видимую часть спектра, занимающую интервал приблизительно от 0,4 мкм (фиолетовый свет) до 0,7 мкм (красный свет), ультрафиолетовую (УФ) и инфракрасную (ИК), невидимые глазом. Поэтому поляризационные явления доступны непосредственному наблюдению только в видимой области.

Если колебания вектора напряжённости электрического поля е световой волны поворачиваются в пространстве случайным образом, волна называется неполяризованной, а свет - естественным. Если эти колебания происходят только в одном направлении, волна линейно-поляризована. Неполяризованную волну в линейно-поляризованную превращают при помощи поляризаторов - устройств, пропускающих колебания только одного направления.

Попробуем изобразить этот процесс более наглядно. Представим себе обычный деревянный забор, в одной из досок которого прорезана узкая вертикальная щель. Проденем сквозь эту щель верёвку; её конец за забором закрепим и начнём верёвку встряхивать, заставляя её колебаться под разными углами к вертикали. Вопрос: а как будет колебаться верёвка за щелью?

Ответ очевиден: за щелью верёвка станет колебаться только в вертикальном направлении. Амплитуда этих колебаний зависит от направления приходящих к щели смещений. Вертикальные колебания пройдут сквозь щель полностью и дадут максимальную амплитуду, горизонтальные - щель не пропустит совсем. А все другие, «наклонные», можно разложить на горизонтальную и вертикальную составляющие, и амплитуда будет зависеть от величины вертикальной составляющей. Но в любом случае за щелью останутся только вертикальные колебания! То есть щель в заборе - это модель поляризатора, преобразующего неполяризованные колебания (волны) в линейно-поляризованные.

Вернёмся к свету. Получить из естественного, неполяризованного света линейно-поляризованный можно несколькими способами. Наиболее часто применяют полимерные плёнки с длинными молекулами, ориентированными в одном направлении (вспомним про забор с щелью!), призмы и пластинки, обладающие двойным лучепреломлением, или оптической анизотропией (неодинаковости физических свойств по различным направлениям).

Оптическая анизотропия наблюдается у многих кристаллов - турмалина, исландского шпата, кварца. Само явление двойного лучепреломления заключается в том, что луч света, падающий на кристалл, разделяется в нём на два. При этом показатель преломления кристалла для одного из этих лучей постоянен при любом угле падения входного луча, а для другого зависит от угла падения (то есть для него кристалл анизотропен). Это обстоятельство настолько поразило первооткрывателей, что первый луч назвали обыкновенным, а второй - необыкновенным. И весьма существенно, что эти лучи линейно-поляризованы во взаимно-перпендикулярных плоскостях.

Заметим, что в таких кристаллах существует одно направление, по которому двойного преломления не происходит. Это направление называется оптической осью кристалла, а сам кристалл - одноосным. Оптическая ось - это именно направление, все идущие вдоль него линии обладают свойством оптической оси. Известны также двухосные кристаллы - слюда, гипс и другие. В них также происходит двойное преломление, но оба луча оказываются необыкновенными. В двухосных кристаллах наблюдаются более сложные явления, которых мы касаться не станем.

В некоторых одноосных кристаллах обнаружилось ещё одно любопытное явление: обыкновенный и необыкновенный лучи испытывают существенно различное поглощение (это явление назвали дихроизмом). Так, в турмалине обыкновенный луч поглощается практически полностью уже на пути около миллиметра, а необыкновенный проходит весь кристалл насквозь почти без потерь.

Двоякопреломляющие кристаллы применяют для получения линейно-поляризованного света двумя способами. В первом используют кристаллы, не обладающие дихроизмом; из них изготавливают призмы, составленные из двух треугольных призм с одинаковой или перпендикулярной ориентацией оптических осей. В них либо один луч отклоняется в сторону, так что из призмы выходит только один линейно-поляризованный луч, либо выходят оба луча, но разведённые на большой угол. Во втором способе используются сильнодихроичные кристаллы, в которых один из лучей поглощается, или тонкие плёнки - поляроиды в виде листов большой площади.

Возьмём два поляроида, сложим их и посмотрим сквозь них на какой-нибудь источник ес-тественого света. Если оси пропускания обоих поляроидов (то есть направления, в которых они поляризуют свет) совпадают, глаз увидит свет максимальной яркости; если они перпендикулярны, свет практически полностью погасится.

Свет от источника, пройдя через первый поляроид, окажется линейно-поляризованным вдоль его оси пропускания и в первом случае свободно пройдёт через второй поляроид, а во втором случае не пройдёт (вспомним пример с щелью в заборе). В первом случае говорят, что поляроиды параллельны, во втором - что поляроиды скрещены. В промежуточных случаях, когда угол между осями пропускания поляроидов отличается от 0 или 90о, мы получим и промежуточные значения яркости.

Пойдём дальше. В любом поляризаторе входящий свет расщепляется на два пространственно разделённых и линейно-поляризованных во взаимно-перпендикулярных плоскостях луча - обыкновенный и необыкновенный. А что будет, если не разделять пространственно обыкновенный и необыкновенный лучи и не гасить один из них?

На рисунке показана схема, реализующая этот случай. Свет определённой длины волны, прошедший через поляризатор Р и ставший линейно-поляризованным, падает под углом 90 о на пластинку П, вырезанную из одноосного кристалла параллельно его оптической оси ZZ. В пластинке распространяются две волны - обыкновенная и необыкновенная - в одном направлении, но с разной скоростью (поскольку для них различны показатели преломления). Необыкновенная волна поляризована вдоль оптической оси кристалла, обыкновенная - в перпендикулярном направлении. Предположим, что угол а между направлением поляризации падающего на пластинку света (осью пропускания поляризатора Р) и оптической осью пластинки равен 45 о и амплитуды колебаний обыкновенной и необыкновенной волн А о и А е равны. Это случай сложения двух взаимно-перпендикулярных колебаний с одинаковыми амплитудами. Посмотрим, что получится в результате.

Для наглядности обратимся к механической аналогии. Есть маятник, к нему прикреплена трубочка с вытекающими из неё тонкой струйкой чернилами. Маятник колеблется в строго фиксированном направлении, и чернила рисуют прямую линию на листе бумаги. Теперь мы толкнём его (не останавливая) в направлении, перпендикулярном плоскости качания, так, что размах его колебаний в новом направлении стал таким же, как и в начальном. Таким образом, мы имеем два ортогональных колебания с одинаковыми амплитудами. Что нарисуют чернила, зависит от того, в какой точке траектории АОВ находился маятник, когда мы его толкнули.

Предположим, что мы толкнули его в тот момент, когда он занимал крайнее левое положение, в точке А. Тогда на маятник подействуют две силы: одна в направлении первоначального движения (к точке О), другая - в перпендикулярном направлении АС. Поскольку эти силы одинаковы (амплитуды перпендикулярных колебаний равны), маятник пойдет по диагонали AD. Его траекторией станет прямая линия, идущая под углом 45 о к направлениям обоих колебаний.

Если толкнуть маятник, когда он находится в крайнем правом положении, в точке В, то из аналогичных рассуждений ясно, что его траекторией будет тоже прямая, но повёрнутая на 90 о. Если толкнуть маятник в средней точке О, конец маятника опишет круг, а если в какой-то произвольной точке - эллипс; причём его форма зависит от того, в какой именно точке толкнули маятник. Следовательно, круг и прямая - частные случаи эллиптического движения (прямая - это «вырожденный» эллипс).

Результирующее колебание маятника, совершаемое по прямой линии, - модель линейной поляризации. Если его траектория описывает окружность, колебание называется поляризованным по кругу или циркулярно-поляризованным. В зависимости от направления вращения, по часовой стрелке или против неё, говорят соответственно о право- или левоциркулярной поляризации. Наконец, если маятник описывает эллипс, колебание называется эллиптически-поляризованным, и в этом случае тоже различают правую или левую эллиптическую поляризацию.

Пример с маятником даёт наглядное представление, какую поляризацию получит колебание, возникающее при сложении двух взаимно-перпендикулярных линейно-поляризованных колебаний. Возникает вопрос: что служит аналогом задания второго (перпендикулярного) колебания в различных точках траектории маятника для световых волн?

Им служит разность фаз φ обыкновенной и необыкновенной волн. Толчку маятника в точке А соответствует нулевая разность фаз, в точке В - разность фаз 180 о, в точке О - 90 о, если маятник проходит через эту точку слева направо (от А к В), или 270 о, если справа налево (от В к А). Следовательно, при сложении световых волн с ортогональными линейными поляризациями и одинаковыми амплитудами поляризация результирующей волны зависит от разности фаз складываемых волн.

Из таблицы видно, что при разности фаз 0 о и 180 о эллиптическая поляризация превращается в линейную, при разности 90 о и 270 о - в круговую с разными направлениями вращения результирующего вектора. А эллиптическую поляризацию можно получить сложением двух ортогональных линейно-поляризованных вол и при разности фаз 90 о или 270 о, если у этих волн различные амплитуды. Кроме того, циркулярно-поляризованный свет можно получить вообще без сложения двух линейно-поляризованных волн, например при эффекте Зеемана - расщеплении спектральных линий в магнитном поле. Неполяризованный свет частотой v, пройдя через приложенное в направлении распространения света магнитное поле, расщепляется на две компоненты с левой и правой циркулярными поляризациями и симметричными относительно ν частотами (ν - ∆ν) и (ν + ∆ν).

Весьма распространённый способ получения различных видов поляризации и их преобразования - использование так называемых фазовых пластинок из двоякопреломляющего материала c показателями преломления n o и n e . Толщина пластинки d подобрана так, что на её выходе разность фаз между обыкновенной и необыкновенной компонентами волны равна 90 или 180 о. Разности фаз 90 о соответствует оптическая разность хода d(n o - n e), равная λ/4, а разности фаз 180 о - λ/2, где λ - длина волны света. Эти пластинки так и называются - четвертьволновая и полуволновая. Пластинку толщиной в одну четвёртую или половину длины волны изготовить практически невозможно, поэтому тот же результат получают с более толстыми пластинками, дающими разность хода (kλ + λ/4) и (kλ + λ/2), где k - некоторое целое число. Четвертьволновая пластинка превращает линейно-поляризованный свет в эллиптически-поляризованный; если же пластинка полуволновая, то на её выходе получается также линейно-поляризованный свет, но с направлением поляризации, перпендикулярным входящему. Разность фаз в 45 о даст циркулярную поляризацию.

Если между параллельными или скрещёнными поляроидами поместить двоякопреломляющую пластинку произвольной толщины и посмотреть через эту систему на белый свет, то мы увидим, что поле зрения стало цветным. Если толщина пластинки неодинакова, возникают разноцветные участки, потому что разность фаз зависит от длины волны света. Если один из поляроидов (все равно, какой) повернуть на 90 о, цвета изменятся на дополнительные: красный - на зелёный, жёлтый - на фиолетовый (в сумме они дают белый свет).

Поляризованный свет предлагали использовать для защиты водителя от слепящего света фар встречного автомобиля. Если на ветровое стекло и фары автомобиля нанести плёночные поляроиды с углом пропускания 45 о, например вправо от вертикали, водитель будет хорошо видеть дорогу и встречные машины, освещённые собственными фарами. Но у встречных автомобилей поляроиды фар окажутся скрещёнными с поляроидом ветрового стекла данного автомобиля, и свет фар встречных машин погаснет.

Два скрещённых поляроида составляют основу многих полезных устройств. Через скрещённые поляроиды свет не проходит, но, если поместить между ними оптический элемент, поворачивающий плоскость поляризации, можно открыть свету дорогу. Так устроены быстродействующие электрооптические модуляторы света. Между скрещёнными поляроидами помещается, например, двоякопреломляющий кристалл, на который подаётся электрическое напряжение. В кристалле в результате взаимодействия двух ортогональных линейно-поляризованных волн свет становится эллиптически-поляризованным с составляющей в плоскости пропускания второго поляроида (линейный электрооптический эффект, или эффект Поккельса). При подаче переменного напряжения будет периодически меняться форма эллипса и, следовательно, величина проходящей через второй поляроид составляющей. Так осуществляется модуляция - изменение интенсивности света с частотой приложенного напряжения, которая может быть очень высокой - до 1 гигагерца (10 9 Гц). Получается затвор, прерывающий свет миллиард раз в секунду. Эго используют во многих технических устройствах - в электронных дальномерах, оптических каналах связи, лазерной технике.

Известны так называемые фотохромные очки, темнеющие на ярком солнечном свету, но не способные защитить глаза при очень быстрой и яркой вспышке (например, при электросварке) - процесс затемнения идёт сравнительно медленно. Поляризационные очки на эффекте Поккельса обладают практически мгновенной «реакцией» (менее 50 мкс). Свет яркой вспышки поступает на миниатюрные фотоприемники (фотодиоды), подающие электрический сигнал, под действием которого очки становятся непрозрачными.

Поляризационные очки используют в стереокино, дающем иллюзию объёмности. В основе иллюзии лежит создание стереопары - двух изображений, снятых под разными углами, соответствующими углам зрения правого и левого глаза. Их рассматривают так, чтобы каждый глаз видел только предназначенный для него снимок. Изображение для левого глаза проецируют на экран через поляроид с вертикальной осью пропускания, а для правого - с горизонтальной осью и точно совмещают их на экране. Зритель смотрит через поляроидные очки, в которых ось левого поляроида вертикальна, а правого горизонтальна; каждый глаз видит только «своё» изображение, и возникает стереоэффект.

Для стереоскопического телевидения применяется способ быстрого попеременного затемнения стёкол очков, синхронизированного со сменой изображений на экране. За счёт инерции зрения возникает объёмное изображение.

Поляроиды широко применяются для гашения бликов от стёкол и полированных поверхностей, от воды (отраженный от них свет сильно поляризован). Поляризован и свет экранов жидкокристаллических мониторов.

Поляризационные методы используются в минералогии, кристаллографии, геологии, биологии, астрофизике, метеорологии, при изучении атмосферных явлений.

Литература

Жевандров Н. Д. Поляризация света. - М.: Наука, 1969.

Жевандров Н. Д. Анизотропия и оптика. - М.: Наука, 1974.

Жевандров Н. Д. Применение поляризованного света. - М.: Наука, 1978.

Шерклифф У. Поляризованный свет / Пер. с англ. - М.: Мир, 1965.

Физпрактикум

ПОЛЯРИЗОВАННЫЙ МИР

О свойствах поляризованного света, самодельных полярископах и о прозрачных предметах, начинающих переливаться всеми цветами радуги, журнал уже писал (см. «наука и жизнь» № ). Рассмотрим этот же вопрос с использованием новых технических устройств.

Любое устройство с цветным ЖК (жидкокристаллическим) экраном- монитор, ноутбук, телевизор, DVD-плеер, карманный компьютер, смартфон, коммуникатор, телефон, электронную фоторамку, MP3-плеер, цифровой фотоаппарат - можно использовать в качестве поляризатора (прибора, создающего поляризованный свет).

Дело в том, что сам принцип работы ЖК-монитора основан на обработке поляризованного света (1). Более подробное описание работы можно найти на http://master-tv.com/ , а для нашего физпрактикума важно то, что если мы засветим экран белым светом, например, нарисовав белый квадрат или сфотографировав белый лист бумаги, то получим плоскополяризованный свет, на фоне которого мы и будем производить дальнейшие опыты.

Интересно, что, приглядевшись к белому экрану при большом увеличении, мы не увидим ни одной белой точки (2) - всё многообразие оттенков получается комбинацией оттенков красного, зелёного и синего цветов.

Может быть, по счастливой случайности наши глаза тоже используют три вида колбочек, реагирующих на красный, зелёный и синий цвета так, что при правильном соотношении основных цветов мы воспринимаем эту смесь как белый цвет.

Для второй части полярископа - анализатора - подойдут поляризованные очки фирмы «Polaroid», они продаются в магазинах для рыболовов (уменьшают блики от водной поверхности) или в автомагазинах (убирают блики от стеклянных поверхностей). Проверить подлинность таких очков очень просто: поворачивая очки относительно друг друга, можно практически полностью перекрыть свет (3).

И, наконец, можно сделать анализатор из ЖК дисплейчика от испорченных электронных часов или других изделий с чёрно-белыми экранами(4). При помощи этих несложных приспособлений можно увидеть немало интересного, а если поставить анализатор перед объективом фотоаппарата - сохранить удачные кадры (5).

Предмет из абсолютно прозрачной пластмассы - линейка (8), коробочка для CD-дисков (9) или сам «нулевой» диск (см. снимок на первой странице обложки), - помещённый между ЖК-экраном и анализатором, приобретает радужную окраску. Геометрическая фигурка из целлофана, снятого с сигаретной пачки и положенная на листок того же целлофана, становится цветной (6). А если повернуть анализатор на 90 градусов, все цвета изменятся на дополнительные - красный станет зелёным, жёлтый - фиолетовым, оранжевый - синим (7).

Причина этого явления в том, что прозрачный для естественного света материал на самом деле неоднороден, или, что то же самое, анизотропен. Его физические свойства, в том числе показатели преломления разных участков предмета, неодинаковы. Световой луч в нём расщепляется на два, которые идут с разными скоростями и поляризованы во взаимно-перпендикулярных плоскостях. Интенсивность поляризованного света, результат сложения двух световых волн, при этом не изменится. Но анализатор вырежет из него две плоско-поляризованные волны, колеблющиеся в одной плоскости, которые станут интерферировать (см. «Наука и жизнь» № 1, 2008 г.). Малейшее изменение толщины пластинки или напряжений в её толще приводит к появлению разности хода волн и возникновению окраски.

В поляризованном свете очень удобно изучать распределение механических напряжений в деталях машин и механизмов, строительных конструкциях. Из прозрачной пластмассы делают плоскую модель детали (балки, опоры, рычага) и прикладывают к ней нагрузку, моделирующую реальную. Разноцветные полосы, возникающие в поляризованном свете, указывают на слабые места детали (острый угол, сильный изгиб и пр.) - в них концентрируются напряжения. Меняя форму детали, добиваются наибольшей её прочности.

Проделать такое исследование несложно и самим. Из органического стекла (желательно однородного) можно вырезать, скажем, модель гака (крюка для подъёма груза), подвесить её перед экраном, нагружать гирьками разного веса на проволочных петельках и наблюдать, как в ней меняется распределение напряжений.

До сих пор мы говорили о средах, показатель преломления которых различен для разных направлений поляризации падающего светового пучка. Большое значение для практических применений имеют и другие среды, у которых в зависимости от поляризации света меняется не только показатель преломления, но и коэффициент поглощения. Как и в случае двойного лучепреломления, легко понять, что поглощение может зависеть от направления вынужденных колебаний зарядов только в анизотропных средах. Первый, старый, ставший уже знаменитым пример - это турмалин, а другой - поляроид. Поляроид состоит из тонкого слоя маленьких кристаллов герапатита (соль йода и хинина), выстроенных своими осями параллельно друг другу. Эти кристаллы поглощают свет, когда колебания происходят в одном каком-то направлении, и почти не поглощают света, когда колебания совершаются в другом направлении.

Направим на поляроид пучок света, поляризованный под углом к его оси. Какая интенсивность будет у пучка, прошедшего через поляроид? Разложим наш пучок света на две компоненты: одну с поляризацией, перпендикулярной той, которая проходит без ослабления (она пропорциональна ), и вторую - продольную компоненту, пропорциональную . Через поляроид пройдет только часть, пропорциональная ; компонента, пропорциональная , поглотится. Амплитуда света, прошедшего через поляроид, меньше амплитуды падающего света и получается из нее умножением на . Интенсивность света пропорциональна квадрату . Таким образом, если падающий свет поляризован под углом к оси поляроида, пропускаемая поляризатором доля интенсивности составляет от полной. Доля интенсивности, поглощаемая в поляроиде, есть, разумеется, .

Интересный парадокс возникает в следующем опыте. Известно, что два поляроида с осями, расположенными перпендикулярно друг другу, не пропускают света. Но если между такими поляроидами поместить третий, ось которого направлена под углом к осям двух других, часть света пройдет через нашу систему. Как мы знаем, поляроид только поглощает свет, создать свет он не может. Тем не менее, поставив третий поляроид под углом , мы увеличиваем количество прошедшего света. Вы можете сами проанализировать это явление в качестве упражнения.

Одно из интереснейших поляризационных явлений, возникающее не в сложных кристаллах и всяких специальных материалах, а в простом и очень хорошо знакомом случае - это отражение от поверхности. Кажется невероятным, но при отражении от стекла свет может поляризоваться, и объяснить физически такой факт весьма просто. На опыте Брюстер показал, что отраженный от поверхности свет полностью поляризован, если отраженный и преломленный в среде лучи образуют прямой угол. Этот случаи показан на фиг. 33.4.

Фигура 33.4. Отражение линейно поляризованного света под углом Брюстера.

Направление поляризации дается пунктирными стрелками: круглые точки изображают поляризацию, перпендикулярную плоскости страницы.

Если падающий луч поляризован в плоскости падения, отраженного луча не будет совсем. Отраженный луч возникает только при условии, что падающий луч поляризован перпендикулярно плоскости падения. Причину этого явления легко понять. В отражающей среде свет поляризован перпендикулярно направлению движения луча, а мы знаем, что именно движение зарядов в отражающей среде генерирует исходящий из нее луч, который называют отраженным. Появление этого так называемого отраженного луча объясняется не просто тем, что падающий луч отражается; мы теперь уже знаем, что падающий луч возбуждает движение зарядов в среде, а оно в свою очередь генерирует отраженный луч.

Из фиг. 33.4 ясно, что только колебания, перпендикулярные плоскости страницы, дают излучение в направлении отраженного луча, а следовательно, отраженный луч поляризован перпендикулярно плоскости падения. Если же падающий луч поляризован в плоскости падения, отраженного луча не будет совсем.

Это явление легко продемонстрировать при отражении линейно поляризованного луча от плоской стеклянной пластинки. Поворачивая пластинку под разными углами к направлению падающего поляризованного луча, можно заметить резкий спад интенсивности при значении угла, равном углу Брюстера. Это падение интенсивности наблюдается только в том случае, когда плоскость поляризации совпадает с плоскостью падения. Если же плоскость поляризации перпендикулярна плоскости паления, заметного спада интенсивности отраженного света не наблюдается.

Естественный свет - оптическое излучение с быстро и беспорядочно изменяющимися направлениями напряжённости эл.-магн. поля, причём все направления колебаний, перпендикулярные к световым лучам, равновероятны.

Поляризованный – свет, в котором направления колебаний светового вектора упорядочены каким-либо образом.

Частично-поляризованный свет – если в результате каких-либо внешних воздействий появляется преимущественное направление колебаний вектора Е.

Плоскополяризованный – если колебания вектора Е происходят только в одной плоскости.

Интенсивность света после поляризатора определяется законом Малюса. I=I 0 *cos 2 α

I 0 -интенсивность до поляризатора; I – интенсивность после поляризатора; α – угол между вектором Е и плоскостью поляризации.

Пусть на 2 поляризатора падает естественный свет.

I 1 =1/2*I ест

I 2 =1/2*I ест *cos 2 α=I 1 *cos 2 α

Степень поляризации луча Δ=(Imax-Imin)/(Imax*Imin)

22. Поляризация света при отражении и преломлении. Закон Брюстера.

Поляризованный свет можно получить, используя отражение или преломление света от диэлектрических изотропных сред. Если угол падения света на границу раздела двух диэлектриков отличен от нуля, отраженный и преломленный лучи оказываются частично поляризованными. Степень поляризации того и другого луча зависит от угла падения луча. У каждой пары прозрачных сред существует такой угол падения, при котором отраженный свет становится полностью плоскополяризованным, а преломленный луч остается частично поляризованным, но степень его поляризации при этом угле максимальна. Этот угол называется углом Бpюстеpа. Угол Брюстера определяется из условия: tgφ Бр =n 21 =n 2 /n 1

23. Естественный и поляризованный свет. Вращение плоскости поляризации.

Плоскость, в которой совершает колебания вектор Е, называется плоскостью колебаний, а вектор Н – плоскостью поляризации.

Если колебания вектора Е упорядочены каким-либо образом, свет называется поляризованным. Если в одной плоскости – плоско-поляризованным.

Если колебания Е в одной плоскости преобладают над другими – свет частично поляризованный.

В естественном свете вектор Е не испытывает асимметрии относительно направления распространения луча.

Плоско поляризованный свет получают с помощью приборов – поляризаторов.

Интенсивность света поле поляризаторов определяют по закону Малюса: I=I o COS 2 α , где I o – интенсивность до поляризатора, I – после, α – угол между Е и плоскостью поляризации.

Степенью поляризации луча называется величина, равная: Δ=(I max -I min)/(I max +I min)

Для естественного света Δ=0, для плоско поляризованного Δ=1, для частично поляризованного 0<Δ<1.

Плоско поляризованный свет получается при отражении от границы раздела двух сред, если угол падения равен углу Брюстера: tgα бр =n 21 =n 2 /n 1

При прохождении света через оптически активное вещество вектор Е поворачивается. Данное явление называется вращением плоскости поляризации.

Угол поворота плоскости поляризации для кристаллов и чистых жидкостей: ϕ=αd; для растворов: ϕ=[α]cd , где d - расстояние, пройденное светом в оптически активном веществе, a ([a]) - так называемое удельное вращение, численно равное углу поворота плоскости поляризации света слоем оптически активного вещества единичной толщины (единичной концентрации - для растворов), С - массовая концентрация оптически активного вещества в растворе, кг/м3. Удельное вращение зависит от природы вещества, температуры и длины волны света в вакууме.

Явление вращения плоскости поляризации можно объяснить с помощью двух предположений Френеля:

    Любая плоско поляризованная волна может быть представлена как 2 волны, поляризованные по кругу с правым и левым вращением

    Скорости вращения в оптически активном веществе разные.

Поделиться: