Спектральный анализ: Виды спектрального анализа. Лучистая энергия и спектральный состав оптических излучений

Химический состав вещества – важнейшая характеристика используемых человечеством материалов. Без его точного знания невозможно со сколько-нибудь удовлетворительной точностью спланировать технологические процессы в промышленном производстве. В последнее время требования к определению химического состава вещества еще более ужесточились: многие сферы производственной и научной деятельности требуют материалы определенной «чистоты» - это требования точного, фиксированного состава, а также жесткого ограничения на наличие примесей инородных веществ. Всвязи с этими тенденциями разрабатываются все боле прогрессивные методики определения химического состава веществ. К ним относится и метод спектрального анализа, обеспечивающий точное и быстрое изучение химии материалов.

Фантастика света

Природа спектрального анализа

(спектроскопия ) изучает химический состав веществ на основе их способностей по испусканию и поглощению света. Известно, что каждый химический элемент испускает и поглощает характерный только для него световой спектр, при условии, что его можно привести к газообразному состоянию.

В соответствии с этим, возможно определение наличия этих веществ в том или ином материале по присущему только им спектру. Современные методы спектрального анализа позволяют установить наличие вещества массой до миллиардных долей грамма в пробе – за это ответственен показатель интенсивности излучения. Уникальность испускаемого спектра атомом характеризует его глубокую взаимосвязь с физической структурой.

Видимый свет представляет собой излучение с от 3,8 *10 -7 до 7,6*10 -7 м, ответственной за различные цвета. Вещества могут излучать свет только лишь в возбужденном состоянии (это состояние характеризуется повышенным уровнем внутренней ) при наличии постоянного источника энергии.

Получая избыточную энергию, атомы вещества излучают ее в виде света и возвращаются в свое обычное энергетическое состояние. Именно этот испускаемый атомами свет и используется для спектрального анализа. К самым распространенным видам излучения относят: тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция.

Спектральный анализ. Окрашивание пламени ионами металлов

Виды спектрального анализа

Различают эмиссионную и абсорбционную спектроскопию. Метод эмиссионной спектроскопии основан на свойствах элементов к излучению света. Для возбуждения атомов вещества используются высокотемпературный нагрев, равный нескольким сотням или даже тысячам градусов, – для этого пробу вещества помещают в пламя или в поле действия мощных электрических разрядов. Под воздействием высочайшей температуры молекулы вещества разделяются на атомы.

Атомы, получая избыточную энергию, излучают ее в виде квантов света различной длины волны, которые регистрируются спектральными аппаратами – приборами, визуально изображающими получившийся световой спектр. Спектральные аппараты служат также и разделительным элементом системы спектроскопии, потому как световой поток суммируется от всех присутствующих в пробе веществ, и в его задачи входит разделение общего массива света на спектры отдельных элементов и определение их интенсивности, которая позволит в будущем сделать выводы о величине присутствующего элемента в общей массе веществ.

  • В зависимости от методов наблюдения и регистрации спектров различают спектральные приборы: спектрографы и спектроскопы. Первые регистрируют спектр на фотопленке, а вторые делают доступным просмотр спектра для прямого наблюдения человеком через специальные зрительные трубы. Для определения размеров используются специализированные микроскопы, позволяющие с высокой точностью определить длину волны.
  • После регистрации светового спектра он подвергается тщательному анализу. Выявляются волны определенной длины и их положение в спектре. Далее выполняется соотношение их положения с принадлежностью к искомым веществам. Делается это с помощью сравнения данных положения волн с информацией, расположенной в методических таблицах, указывающих на типичные длины волн и спектры химических элементов.
  • Абсорбционная спектроскопия проводится подобно эмиссионной. В этом случае вещество помещают между источником света и спектральным аппаратом. Проходя через анализируемый материал, испущенный свет достигает спектрального аппарата с «провалами» (линии поглощения) по некоторым длинам волн – они и составляют поглощенный спектр исследуемого материала. Дальнейшая последовательность исследования аналогична для приведенного выше процесса эмиссионной спектроскопии.

Открытие спектрального анализа

Значение спектроскопии для науки

Спектральный анализ позволил человечеству открыть несколько элементов, которые невозможно было определить традиционными методами регистрации химических веществ. Это такие элементы, как рубидий, цезий, гелий (он был открыт с помощью спектроскопииСолнца – задолго до его обнаружения на Земле), индий, галлий и другие. Линии этих элементов были обнаружены в спектрах излучения газов, и на момент их исследования были неидентифицируемы.

Стало понятно, что это и есть новые, доселе неизвестные элементы. Серьезное влияние спектроскопия оказала на становление нынешнего вида металлургической и машиностроительной промышленности, атомной индустрии, сельское хозяйство, где стала одним из главных инструментов систематического анализа.

Огромное значение спектроскопия приобрела в астрофизике

Спровоцировав колоссальный скачок в понимании структуры Вселенной и утверждении того факта, что все сущее состоит из одних и тех же элементов, которыми, в том числе, изобилует и Земля. Сегодня метод спектрального анализа позволяет ученым определять химический состав находящихся за миллиарды километров от Земли звезд, туманностей, планет и галактик – эти объекты, естественно, не доступны методикам прямого анализа ввиду своего большого удаления.

С помощью метода абсорбционной спектроскопии возможно изучение далеких космических объектов, не обладающих собственным излучением. Это знание позволяет устанавливать важнейшие характеристики космических объектов: давление, температуру, особенности структуры строения и многое другое.

Вспомните: солнечный летний день — и вдруг на небе появилась тучка, пошел дождик, который будто «не замечает», что солнце продолжает светить. Такой дождь в народе называют слепым. Дождик еще не успел закончиться, а на небе уже засияла разноцветная радуга (рис. 13.1). Почему она появилась?

Раскладываем солнечный свет в спектр.

Еще в древности было замечено, что солнечный луч, пройдя сквозь стеклянную призму, становится разноцветным. Считалось, что причина этого явления — в свойстве призмы окрашивать свет. Так ли это на самом деле, выяснил в 1665 г. выдающийся английский ученый Исаак Ньютон (1643-1727), проведя серию опытов.

Рис. 13.1. Радугу можно наблюдать, например, в брызгах фонтана или водопада

Чтобы получить узкий пучок солнечного света, Ньютон сделал небольшое круглое отверстие в ставне. Когда перед отверстием он устанавливал стеклянную призму, на противоположной стене появлялась разноцветная полоска, которую ученый назвал спектром. На полоске (как и в радуге), Ньютон выделил семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый (рис. 13.2, а).

Затем ученый с помощью экрана с отверстием выделял из широкого разноцветного пучка лучей узкие одноцветные (монохроматические) пучки света и снова направлял их на призму. Такие пучки отклонялись призмой, но уже не раскладывались в спектр (рис. 13.2, б). При этом больше других отклонялся пучок фиолетового света, а меньше других — пучок красного света.

Результаты опытов позволили Ньютону сделать следующие выводы:

1) пучок белого (солнечного) света состоит из света разных цветов;

2) призма не «окрашивает» белый свет, а разделяет его (раскладывает в спектр) из-за разного преломления световых пучков разного цвета.

рис. 13.2. Схема опытов И. Ньютона по выяснению спектрального состава света

Сравните рис. 13.1 и 13.2: цвета радуги — это и есть цвета спектра. И это не удивительно, потому что на самом деле радуга — огромный спектр солнечного света. Одна из причин появления радуги состоит в том, что множество маленьких капелек воды преломляют белый солнечный свет.


Узнаём о дисперсии света

Опыты Ньютона продемонстрировали, в частности, что, преломляясь в стеклянной призме, пучки фиолетового света всегда отклоняются больше, чем пучки красного света. Это означает, что для световых пучков разного цвета показатель преломления стекла — разный. Именно поэтому пучок белого света раскладывается в спектр.

Явление разложения света в спектр, обусловленное зависимостью показателя преломления среды от цвета светового пучка, называют дисперсией света.

Для большинства прозрачных сред наибольший показатель преломления имеет фиолетовый свет, наименьший — красный.

Световой пучок какого цвета — фиолетового или красного — распространяется в стекле с большей скоростью? Подсказка:вспомните, как показатель преломления среды зависит от скорости распространения света в этой среде.

Характеризуем цвета

В спектре солнечного света традиционно выделяют семь цветов, можно выделить и больше. Но вы никогда не сможете выделить, например, коричневый или сиреневый цвет. Эти цвета являются составными— они образуются в результате наложения (смешения) спектральных (чистых) цветовв разных пропорциях. Некоторые спектральные цвета при наложении друг на друга образуют белый цвет. Такие пары спектральных цветов называют дополнительными(рис. 13.3).

Для зрения человека особое значение имеют три основных спектральных цвета — красный, зеленый и синий: при наложении эти цвета дают самые разнообразные цвета и оттенки.

На наложении трех основных спектральных цветов в разных пропорциях основано цветное изображение на экранах компьютера, телевизора, телефона (рис. 13.4).

Рис. 13.5. Разные тела по-разному отражают, преломляют и поглощают солнечный свет, и благодаря этому мы видим окружающий мир разноцветным

Выясняем, почему мир разноцветный

Зная, что белый свет является составным, можно объяснить, почему окружающий мир, освещенный только одним источником белого света — Солнцем, мы видим разноцветным (рис. 13.5).

Так, поверхность листа офисной бумаги одинаково хорошо отражает лучи всех цветов, поэтому лист, освещенный белым светом, кажется нам белым. Синий рюкзак, освещенный тем же белым светом, преимущественно отражает лучи синего цвета, а остальные поглощает.

Как вы думаете, какой цвет преимущественно отражают лепестки подсолнечников? листья растений?

Синий свет, направленный на красные лепестки розы, почти полностью будет поглощен ими, так как лепестки отражают преимущественно красные лучи, а остальные — поглощают. Поэтому роза, освещенная синим светом, будет казаться нам практически черной. Если же синим светом осветить белый снег, он будет казаться нам синим, ведь белый снег отражает лучи всех цветов (в том числе синие). А вот черная шерсть кота хорошо поглощает все лучи, поэтому кот будет казаться черным при освещении любым светом (рис. 13.6).

Обратите внимание! Поскольку цвет тела зависит от характеристики падающего света, в темноте понятие цвета не имеет смысла.

Рис. 13.6. Цвет тела зависит как от оптических свойств его поверхности, так и от характеристик падающего света


Подводим итоги

Пучок белого света состоит из света разных цветов. Выделяют семь спектральных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Показатель преломления света, а значит, скорость распространения света в среде зависят от цвета светового пучка. if Зависимость показателя преломления среды от цвета светового пучка называют дисперсией света. Мы видим окружающий мир разноцветным благодаря тому, что разные тела по-разному отражают, преломляют и поглощают свет.

Контрольные вопросы

1. Опишите опыты И. Ньютона по выяснению спектрального состава света.

2. Назовите семь спектральных цветов. 3. Световой пучок какого цвета преломляется в веществе больше других? меньше других? if 4. Дайте определение дисперсии света. Какое природное явление связано с дисперсией? 5. Какие цвета называют дополнительными? 6. Назовите три основных цвета спектра. Почему их так называют? 7. Почему окружающий мир мы видим разноцветным?

Упражнение № 13

1. Какими будут казаться черные буквы на белой бумаге, если смотреть на них сквозь зеленое стекло? Каким при этом будет казаться цвет бумаги?

2. Свет каких цветов проходит сквозь синее стекло? поглощается им?

3. Через стекло какого цвета нельзя увидеть текст, написанный фиолетовыми чернилами на белой бумаге?

4. В воде распространяются световые пучки красного, оранжевого и голубого цветов. Скорость распространения какого пучка наибольшая?

5. Воспользуйтесь дополнительными источниками информации и узнайте, почему небо голубое; почему Солнце на закате часто бывает красным.

Экспериментальное задание

«Творцы радуги». Наполните неглубокий сосуд водой и поставьте его у светлой стены. На дне сосуда разместите под углом плоское зеркало (см. рисунок). Направьте на зеркало пучок света — на стене появится «солнечный зайчик». Рассмотрите его и объясните наблюдаемое явление.

Физика и техника в Украине

киевский национальный университет им. тараса Шевченко (КНУ) основан в ноябре 1833 г. как Императорский университет Святого Владимира. Первый ректор университета — выдающийся ученый-энциклопедист Михаил Александрович Максимович.

С КНУ связаны имена известных ученых — математиков, физиков, кибернетиков, астрономов: Д. А. Граве, М. Ф. Кравчука, Г. В. Пфейффера, Н. Н. Боголюбова, В. М. Глушкова, А. В. Скорохода, И. И. Гихмана, Б. В. Гнеденко, В. С. Михалевича, М. П. Авенариуса, Н. Н. Шиллера, И. И. Косоногова, А. Г. Ситенко, В. Е. Лашкарева, Р. Ф. Фогеля, М. Ф. Хан-дрикова, С. К. Всехсвятского.

В мире известны научные школы КНУ — алгебраическая, теории вероятностей и математической статистики, механики, физики полупроводников, физической электроники и физики поверхности, металлогеническая, оптики новых материалов и др. С 2008 г. ректор КНУ — академик НАНУ и НАПНУ, Герой Украины Леонид Васильевич Губерский.

Это материал учебника

Опытами Ньютона было установлено, что солнечный свет имеет сложный характер. Подобным же образом, т. е. ана­лизируя состав света при помощи призмы, можно убедить­ся, что свет большинства других источников (лампа нака­ливания, дуговой фонарь и т. д.) имеет такой же характер. Сравнивая спектры этих светящихся тел, обнаружим, что соответственные участки спектров обладают различной яр­костью, т. е. в различных спектрах энергия распределена по-разному. Еще надежнее удостовериться в этом можно, если исследовать спектры при помощи термоэлемента (см. § 149).

Для обычных источников эти различия в спектре не очень значительны, однако их можно без труда обнаружить. Наш глаз даже без помощи спектрального аппарата обнару­живает различия в качестве белого света, даваемого этими источниками. Так, свет свечи кажется желтоватым или даже красноватым по сравнению с лампой накаливания, а эта по­следняя заметно желтее, чем солнечный свет.

Еще значительнее различия, если источником света вме­сто раскаленного тела служит трубка, наполненная газом, светящимся под действием электрического разряда. Такие трубки употребляются в настоящее время для светящихся надписей или освещения улиц. Некоторые из этих газораз­рядных ламп дают ярко желтый (натриевые лампы) или крас­ный (неоновые лампы) свет, другие светятся беловатым све­том (ртутные), ясно отличным по оттенку от солнечного. Спектральные исследования света подобных источников показывают, что в их спектре имеются только отдель­ные более или менее узкие цветные участки.

В настоящее время научились изготовлять газоразряд­ные лампы, свет которых имеет спектральный состав, очень близкий к солнечному. Такие лампы получили наз­вание ламп дневного света (см. § 186).

Если исследовать свет солнца или дугового фонаря, профильтрованный через цветное стекло, то он окажется заметно отличным от первоначального. Глаз оце­нит этот свет как цветной, а спектральное разложение обна­ружит, что в спектре его отсутствуют или очень слабы более или менее значительные участки спектра источника.

§ 165. Свет и цвета тел. Опыты, описанные в § 164, показы­вают, что свет, вызывающий в нашем глазу ощущение того или иного цвета, обладает более или менее сложным спект­ральным составом. При этом оказывается, что глаз наш представляет собой довольно несовершенный аппарат для анализа света, так что лучи разнообразного спектраль­ного состава могут иногда производить почти одинаковое цветовое впечатление. Тем не менее именно при помощи глаза мы получаем знание о всем многообразии цветов в ок­ружающем мире.

Случаи, когда свет от источника направляется непо­средственно в глаз наблюдателя, сравнительно редки. Гораздо чаще свет предварительно проходит через тела, преломляясь и частично поглощаясь в них, либо в бо­лее или менее полной степени отражаясь от их поверхности. Таким образом, спектральный состав света, дошедшего до нашего глаза, может оказаться значительно изменен­ным благодаря описанным выше процессам отражения, поглощения и т. д. В громадном большинстве случаев все подобные процессы ведут только к ослаблению тех или иных спектральных участков и могут даже полностью устранить некоторые из таких участков, но не добавляют к свету, при­шедшему от источника, излучения тех длин волн, которых в нем не было. Однако и такие процессы могут иметь место (например, в явлениях флюоресценции).

§ 166. Коэффициенты поглощения, отражения и пропуска­ния. Цвет различных предметов, освещенных одним и тем же источником света (например, солнцем), бывает весьма разнообразен, несмотря на то, что все эти предметы осве­щены светом одного состава. Основную роль в таких эф­фектах играют явления отражения и пропускания света. Как уже было выяснено, световой поток, падающий на тело, частично отражается (рассеивается), частично пропускается и частично поглощается телом. Доля светового потока, уча­ствующего в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения r, пропускания t и поглощения a (см. § 76).

Каждый из указанных коэффициентов (a, r, t) может зависеть от длины волны (цвета), благодаря чему и возни­кают разнообразные эффекты при освещении тел. Нетрудно видеть, что какое-либо тело, у которого, например, для красного света коэффициент пропускания велик, а коэффи­циент отражения мал, а для зеленого, наоборот, будет казаться красным в проходящем свете и зеленым в отражен­ном. Такими свойствами обладает, например, хлорофилл - зеленое вещество, содержащееся в листьях растений и обус­ловливающее зеленый цвет их. Раствор (вытяжка) хлоро­филла в спирту оказывается на просвет красным, а на отражении - зеленым.

Тела, у которых для всех лучей поглощение велико, а отражение и пропускание очень малы, будут черными непрозрачными телами (например, сажа). Для очень белого непрозрачного тела (окись магния) коэффициент r близок к единице для всех длин волн, а коэффициенты a и t очень малы. Вполне прозрачное стекло имеет малые коэффициен­ты отражения r и поглощения a и коэффициент пропу­скания t, близкий к единице для всех длин волн; наоборот, у окрашенного стекла для некоторых длин волн коэффи­циенты t и r равны практически нулю и соответственно значение коэффициента а близко к единице. Различие в значениях коэффициентов a, t и r и их зависимость от цвета (длины волны) обусловливают чрезвычайное разно­образие в цветах и оттенках различных тел.



§ 167. Цветные тела, освещенные белым светом. Окра­шенные тела кажутся цветными при освещении белым све­том. Если слой краски достаточно толст, то цвет тела опре­деляется ею и не зависит от свойств лежащих под краской слоев. Обычно краска представляет собой мелкие зернышки, избирательно рассеивающие свет и погруженные в прозрач­ную связывающую их массу, например масло. Коэффициен­ты a, r и t этих зернышек и определяют собой свойства краски.

Действие краски схематически изображено на рис. 316. Самый верхний слой отражает практически одинаково все

Рис. 316. Схема действия слоя краски

лучи, т. е. от него идет белый свет. Доля его не очень зна­чительна, около 5%. Остальные 95% света проникают в глубь краски и, рассеиваясь ее зернами, выходят наружу. При этом происходит поглощение части света в зернах краски, причем те или иные спектральные участки поглоща­ются в большей или меньшей степени в зависимости от цвета краски. Часть света, проникающая еще глубже, рассеивается на следующих слоях зерен и т. д. В результате тело, освещенное белым светом, будет иметь цвет, обуслов­ленный значениями коэффициентов a, t и r для зерен по­крывающей егокраски.

Краски, поглощающие падающий на них свет в очень тонком слое, называются кроющими. Краски, действие ко­торых обусловлено участием многих слоев зерен, носят наз­вание лессировочных. Последние позволяют добиваться очень хороших эффектов путем смешивания нескольких сортов цветных зерен (стирание на палитре). В результате можно получить разнообразные цветовые эффекты. Инте­ресно отметить, что смешение лессировочных красок, соот­ветствующих дополнительным цветам, должно привести к очень темным оттенкам. Действительно, пусть в краске смешаны красные и зеленые зерна. Свет, рассеянный красными зернами, будет поглощаться зелеными и наоборот, так что из слоя краски свет почти не будет выходить. Та­ким образом, смешение красок дает совершенно иные результаты, чем смешение света соответствующих цветов. Это обстоятельство должен иметь в виду художник при смешивании красок.

§ 168. Цветные тела, освещенные цветным светом. Все вышесказанное относится к освещению белым светом. Если же спектральный состав падающего света значительно отличается от дневного, то эффекты освещения могут быть совершенно иными. Яркие красочные места цветной карти­ны выглядят темными, если в падающем свете отсутствуют как раз те длины волн, для которых эти места имеют большой коэффициент отражения. Даже переход от дневного освеще­ния к искусственному вечернему может значительно изме­нить соотношение оттенков. В дневном свете относительная доля желтых, зеленых и синих лучей гораздо больше, чем в искусственном свете. Поэтому желтые и зеленые материи кажутся при вечернем освещении более тусклыми, чем днем, а синяя при дневном свете ткань нередко кажется совсем черной при лампах. С этим обстоятельством должны счи­таться художники и декораторы, выбирающие краски для театрального представления или для парада, происходяще­го днем на открытом воздухе.

Во многих производствах, где важна правильная оценка оттенков, например при сортировке пряжи, работа при вечернем освещении очень затруднена или даже совсем невозможна. Поэтому в подобных условиях рационально применение ламп дневного света, т. е. ламп, спектральный состав света которых был бы по возможности близок к спектральному составу дневного освещения (см. § 187).

§ 169. Маскировка и демаскировка. Даже при ярком осве­щении мы не в состоянии различать тела, цвет которых не отличается от цвета окружающего фона, т. е. тела, для которых коэффициент r имеет для всех длин волн практически те же значения, что и для фона. Поэтому, например, так трудно различить животных с белым мехом или людей в белой одежде на снежной равнине. Этим пользуются в воен­ном деле для цветовой маскировки войск и военных объек­тов. В природе, в процессе естественного отбора, многие животные приобрели защитную окраску (мимикрия).

Из вышеизложенного понятно, что наиболее совершен­ной маскировкой является подбор такой окраски, у которой коэффициент отражения r для всех длин волн име­ет те же значения, что и у окружающего фона. Практически этого очень трудно достичь, и поэтому нередко ограничи­ваются подбором близких коэффициентов отражения для излучения, которое играет особо важную роль при дневном освещении и наблюдении глазом. Это - по преимуществу желто-зеленая часть спектра, к которой особенно чувстви­телен глаз и которая сильнее других представлена в сол­нечном (дневном) свете. Однако если замаскированные с таким расчетом объекты наблюдать не глазом, а фотографи­ровать, то маскировка может утратить свое значение. Действительно, на фотографическую пластинку особенно сильно действует фиолетовое и ультрафиолетовое излучение. Поэтому, если для этой области спектра коэффициенты отражения у объекта и фона заметно отличаются друг от друга, то при наблюдении глазом такой дефект маски­ровки останется незамеченным, но он резко даст себя знать на фотографии. Так же отчетливо скажется несовершенство маскировки, если вести наблюдение через светофильтр, практически устраняющий те длины волн, на которые маскировка по преимуществу рассчитана, например через синий фильтр. Несмотря на значительное понижение яр­кости всей картины при рассматривании через такой фильтр, на ней могут выступать детали, которые были скрыты при наблюдении в белом свете. Соединение фильтра с фотогра­фией может дать особенно сильный эффект. Поэтому при подборе маскирующих цветов надо быть внимательным к определению r для довольно широкой области спектра, в том числе для инфракрасной и ультрафиолетовой.

Светофильтрами пользуются иногда, чтобы улучшить правильную передачу освещенности при фотографировании. Ввиду того, что максимумы чувствительности глаза и фото­пластинки лежат в разных областях (для глаза - желто-зеленая, для фотопластинки - сине-фиолетовая), зритель­ное и фотографическое впечатления могут быть довольно различными. Фигура девушки, одетой в желтую блузку и фиолетовую юбку, кажется глазу светлой в верхней своей части и темной в нижней. На фотографической же карточке она может казаться одетой в темную блузку и светлую юбку. Если же перед фотографическим объективом поставить жел­тый светофильтр, он изменит соотношение освещенностей юбки и блузки в сторону, приближающуюся к зрительному впечатлению. Применяя, сверх того, фотопленку с повышен­ной по сравнению с обычными чувствительностью к длин­ным волнам (ортохроматические), мы можем добиться до­вольно правильной передачи освещенности фигуры.

§ 170. Насыщенность цветов. Кроме обозначения цвета - красный, желтый, синий и т. д.,- мы нередко различаем цвет по насыщенности, т. е. по чистоте оттен­ка, отсутствию белесоватости. Примером глубоких, или на­сыщенных, цветов являются спектральные цвета. В них представлена узкая область длин волн без примеси других цветов. Цвета же тканей и красок, покрывающих предметы, обычно бывают менее насыщенными и в большей или мень­шей степени белесоватыми. Причина лежит в том, что коэффициент отражения большинства красящих веществ не равняется нулю ни для одной длины волны. Та­ким образом, при осве­щении окрашенной тка­ни белым светом мы на­блюдаем в рассеянном свете по преимуществу одну область цвета (на­пример, красную), но к ней примешивается за­метное количество и дру­гих длин волн, дающих в совокупности белый свет. Но если такой рас­сеянный тканью свет с преобладанием одного цвета (например, крас­ного) направить не пря­мо в глаз, а заставить вторично отразиться от той же ткани, то доля преобладающего цвета значительно усилится по сравнению с остальными и белесоватость уменьшится.. Многократное повторение такого процесса (рис. 317) может привести к получению достаточно насыщенного цвета.

Рис. 317. Получение насыщенного цве­та при отражении от красной драпи­ровки

Если интенсивность падающего света какой-либо длины волны обоз­начить через I , а коэффициент отражения для той же длины волны - через r, то получим после однократного отражения интенсивность I r, после двукратного I r 2 , после трехкратного I r 3 и т. д. Отсюда видно, что если r для какого-то узкого спектрального участка равняется, напри­мер, 0,7, а для остальных равняется 0,1, то после однократного отраже­ния примесь белого цвета составляет 1/7, т. е. около 15%, после дву­кратного отражения 1/49, т. е. около 2%, и после трехкратного 1/343, т. е. меньше 0,3%. Такой свет можно считать вполне насыщенным.

Описанным явлением объясняется насыщенность цветов бархатных тканей, ниспадающих складками драпировок или реющих знамен. Во всех этих случаях имеются много­численные углубления (бархат) или складки окрашенной материи. Падая на них, белый свет претерпевает многократ­ное отражение, прежде чем достигнет глаза наблюдателя. При этом, конечно, ткань представляется более темной, чем, например, гладкая натянутая полоса цветного сатина; но насыщенность цвета увеличивается чрезвычайно сильно, и ткань выигрывает в красоте.

В § 167 мы упоминали, что поверхностный слой любой краски всегда рассеивает белый свет. Это обстоятельство портит насыщенность цветов картины. Поэтому картины, писанные масляными красками, обычно покрывают слоем лака. Заливая все неровности краски, лак создает гладкую зеркальную поверхность картины. Белый свет от этой по­верхности не рассеивается во все стороны, а отража­ется по определенному направлению. Конечно, если смот­реть на картину с неудачно выбранной позиции, то такой свет будет очень мешать {«отсвечивание»). Но если рассмат­ривать картину с других мест, то благодаря лаковому покрытию белый свет от поверхности в этих направлениях не распространяется, и цвета картины выигрывают в насы­щенности.

§ 171. Цвет неба и зорь. Изменение спектрального состава света, отраженного или рассеянного поверхностью тел, связано с наличием избирательного поглощения и отражения, выражающегося в зависимости коэффициентов a и r от длины волны.

В природе играет большую роль еще одно явление, ведущее к изменению спектрального состава солнечного света. Свет, доходящий до наблюдателя от участков безоб­лачного небесного свода, далеких от Солнца, характеризу­ется довольно насыщенным голубым или даже синим оттен­ком. Несомненно, что свет неба есть солнечный свет, рас­сеиваемый в толще воздушной атмосферы и по­этому доходящий до наблюдателя со всех сторон, даже по направлениям, далеким от направления на Солнце. Рис. 318 поясняет происхождение рассеянного света неба. Теоретическое исследование и опыты показали, что такое рассеяние происходит благодаря молекулярному строению воздуха; даже вполне свободный от пыли воздух рассеивает

Рис. 318. Происхождение цвета неба (свет Солнца, рассеянный атмо­сферой). До поверхности Земли (например, точки А) доходит как пря­мой свет Солнца, так и свет, рассеянный в толще атмосферы. Цвет этого рассеянного света и называется цветом неба

солнечный свет. Спектр рассеянного воздухом света замет­но отличается от спектра прямого солнечного света: в сол­нечном свете максимум энергии приходится на желто-зеленую часть спектра, а в свете неба максимум передвинут к голубой части. Причина лежит в том, что короткие све­товые волны рассеиваются значительно сильнее длинных. По расчетам английского физика Джона Стретта лорда Рэлея (1842-1919), подтвержденным измерениями, интен­сивность рассеянного света обратно пропорциональна чет­вертой степени длины волны, если рассеивающие частицы малы по сравнению с длиной волны света, следовательно, фиолетовые лучи рассеиваются почти в 9 раз сильнее крас­ных. Поэтому желтоватый свет Солнца при рассеянии пре­вращается в голубой цвет неба. Так обстоит дело при рассея­нии в чистом воздухе (в горах, над океаном). Наличие в воз­духе сравнительно крупных частичек пыли (в городах) добавляет к рассеянному голубому свету свет, отраженный частичками пыли, т. е. почти неизмененный свет Солнца. Благодаря этой примеси цвет неба становится в этих усло­виях более белесоватым.

Преимущественное рассеяние коротких волн приводит к тому, что доходящий до Земли прямой свет Солнца оказы­вается более желтым, чем при наблюдении с большой высоты. На пути через толщу воздуха свет Солнца частично рассеивается в стороны, причем сильнее рассеиваются ко­роткие волны, так что достигший Земли свет становится от­носительно богаче излучением длинноволновой части спект­ра. Это явление особенно резко сказывается при восходе и закате Солнца (или Луны), когда прямой свет проходит зна­чительно большую толщу воздуха (рис. 319). Благодаря это­му Солнце и Луна на восходе (или закате) имеют медножелтый, иногда даже красноватый оттенок. В тех случаях,

Рис. 319. Объяснение красного цвета Луны и Солнца на восходе и за­кате: S 1 - светило в зените - короткий путь в атмосфере (АВ); S 2 - светило на горизонте - длинный путь в атмосфере (СВ)

когда в воздухе имеются очень мелкие (значительно мень­шие длины волны) частички пыли или капельки влаги (туман), рассеяние, вызываемое ими, также идет по закону,

Рис. 320. Рассеяние света мутной жидкостью: падающий свет - белый, рассеянный свет - синеватый, проходящий свет - красноватый

близкому к закону Рэлея, т. е. по преимуществу рассеива­ются короткие волны. В этих случаях восходящее и захо­дящее Солнце может быть совершенно красным. В красный же цвет окрашиваются и плавающие в атмосфере облака. Таково происхождение прекрасных розовых и красных оттенков утренней и вечерней зорь.

Можно наблюдать описанное изменение цвета при рас­сеянии, если пропустить пучок света от фонаря через сосуд (рис. 320), наполненный мутной жидкостью, т. е. жид­костью, содержащей мелкие взвешенные частицы (напри­мер, водой с несколькими каплями молока). Свет, идущий в стороны (рассеянный), заметно синее, чем прямой свет фонаря. Если толща мутной жидкости довольно значитель­на, то свет, прошедший сквозь сосуд, теряет при рассеянии столь значительную часть коротковолновых лучей (синих и фиолетовых), что оказывается оранжевым и даже красным. В 1883 г. произошло сильнейшее извержение вулкана на острове Кракатау, наполовину разрушившее остров и вы­бросившее в атмосферу огромное количество мельчайшей пыли. На протяжении нескольких лет пыль эта, развеянная воздушными течениями на огромные расстояния, засоряла атмосферу, обусловливая интенсивные красные зори.

Фотосъемка происходит как при естественном дневном свете, так и при источниках искусственного света: лампах накаливания, газоразрядных импульсных лампах, лампах-вспышках и др. Все эти источники сильно отличаются друг от друга по спектральному составу света, На выбор источника света влияют не только конкретные условия съемки, но и светотехнические характеристики источников. Если при съемке на черно-белой пленке прежде всего обращается внимание на интенсивность светового потока источника света и в меньшей степени на его спектральный состав, то при съемке на цветной пленке решающее значение имеет спектральный состав света. От спектрального состава зависит передача тональных цветов при съемке на черно-белой пленке и натуральных - при съемке цветной, выбор цвето-чувствительного материала и светофильтров.

При изменении цветности источника света изменяется и шкала тонов, которыми передаются цвета объекта. Спектральный состав света, его цветовая температура должны быть сбалансированы с цветочувствительностью негативного материала. Только в этом случае возможна правильная цветопередача.

Дневной свет относится к группе температурных ис точников света.

Земная поверхность и все, что на ней находится, освещаются либо смешанным, суммарным светом (суммарной радиацией) прямого солнечного и рассеянного излучения, идущего от небосвода и облаков, либо в пасмурную погоду, когда солнце закрыто облаками, рассеянным светом неба. Места, куда не проникает прямой солнечный свет, освещаются только рассеянным светом неба (рис. 6).

И з табл. 3 видно, как изменяется спектральный состав солнечного излучения в зависимости от высоты солнца.

Особенно быстро солнце поднимается в утренние и опускается в вечерние часы. Ориентировочные изменения цветовых температур на протяжении дня и в зависимости от состояния неба приведены в табл. 4.

Но закономерность колебаний спектрального состава и интенсивности излучений дневного света то и дело нарушается из-за происходящих в атмосфере изменений метеорологических условий (облачность, высота, степень и плотность которой весьма неустойчивы, влажность и запыленность воздуха, дымка, туман и др.). Эти случайные переменные факторы находятся в такой тесной связи и так взаимно переплетаются, что учесть влияние каждого из них весьма затруднительно.

Когда солнце поднимается над горизонтом или заходит, оно выглядит красным шаром с цветовой температурой около 1800 К. В это время на пути к земле солнечные лучи пронизывают, воздушную оболочку, окружающую нашу планету, и проходят самый длинный путь в атмосфере. Длина пути солнечных лучей в атмосфере имеет большое значение, особенно для коротковолновой части спектра. В потоке лучей солнца, прошедших самый длинный путь в толще воздуха, отсутствуют сине-фиолетовые лучи: они отфильтровываются слоем воздуха, который, изменяя спектральный состав солнечного света, действует как желтый фильтр переменной плотности. При частичной облачности, когда солнце просвечивает сквозь облака или находится в дымке, коротковолновая часть радиации также ослабевает.

Солнечная радиация в результате многократных отражений молекулами газов, входящих в состав воздуха, претерпевает молекулярное рассеивание. Видимый цвет воздушного слоя над землей, цвет неба и объясняются сильным молекулярным рассеиванием коротковолновой части солнечной радиации. Молекулярное рассеивание является причиной возникновения воздушной голубой дымки.

В результате рассеивания атмосферой части солнечного света само небо становится источником света (вторичным) с ясно выраженным цветом. В спектре голубого неба наблюдается значительное преобладание синих и фиолетовых цветов, содержатся и все остальные цвета, но в значительно меньшей степени (рис. 6, кривая 3).

Рассеянный свет неба также испытывает сильные колебания цветовой температуры в зависимости от того, исходит ли свет от синего безоблачного неба или от неба, затянутого дымкой или облаками.

В воздухе постоянно находятся во взвешенном состоянии в различных количествах механические примеси - мутящие частицы (воздух в толстых слоях можно рассматривать как мутную среду): пылинки, поднимаемые восходящими "потоками воздуха и ветром, мелкие капли воды, водяные пары, которые способствуют возникновению дымки. Количество их с высотой убывает - они не поднимаются выше 1000 м. Когда размеры мутящих частиц становятся соизмеримыми с длинноволновыми световыми волнами или даже начинают превышать их длину, возникает аэрозольное рассеивание, при котором отражаются лучи всего спектра. При этом, отраженный свет становится белым и, как следствие, небо приобретает белесоватый цвет. Разбеливанию неба способствует и повышенная влажность воздуха, которая является причиной образования дымки, белой с голубым оттенком.

При появлении облаков к свету неба примешивается еще и белый свет, отраженный от облаков. Крупные капли воды, из которых состоят облака, рассеивают лучи всего спектра.

Вблизи крупных городов из-за большой запыленности самых нижних слоев воздуха, появления в них испарений, дыма и пыли небо у горизонта окрашивается в серый или белый цвет разных оттенков.

По мере того как солнце поднимается все выше и путь лучей в атмосфере становится короче, радиация из красной, красноватой через желтую переходит в желтоватую. Одновременно изменяет свой цвет и небо. Голубоватое вначале, оно вблизи солнца при восходе и заходе окрашивается в красноватые тона и по мере подъема солнца переходит в голубое. Если воздух прозрачный, небо приобретает синий цвет.

Вскоре после восхода солнца и незадолго до его захода цветовая температура поднимается до 3000-3200К, что дает возможность съемки на цветной пленке типа ЛН. Примерно через час после восхода при высоте солнца цветовая температура его поднимается до 3500 К. Радиация в это время состоит из половины красных, одной четверти желтых лучей, а оставшаяся четверть приходится на зеленые, синие и фиолетовые. Тени, начиная от самых длинных, быстро уменьшаются, а при высоте солнца 15° становятся почти равными четырехкратной длине предмета. Во второй половине дня, когда солнце опускается ниже 13-15q, а также по мере дальнейшего движения к горизонту и ослабления сине-фиолетовых лучей радиация приобретает ясно выраженные оттенки от желтого к красному. Становятся длиннее и тени, Горизонтальные поверхности в это время освещаются главным образом небосводом и под влиянием увеличивающегося действия рассеянного света неба синеют, а вертикальные - в большей степени освещаются желтым светом солнца.

Путь, проходимый его лучами в атмосфере, сильно укорачивается и большая часть коротковолнового излучения достигает земной поверхности. Суммарный свет солнца и неба при безоблачном небе стабилизируется, становится белым и почти не изменяется с высотой солнца в это время суток.

Это наилучшее время для съемки, особенно на цветной пленке ДС, сбалансированной для цветовой температуры 5600-5800 К. Если даже некоторые изменения в цветовой температуре света в это время и происходят, то для черно-белой съемки они вообще не имеют значения, а для цветной не столь значительны, чтобы заметно ухудшить цветопередачу. Изменение цветовой температуры дневного света в течение дня показано на рис. 7.

Которого она упала

А знание высоты солнца над горизонтом позволяет определить цветовую температуру дневного света.

Для каждого времени года и дня можно найти длину тени с помощью несложного прибора - указателя (индикатора) тени. На картоне укрепляется стерженек или булавка определенной длины, например I см. Из точки крепления, как из центра, наносятся полуокружности (рис. 8) радиусами, равными 0,5-6-кратной высоте выступающего стержня. При горизонтальном положении картона тень от стержня и укажет высоту солнца.

(в Киеве до 63°). С приближением солнца к зениту свет приобретает заметный синеватый оттенок, цветовая температура поднимается до 6000-7000 К. Это время (для Киева 11.00- 13.00) не подходит для фотосъемок и по художественным соображениям.

Солнце является эффективным источником инфракрасного излучения. Освещенность, создаваемая инфракрасной частью излучения солнца, зависит от положения солнца на небе и степени прозрачности атмосферы. В табл. 6 приведено в процентах излучение ультрафиолетового и инфракрасного участков солнечного потока на протяжении дня для прозрачной атмосферы. Излучение солнечного потока в пределах от 3 до 70 принято за 100%.

Из таблицы видно, что с подъемом солнца интенсивность инфракрасного излучения заметно ослабевает.

Лампы накаливания также относятся к группе температурных источников света. Простота и удобство пользования обеспечили им наибольшее распространение при фото- и киносъемке. Существуют различные типы электрических ламп накаливания. Это и бытовые осветительные лампы накаливания разной мощности, фотолампы, зеркальные, у которых часть колбы параболоидной формы покрыта зеркальным слоем алюминия, прожекторные (ПЖ), кинопрожекторные (КПЖ), проекционные. В последние годы широко используются галогенные (йодно-кварцевые) лампы.

В бытовых лампах максимум излучения находится в инфракрасной области спектра, в видимой области преобладают желто-красные лучи. Как видно из спектральной характеристики (см. рис. 6), излучение лампы накаливания в красной области спектра превосходит излучение в сине-фиолетовой в 5-6 раз. Поэтому цветопередача на черно-белой пленке при свете ламп накаливания резко отличается от цветопередачи при дневном свете.

При номинальном напряжении ПО, 127 и 220В у маломощных ламп накаливания (50-200 Вт) цветовая температура света, излучаемого вольфрамовой нитью, равна 2600-2800 К, у более мощных (500 и 1000 Вт) - около 3000 К, У еще более мощных (свыше 1000 Вт) цветовая температура превышает 3000 К. Маломощные бытовые лампы, обладающие низкой цветовой температурой, не пригодны для цветной съемки.

У зеркальных ламп накаливания (ЗК) цветовая температура 2800-3000К, у предназначенных для цветной съемки - 3200-3300 К. Цветовая температура прожекторных ламп (ПЖ) колеблется от 3000 К у ламп мощностью 500 Вт до 3200 К У ламп мощностью 5000-10 000 Вт. Предназначенные для цветных съемок лампы КГЩ и ПЖК обладают одинаковой цветовой температурой для всех мощностей. С увеличением температуры накала вольфрамовой нити лампы повышается ее цветовая температура.

Фотолампы, предназначенные для фотосъемки, от обычных отличаются тем, что горят при повышенном напряжении, с большим перекалом. Благодаря этому значительно не только увеличивается сила света, но и повышается цветовая температура. По сравнению с фотолампами свет бытовых ламп заметно краснее.

Постоянство цветовой температуры ламп накаливания зависит от постоянства подводимого к лампе напряжения. Колебания напряжения изменяют температуру накала вольфрамовой нити и, следовательно, цветовую температуру излучения.

При съемке на черно-белой пленке постоянство цветовой температуры ламп накаливания не столь существенно, как на цветной. На обратимой цветной пленке отклонение от нормальной цветовой температуры на 50-100К уже заметно. Колебания цветовой температуры в зависимости от изменения напряжения приведены на рис. 9. Номинальное напряжение принято за 100%. Например, при снижении напряжения до 90% от номинального цветовая температура снижается до 96% от исходной. Такое снижение напряжения уменьшает цветовую температуру лампы с 3200 до 3072 К.

В процессе горения в результате распыления нити ее поверхность уменьшается и на внутренней стороне колбы образуется пленка. В излучении такой лампы всегда больше красных лучей, чем в новой такого же типа.

Наиболее мощным источником теплового излучения, обуславливающим жизнь на Земле, является Солнце.

Спектр Солнца непрерывный, в нем наблюдается множество темных фраунгоферовых линий . Фраунгофер был первым, кто описал темные линии на фоне непрерывного спектра в 1814 году. Эти линии в спектре Солнца образуются в результате поглощения квантов света в более холодных слоях солнечной атмосферы.

Наибольшую интенсивность непрерывный спектр имеет в области длин волн 430–500 нм. В видимой и инфракрасной областях спектр электромагнитного излучения Солнца близок к спектру излученияабсолютно черного тела с температурой 6000 К. Эта температура соответствует температуре видимой поверхности Солнца – фотосферы. В видимой области спектра Солнца наиболее интенсивны линии Н и К ионизованного кальция, линии бальмеровской серии водорода Нα, Нβ и Нγ.

Около 9 % энергии в солнечном спектре приходится на ультрафиолетовое излучение с длинами волн от 100 до 400 нм. Остальная энергия разделена приблизительно поровну между видимой (400–760 нм) и инфракрасной (760–5000 нм) областями спектра.

Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную. Постоянная составляющая характеризует радиоизлучение спокойного Солнца. Солнечная корона излучает радиоволны как абсолютно черное тело с температурой T = 106 К. Переменная составляющая радиоизлучения Солнца проявляется в виде всплесков, шумовых бурь. Шумовые бури длятся от нескольких часов до нескольких дней. Через 10 минут после сильной солнечной вспышки радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца; это состояние длится от нескольких минут до нескольких часов. Это радиоизлучение имеет нетепловую природу.

Плотность потока излучения Солнца в рентгеновской области (0,1–10 нм) весьма мала (~5∙10–4 Вт/м2 и сильно меняется с изменением уровня солнечной активности. В ультрафиолетовой области на длинах волн от 200 до 400 нм спектр Солнца также описывается законами излучения абсолютно черного тела.

В ультрафиолетовой области спектра с длинами волн короче 200 нм интенсивность непрерывного спектра резко падает и появляются эмиссионные линии. Наиболее интенсивна из них водородная линия лаймановской серии (λ = 121,5 нм). При ширине этой линии около 0,1 нм ей соответствует плотность потока излучения около 5∙10–3 Вт/м2. Интенсивность излучения в линии приблизительно в 100 раз меньше. Заметны также яркие эмиссионные линии различных атомов, важнейшие линии принадлежат Si I (λ = 181 нм), Mg II и Mg I, O II, O III, C III и другие.

Коротковолновое ультрафиолетовое излучение Солнца возникает вблизи фотосферы. Рентгеновское излучение исходит из хромосферы (T ~ 104 К), расположенной над фотосферой, и короны (T ~ 106 К) – внешней оболочки Солнца. Радиоизлучение на метровых волнах возникает в короне, на сантиметровых – в хромосфере.

Поток солнечной радиации, приходящийся на 1 м2 площади земной границы атмосферы, составляет 1350 Вт. Эту величину называют солнечной постоянной .

Интенсивность прямой солнечной радиации измеряют актинометром . Принцип действия его основан на использовании нагревания зачерченных поверхностей тел, происходящего от солнечной радиации. В термоэлектрическом актинометре Савинова – Янишевского приемной часть радиации является тонкий, зачерченный с наружной стороны диск 1. К диску с электрической изоляцией припаяны спаи термоэлементов 2, другие спаи 3 прикреплены к медному кольцу внутри корпуса и затенены. Под действием солнечной радиации возникает электрический ток в термобатарее, сила которого прямо пропорциональна потоку радиации.

⇐ Предыдущая1234

Дата публикования: 2015-01-25; Прочитано: 958 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Спектр солнечного света и цветовое зрение

© 1993-2018 «Технолуч». Все права защищены. При использовании материалов сайта ссылка обязательна.

Согласно теории цветового зрения Юнга-Гемгольца (1821-1894) ощущение любого цвета можно получить смешиванием спектрально чистых излучений красного, зеленого и синего цвета. Эта теория хорошо согласуется с наблюдаемыми фактами и предполагает, что в глазу есть только три типа светочувствительных приемников. Они отличаются друг от друга областями спектральной чувствительности. Красный свет воздействует преимущественно на приемники первого типа, зеленый — второго, синий — третьего. Сложением излучений таких трех цветов в различных пропорциях можно получить любую комбинацию возбуждения всех трех типов светочувствительных элементов, а значит и ощущение любого цвета. Если все рецепторы возбуждены в одинаковой степени, мы имеем ощущение белого цвета, если рецепторы не возбуждены — черного. По этой причине, накладывающиеся области красного, зеленого и синего цвета выглядят как белое пятно.

Наложение красного и синего цвета дает фиолетовый цвет, зеленого и синего — бирюзовый, красного и зеленого — желтый.

Приведенный график показывает относительную спектральную чувствительность глаза к излучениям различных длин волн (так называемая кривая видности). Кривая видности красного цвета соответствует чувствительности глаза при дневном свете, а синяя — при сумеречном свете. Максимальная чувствительность глаза при дневном свете достигается на длине волны 555 нм, а при сумеречном свете — на длине волны 510 нм. Максимальная чувствительность глаза в обоих случаях принимается за единицу. Отличие между этими двумя кривыми видности объясняется тем, что дневной и сумеречный свет воспринимаются различными рецепторами глаза (палочками при сумеречном свете и колбочками при дневном свете). При этом палочки обеспечивают чёрно-белое зрение и обладают очень высокой чувствительностью. Колбочки же позволяют человеку различать цвета, но их чувствительность гораздо ниже. В темноте работают только палочки — именно поэтому ночью воспринимаемое изображение серое.

Как мы можем видеть из кривой видности, глаз способен воспринимать свет на длинах волн примерно от 400 нм до 760 нм. В условиях адаптации к темноте глаз может также немного видеть инфракрасный свет с длиной волны до 950 нм и ультрафиолетовый свет с длиной волны не меньше 300 нм. Границы частотного диапазона видимого света, а также сама форма кривой видности человеческого глаза были сформированы в процессе длительной эволюции, приспособившись к условиям освещения земных предметов солнечным светом, а также к условиям сумеречного и ночного освещения. Действительно, было бы биологически нецелесообразно, если бы глаз обладал способностью принимать излучение с длинами волн короче 290 нм, так как из-за наличия озонового слоя в атмосфере земли, поглощающего ультрафиолетовые лучи, спектр солнечного излучения вблизи поверхности Земли практически обрывается на длине волны 290 нм. С другой стороны, из-за теплового излучения самого глаза, его высокая чувствительность к инфракрасному излучению сделала бы невозможной работу глаза в условиях солнечного освещения.

Ультрафиолетовое излучение, невидимое для глаза, воздействует, тем не менее, на кожу. Под действием ультрафиолета, который присутствует в солнечном свете, в коже вырабатывается особый пигмент, интенсивно отражающий эту часть солнечного спектра. При этом кожа приобретает характерный оттенок, известный как загар, а вероятность её ожога сильно уменьшается. Почему же нельзя загореть через оконное стекло? Дело в том, что обычное оконное стекло не пропускает ультрафиолетовых лучей и, следовательно, солнечный свет, прошедший через стекло, не может вызвать загар. Загореть можно только через кварцевое стекло, прозрачное для ультрафиолета.

Спектр оптического пропускания синтетического кварцевого стекла Suprasil 300, оптического стекла BK 7 и обычного стекла. Спектр видимого света лежит примерно в пределах от 400 нм до 800 нм.

В отличие от обычного стекла, которое состоит из смеси различных компонент, кварцевое стекло состоит только из оксида кремния, а количество примесей других химических элементов чрезвычайно мало. Это приводит к тому, что кварцевое стекло обладает чрезвычайно широким спектром пропускания и малым поглощением света (обычное оконное стекло поглощает столько же света, сколько и кварцевое стекло толщиной в 100 метров). Это обуславливает широкое применение кварцевого стекла в оптике. Если позволяют средства, вы можете застеклить на даче одно из окон кварцевым стеклом и загорать зимой.

Спектральный состав солнечной радиации меняется в зависимости от высоты Солнца над горизонтом.

По международной классификации выделяют:

1. Инфракрасное излучение – 760-2600 (3000) нм

2. Видимое излучение – 400-760 нм

3. Ультрафиолетовое излучение – на границе с атмосферой 400-100 нм, на поверхности земли – 400-290 нм

Все виды излучений отличаются друг от друга длиной волны (частотой колебаний) и энергией кванта. Чем меньше длина волны, тем больше энергия кванта и тем соответственно более выражено биологическое действие данного излучения.

Спектральный состав солнечного света

Следовательно, наибольшей биологической активностью характеризуется ультрафиолетовое излучение.

Инфракрасное излучение составляет большую часть солнечного спектра (до 50%). Ультрафиолетовые лучи занимают 5% спектра на границе с атмосферой и 1% УФ-излучения достигает поверхности земли. Коротковолновая часть УФ-излучения (менее 300 нм) задерживается озоновым слоем Земли.

Реакция организма на действие солнечного света является результатом действия всех частей спектра. Солнечную радиацию воспринимают кожа и глаза. В основе физиологического действия солнечных лучей лежат различные фотохимические реакции, возникновение которых зависит от длины волны и энергии поглощенных квантов действующего излучения.

Инфракрасное излучение

Инфракрасное излучение образуется всяким телом, температура которого выше абсолютного нуля. Чем больше оно нагрето, то есть чем выше его температура, тем выше интенсивность излучения. Инфракрасное излучение проникает сквозь атмосферу, воду, почву, одежду, оконные стекла.

Коэффициент поглощения инфракрасных лучей связан с длиной волны, которая обусловливает глубину проникновения.

По длине волны инфракрасное излучение подразделяется на :

1.длинноволновое (свыше 1400 нм) — задерживается поверхностными слоями кожи и проникает на глубину до 3 мм, в результате ускоряется обмен веществ, усиливается кровоток, рост клеток и регенерация тканей, но в больших дозах может вызывать чувство жжения.

2. средневолновое (длина волны 1000 – 1400 нм)

3. коротковолновое (длина волны от 760 до 1000 нм) обладает большой проникающей способностью. Проникает на глубину 4-5 см, 14% лучей в пределах длин волн 1000-1400 нм — на глубину 3-4 см.

ИК-излучение оказывает :

1. тепловое действие — воздействуя на молекулы и атомы веществ, усиливая их колебательные движения, ИК-излучение приводит к повышению температуры биосубстрата.

2. фотохимическое действие – связано с поглощением энергии тканями и клетками, что ведет к активизации ферментных процессов и, как следствие, к ускорению обмена веществ, образованию БАВ, усилению процессов регенерации, иммуногенеза.

ИК-излучение оказывает местное и общее воздействие.

При локальном воздействии на ткани ИФ-излучение несколько ускоряет биохимические реакции, ферментативные и иммунобиологические процессы, рост клеток и регенерацию тканей, кровоток, усиливает биологическое действие УФ-лучей.

Общее действие проявляется противовоспалительным, болеутоляющим, общетонизирующим эффектами. Эти эффекты широко используются в физиотерапии — с помощью использования искусственных источников ИК-излучения для лечения заболеваний воспалительного характера с целью уменьшения болевого синдрома при ревматизме, остеохондрозе и т.д.

3. влияет на климат и микроклимат. Вследствие неравномерного нагревания земной поверхности и испарения воды происходит движение воздуха и водных масс, формирование циклонов и антициклонов, теплых и холодных течений, разнообразие климатических зон, погодных условий, которые опосредованно влияют на человека.

При оптимальной интенсивности ИК-излучение вызывает приятное тепловое ощущение.

Отрицательное воздействие ИК-излучения связано с тепловым эффектом, так как возможно перегревание организма с развитием теплового или солнечного удара.

Видимое излучение

Видимое излучение воздействует на кожу (проникает на глубину 2,5 см) и глаза. Кожа неодинаково поглощает видимые лучи. Красные лучи проникают на глубину 2,5 см в количестве 20%, фиолетовые до 1%.

Биологическое действие :

1. вызывает световое ощущение. Связано с фотохимическим действием, которое проявляется в возбуждении молекул зрительных пигментов сетчатки глаза. В результате в сетчатке возникают электрические импульсы, вызывающие ощущение света. Таким образом, видимые лучи имеют информационное значение (информация об объеме, цвете, форме и т.д.)

2. оказывает благоприятное действие на организм, стимулирует его жизнедеятельность, улучшает общее самочувствие, эмоциональное настроение, повышает работоспособность. Плохое освещение отрицательно сказывается на функции зрительного анализатора, в результате чего быстро развивается утомление.

3. усиливает обмен веществ, иммунологическую реактивность, улучшает деятельность других анализаторов, активизирует процессы возбуждения в коре головного мозга.

4. тепловое действие – около 50% общей тепловой энергии солнечного спектра приходится на видимое излучение.

5. оздоровление окружающей среды

6. психогенное значение. Видимое излучение способно создавать гамму цветов, которые оказывают различное действие на человека. Отношение к цветам очень индивидуальное и каждый цвет вызывает у человека определенные ощущения (голубой – чувство прохлады, успокаивающее действие, зеленый – спокойствие, надежность, ярко-желтый – раздражение, красный – возбуждение, фиолетовый и синий – угнетают и способствуют засыпанию, синий способен усиливать состояние депрессии).

7. интенсивность и цвет видимого света на протяжении суток меняется, что имеет сигнальный характер и определяет суточный биологический ритм активности человека, служит источником рефлекторной и условнорефлекторной деятельности.

В процессе эволюции человек стал вести активный образ жизни в светлый период суток. Видимый свет влияет на режим сна и бодрствования, а, следовательно, и на физиологические функции организма (регуляция температуры тела, уровня гормонов и т. д.). Сейчас существует понятие синдрома «световое голодание», которое характеризуется снижением работоспособности, эмоциональной нестабильностью, повышенным аппетитом и потребностью во сне. Такой синдром возникает у людей в осенне-зимний период, при проживании за Полярным кругом, у работающих в ночную смену и т.д.

Биологическое действие различных участков спектра солнечного излучения

Ионизирующее излучение. Это излучение включает космические лучи, а также естественную и искусственную радиоактивность. На поверхности Земли эта форма воздействия на организмы связана главным образом с естественным радиоактивным фоном, а в наше время – и с резким возрастанием уровня радиоактивности техногенного происхождения.

Биологическое действие радиации осуществляется, в основном, на субклеточном уровне (ядра, митохондрии, микросомы) Установлена зависимость этого действия от дозы облучения: при малых дозировках повреждающий эффект может сменяться стимулирующим. Известно влияние ионизирующей радиации на генетический аппарат (мутагенный эффект).

Ультрафиолетовые лучи. Наиболее коротковолновая (200-280 нм) зона этой части спектра («ультрафиолет С») активно абсорбируется кожей; она является опасной для живых организмов, но практическим полностью поглощается озоновым экраном. Следующая зона – УФ-В, с длиной волны 280-320 нм – наиболее опасная часть спектра УФ, обладающая канцерогенным действием. УФ-В активирует некоторые микроорганизмы, в то время как другие длины волн УФ губительны для микробов. Большая часть зоны УФ-В также поглощается озоновым экраном.

До поверхности Земли доходят лишь лучи с длиной волны примерно от 300 нм. Эта часть спектра обладает большой энергией и оказывает на живые организмы главным образом химическое действие. В частности, УФ –лучи стимулируют процессы клеточного синтеза.

Под действием этих лучей в организме синтезируется витамин Д, регулирующий обмен кальция и фосфора, а соответственно нормальный рост и развитие скелета. Особенно велико значение этого витамина для растущего организма. Поэтому многие млекопитающие, выводящие детенышей в норах, регулярно (чаще по утрам) выносят их на освещенные солнцем места. «Солнечное купание» свойственно и многим птицам; основная роль этой формы поведения – нормализация обмена, синтез витамина Д и регуляция продукции меланина. Действие УФ зависит от дозы: слишком сильное облучение вредно для организма. Особенно неустойчивы к коротковолновой радиации активно делящиеся клетки. Как приспособление к экранированию организма от передозировки УФ у многих видов, в том числе и у человека, формируются темные пигменты, поглощающие эти лучи. Такова природа загара у человека. У лягушек и некоторых других амфибий и рыб откладываемые на поверхности воды икринки имеют пигментированный верхний полюс. У пустынных грызунов отмечена пигментация мошонки. У сусликов обнаружены пигментированные мозговые оболочки.

УФ-радиация составляет около 5-10% суммарной радиации, достигающей поверхности Земли.

Видимый свет. Эта часть спектра составляет около 40-50% солнечной энергии, достигающей Земли. Для животных видимая часть спектра связана, прежде всего, с ориентированием в окружающей среде. Зрительная ориентация свойственна большинству дневных животных и используется как источник сложной информации о внешних условиях. Эффективность восприятия зрительных сигналов очень различна: от простых светочувствительных клеток, в которых световые воздействия на зрительные пигменты фотохимически трансформируются в нервный импульс, до сложно устроенных глаз, способных к восприятию объемных образов в цветовом варианте. У ряда птиц зрительное восприятие распространяется на часть ультрафиолетовой зоны спектра. Многие животные воспринимают как видимый свет ближнюю область инфракрасного излучения.

Впрочем, и многие ночные виды ориентируются с участием органов зрения, поскольку абсолютная темнота в сфере обитания животных встречается редко. Ослабление интенсивности света вызывает адаптивные перестройки органов зрения (совы, козодои, некоторые ночные млекопитающие).

Обитание в условиях полной темноты, как правило, связано с редукцией органов зрения. Это, в частности, свойственно видам, обитающим в пещерах, а также многим почвенным животным. У почвенных животных часто сохраняются светочувствительные органы, хотя и в редуцированном виде. Они используются для получения информации о выходе на освещенную поверхность.

В океане интенсивность освещения падает с глубиной. Параллельно изменяется и спектральный состав: глубже всего проникает его коротковолновая часть – синие и голубые лучи. Освещенность на мелководье мало отличается от суши, и обитающие здесь рыбы имеют в сетчатке большой процент колбочек, чувствительных к красному цвету. У рыб, обитающих в зеленой воде прибрежной зоны, таких колбочек нет, отсутствуют у них и оранжево-чувствительные клетки. Среди глубоководных рыб большинство имеют в сетчатке лишь один тип палочек, чувствительных к синему цвету.

Известно, что на глубине 800-950 м интенсивность света составляет около 1 % полдневного освещения на поверхности.

Этого еще достаточно для светоощущения. Дальнейшее увеличение глубины связано у одних видов с редукцией органов зрения, а у других – с развитием гипертрофированных глаз, способных воспринимать очень слабый свет. Последнее в значительной степени определяется наличием на больших глубинах светящихся организмов. Некоторые из них способных создавать освещение выше порога световой чувствительности животных. Голубое свечение (длина волны 400-500 нм) соответствует «настройке» органов зрения глубоководных животных. Биологическое свечение используют и рыбы, образуя симбиотические связи со светящимися микроорганизмами и формируя специальные органы, свет которых используется для подманивания добычи, взаимного опознавания, различения полов и т.п.

Свет как фактор фотосинтеза. В процессе фотосинтеза свет выступает как источник энергии, которая используется пигментной системой (хлорофилл, в некоторых случаях – его аналоги). В результате происходит расщепление молекулы воды с выделением газообразного кислорода, а энергия, полученная фотохимической системой, утилизируется для преобразования диоксида углерода в углеводы:

6СО2 + 12Н2О хлорофилл С6Н12О6 + 6О2 + 6Н2О

Способность использовать лучистую энергию у хлорофилла и у зрительных пигментов животных очень близка; поэтому в спектре солнечного излучения область фотосинтетически активной радиации (ФАР) практически совпадает с диапазоном видимой части спектра с длиной волны порядка 400-700 нм. Некоторые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части спектра (максимум в области 800-100 нм).

Зеленый лист поглощает в среднем 75 % падающей на него лучистой энергии. Но коэффициент использования ее на фотосинтез невысок: около 10 % при низкой освещенности и лишь 1-2 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Наиболее важные внешние факторы, влияющие на уровень фотосинтеза, это – температура, свет, диоксид углерода и кислород. На уровне самого растения на этот процесс влияют содержание хлорофилла и воды, особенности анатомии листа, концентрация ферментов.

Зависимость фотосинтеза от температуры характеризуется кривой, на которой выделяются точки (зоны) максимума, оптимума и минимума. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к температурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (-1, -2°С), но у наиболее холодолюбивых форм опускается до -5…-7°С. Максимальная температура фотосинтеза в среднем на 10-12°С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растений. Оптимальной температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90% своей максимальной величины; эта зона зависит от освещенности: повышается при ее увеличении и снижается в условиях затенения. Поэтому при низкой освещенности фотосинтез идет активнее при более низких температурах, а при высокой интенсивность этого процесса увеличивается с повышением температуры.

Освещенность в своем влиянии на фотосинтез характеризуется так называемой кривой насыщения: вначале с повышением освещенности кривая потребления СО2резко идет вверх, затем – по достижении определенного порога освещенности – нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. В этой зависимости хорошо прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещенности, чем у светолюбивых. В темноте кривые ассимиляции переходят на нулевой уровень: выделение СО2 при дыхании не компенсируется его потреблением для фотосинтеза. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выделению его при дыхании, называют точкой компенсации ; у светолюбивых растений она располагается выше, чем у тенелюбивых. Кроме того, положение этой точки зависит от концентрации СО2 и от температуры.

Диоксид углерода в процессе фотосинтеза выступает как ресурс для синтеза углеводов. Норма содержания СО2 в атмосфере составляет 0,57 мг/л. Повышение концентрации ведет к усилению фотосинтеза, но лишь до известных пределов; при концентрации 5-10% (против нормальной – 0,03 %) фотосинтез ингибируется. В сочетании с реакцией на другие факторы колебания концентрации СО2 определяет поддержание нормального уровня фотосинтеза в разнообразных природных условиях. Такие колебания обусловлены суточным ритмом фотосинтеза, закономерными изменениями интенсивности почвенного дыхания и некоторыми другими факторами. Например, суточные колебания СО2 в густых растительных сообществах могут достигать 25 % от средних величин.

Вода, тоже участвующая в процессах фотосинтеза редко его лимитирует. Однако непрямым путем недостаток воды (в частности, сезонный) может быть ограничителем. Например, в западной Австралии некоторые виды растений во время засухи снижают фотосинтез на 2/3 по сравнению с весенним периодом.

Биологические ритмы

Специфическое значение светового фактора заключается в том, что закономерная динамика условий освещения играет важную роль в регуляции периодических явлений в жизни растений и животных.

С самого возникновения жизни на Земле она осуществлялась в условиях ритмически меняющейся среды . Закономерная смена дня и ночи, регулярно повторяющиеся сезонные изменения комплекса факторов – все это требовало приспособления со стороны живых организмов. В процессе эволюции выработалось наиболее кардинальная форма такого приспособления: согласованность ритмов биологической активности различных живых форм с масштабами суточной и сезонной цикличности комплекса условий среды. Ритмичность общих проявлений жизнедеятельности и ее отдельных форм свойственна всем живым существам. В основе ее лежит специфика биохимических и физиологических реакций составляющих сущность жизни и имеющих ритмичный характер. Длительность ритмов отдельных процессов, идущих на суборганизменном уровне, очень различна: от долей секунды (например, активность нейрона) до нескольких часов (секреторная деятельность желез) и даже более.

Суточные ритмы. Суточная периодичность свойственна большинству видов растений и животных. Имеются формы с дневной или ночной активностью; у некоторых видов вспышки активности проявляются спонтанно, независимо от времени суток, некоторым животным присуще проявление активности в сумеречное время. Время открытия и закрытия цветков у высших растений, начала или окончания бодрствования (или, наоборот, сна) у животных видоспецифично и отличается большим постоянством в своем соотношении с суточным ходом освещенности.

Общий характер активности животных определяется такими условиями:

1) тип питания;

2) взаимоотношения с хищниками и конкурентами;

3) суточные изменения комплекса абиотических факторов и т.д.

Так, суточная активность пойкилотермных животных во многом определяется режимом температуры среды; у амфибий – сочетанием температуры и влажности. Среди грызунов виды, поедающие грубые, богатые клетчаткой корма, отличаются, как правило, круглосуточной активностью. Семеноядные формы, употребляющие более концентрированную пищу, приурочивают время ее добывания к ночному периоду, когда слабее воздействие хищников. Особенно ярко это выражено у представителей открытых пространств степей и пустынь.

Циклические изменения общего уровня жизнедеятельности на протяжении суток связаны с ритмами физиологических процессов. Активный период характеризуется большими энергозатратами и соответственно повышенной активностью комплекса физиологических реакций.

Солнечная радиация

Но суточные колебания метаболизма не являются только прямым следствием повышения общей активности, так как существуют закономерные изменения уровня обмена веществ и в покое.

Режим освещенности выступает в роли сигнального фактора, который определяет время начала и окончания активности. У дневных животных утреннее нарастание освещенности по достижении определенного порога стимулирует начало активной деятельности.

У ночных видов начало активности коррелирует с определенной степенью снижения освещенности, а утреннее повышение ее определяет окончание активного периода.

Пороговые величины освещенности определяют время начала и окончания активности. На протяжении активной части суток интенсивность деятельности животных обычно имеет пульсирующий, фазовый характер. Так, воробьиные птицы в период размножения наиболее активны в утренние часы, затем их активность снижается и вновь повышается вечером. Неравномерное проявление активность свойственно очень многим видам животных.

Циркадианные ритмы. Сигнальная, синхронизирующая роль фотопериода отчетливо проявляется в условиях эксперимента, когда на фоне неизменной освещенности (чаще всего – при содержании в темноте) у подопытных организмов проявляется суточный ритм, свойственный данному виду в естественной обстановке. Например, в норме некоторые растения опускают листья или складывают их на ночь и расправляют днем. После помещения в полную темноту в эксперименте эти растения сохраняли суточный ритм движения листьев. В опытах было показано также, что этот цикл складывания и распрямления листьев составляет не точно сутки, а несколько меньше – 22-22,5 час.

В основе суточных ритмов жизнедеятельности лежат наследственно закрепленные эндогенные циклы физиологических процессов с периодом, близким к 24 час. Циклические процессы такого рода называются циркадианными или циркадными (от лат. circa – около, dies – день) ритмами. В наиболее «чистом» виде циркадианные ритмы выявляются лишь при содержании животных в строго постоянных условиях, то есть без контроля со стороны меняющихся факторов среды. Выявленные таким образом, они показывают высокую степень автономности. В то же время эти свободно текущие эндогенные ритмы легко синхронизируются какими-либо внешними датчиками времени (изменения освещенности, температуры и т.д.).

Характерная особенность циркадианных ритмов – некоторое несовпадение их периода с полными астрономическими сутками .

Определенное влияние на характер циркадианных ритмов оказывают различные условия освещения. Увеличение интенсивности непрерывного освещения вызывает у ночных видов уменьшение общей активности, некоторое удлинение цикла и укорочение его активной части; при уменьшении освещенности наблюдаются сдвиги противоположного характера. Дневные животные соответственно демонстрируют обратные реакции.

Сезонные ритмы. Большинство организмов, обитающих в условиях сезонной смены климатических режимов, характеризуются наличием периодических сезонных процессов, охватывающих комплекс физиологических систем и обеспечивающих биологически значимые изменения форм деятельности. У растений это связано с сезонным характером репродукции, определенными сроками образования семян, формированием клубней и других форм запасания питательных веществ перед наступлением зимы и т.д. Эти процессы имеют эндогенный, генетически запрограммированный характер; конкретные погодные условия только модифицируют их протекание. Установлена важная роль фотопериода в регуляции сезонных периодических явлений у растений.

У большинства животных различные физиологические и биологические процессы также проявляются сезонно: размножение, линька, спячка, миграции и т.д. Эволюционно сезонность этих явлений возникла как приспособление к циклическим изменениям климатических условий. Закономерная повторяемость сезонных состояний формируется в результате взаимодействия врожденных эндогенных сезонных циклов с информацией о состоянии внешних условий. Эти взаимодействия синхронизируют проявления эндогенной программы с периодами благоприятного для данной формы деятельности сочетания факторов среды и обеспечивают адаптацию организма к сезонному состоянию внешних условий.

Цирканнуальные ритмы. Эндогенные биологические циклы с окологодовой периодичностью называются цирканнуальными или цирканными ритмами (от лат. circa – около, annus – год). Как и циркадианные, они основываются на системе свободного отсчета времени по принципу биологических часов. В природных условиях эта система находится под контролем внешних факторов-синхронизаторов, среди которых у нетропических животных главная роль принадлежит фотопериоду.

Проявления цирканнуальных ритмов может быть достаточно сложным, но в любом случае в них заложен механизм свободнотекущей временной программы и контроль со стороны естественного режима освещения.

В искусственных условиях, полностью исключающих действие внешних датчиков времени, обнаружено, что собственный ход цирканнуального ритма чаще всего бывает несколько меньше астрономического года. Так, две славки – садовая и черноголовка в возрасте 6 недель были помещены в условия постоянного фотопериода (10 час. света и 14 час. темноты) и содержались в этих условиях соответственно 10 и 8 лет. Периоды линек у этих птиц регулярно повторялись с периодичностью 9,4-9,7 мес. Аналогичные опыты с другими птицами дали сходные результаты.

Поделиться: