Метеорологические условия воздушной среды вне помещения. Метеорологические условия в помещениях

Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности. Все эти факторы, или метеорологичеокие условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые -- сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних -- от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарнo-технических устройств.

Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года -- от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.

Согласно санитарным нормам проектирования промышленных предприятий (СН 245 -- 71) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м3ч, и горячие цехи, где они выше этой величины.

Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.

Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.

Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500oС спектр излучения содержит как видимые-- световые лучи, так и невидимые -- инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей. Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.

Источники тепла, имеющие температуру 2500 -- 3000o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.

Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолетовыми.

Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным. Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 -- 95% инфракрасных лучей, а поглощают всего 5 -- 6%. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 -- 96% этих лучей, поэтому нагреваются более интенсивно

При полном поглощении инфракрасных лучей в результате полного превращения лучистой энергии в тепловую облучаемый предмет получает определенное количество тепла, которое принято измерять в малых калориях на 1 см2 облучаемой поверхности в минуту (г.кал/см2.мин). Эту величину принимают за единицу интенсивности облучения. Интенсивность инфракрасного облучения возрастает по мере повышения температуры источника излучения и увеличения площади его поверхности и уменьшается в квадратной пропорции по мере удаления от источника излучения. Инфракрасное излучение, как правило, происходит от тех же источников, что и выделение конвекционного тепла.

Рабочие горячих цехов постоянно или периодически подвергаются воздействию инфракрасного излучения, в результате чего они получают извне то или иное количество тепла. Интенсивность облучения на рабочих местах в зависимости от размеров и температуры источников излучения и расстояния от него рабочих мест колеблется в широких пределах: от нескольких десятых долей до 8 -- 10 г.кал/см2.мин. При выполнении отдельных кратковременных операций интенсивность облучения достигает 13 -- 15 г.кал/см2.мин. Для сравнения следует указать, что интенсивность солнечной радиации в летний безоблачный день достигает лишь 1,3 -- 1,5 г.кал/см2.мин.

Несмотря на то, что инфракрасное излучение не оказывает прямого действия на воздух, все же косвенным путем оно способствует его нагреву. Подвергающиеся облучению различные предметы, оборудование, конструкции и даже стены нагреваются и сами становятся источниками тепловыделения как радиационным, так и конвекционным путем. От них-то и нагревается воздух цеха.

При работе с вольтовой дугой или ртутно-кварцевыми лампами, излучающими ультрафиолетовые лучи, рабочие могут подвергаться облучению, если они не защищены от прямого попадания этих лучей в глаза или на кожный покров. Ультрафиолетовые лучи хорошо проходят через воздух, но почти не проходят через любую плотную ткань; даже обычное стекло их почти не пропускает. Однако при попадании лучей от вышеуказанны источников в глаза наряду с ультрафиолетовыми лучам на них будет действовать чрезмерно яркий, слепящий свет видимого спектра.

В каждом помещении, и тем более в производственных цехах, воздух всегда находится в состоянии движения, которое создается вследствие разности температур в различных частях здания и по площади и по высоте. Разность температур образуется в результате инфильтрации и подсоса более холодного наружного воздуха через окна, фонари, фрамуги, ворота.

Более сильное движение наблюдается в тех случаях, когда в цехе имеются источники тепловыделения, которые нагревают воздух и заставляют его быстро подниматься вверх. При наличии одного источника тепловыделения направление движения воздуха будет от периферии к источнику тепла и от него вверх; при нескольких же источниках тепловыделения направление токов может быть самым разнообразным, оно зависит от мест расположения источников тепла и их мощности. Скорость движения, или, как принято называть, подвижность воздуха, измеряется в метрах в секунду.

Мощные источники тепловыделения в цехах являются причиной значительных потоков воздуха, скорость которых иногда достигает 4 -- 5 м/сек. Особенно большие скорости движения создаются вблизи открытых проемов (ворот, окон и т. п.), где имеется возможность подсоса более холодного наружного воздуха. Вследствие больших скоростей холодные струи проходят значительные расстояния без достаточного разбавления теплым воздухом цеха, обдувая рабочих и создавая резкие колебания температур, что в быту называют сквозняками.

На отдельных же участках могут создаваться неблагоприятные условия для естественного конвекционного потока. Чаще всего такое положение наблюдается на участках, удаленных от проемов, ограниченных стенами или громоздким оборудованием (печами и т. п.), и особенно там, где подъему нагретого воздуха вверх препятствуют какие-либо глухие перекрытия (потолки). Подвижность воздуха сокращается до минимальных величин (0,05 -- 0,1 м/сек), что приводит к его застою и перегреванию, особенно если участки расположены вблизи от источников тепловыделений.

Как в наружном, так и в воздухе производственных помещений содержится некоторое количество водяных паров, создавая определенную влажность воздуха. Количество водяных паров, выраженное в граммах, содержащихся в килограмме или в кубическом метре воздуха, называется абсолютной влажностью.

Увеличение количества водяных паров при одной и той же температуре может происходить лишь до определенного предела, после чего пары начинают конденсироваться. Такое состояние, когда количество водяных паров (в граммах) способно насытить 1 кг или 1 м3 воздуха при данной температуре до предела, называется максимальной влажностью. Чем выше температура воздуха, тем больше надо водяных паров, чтобы довести этот воздух до максимальной влажности. Следовательно, максимальная влажность воздуха при разных температурах различна, причем для каждой температуры эта величина постоянна.

Для измерения влажности воздуха чаще всего пользуются показателем относительной влажности, то есть отношением абсолютной влажности к максимальной, насыщаемой воздух до предела при данной температуре, выраженной в процентах. Таким образом, относительная влажность показывает процент насыщения воздуха водяными парами при данной температуре.

Помимо влагосодержания поступающего наружного воздуха, внутри цеха могут быть дополнительные источники влаговыделения. Главным образом это открытые технологические процессы, сопровождающиеся использованием воды или водных растворов, особенно если эти процессы идут с подогревом. Определенная часть влаги выделяется также от самих работающих при дыхании и потовыделении, однако практически это не играет большой роли.

В производственных условиях наблюдается весьма различная влажность воздуха -- от 5 -- 10 до 70 -- 80%, при наличии обильных влаговыделений (красильно-отбелочные цехи текстильных фабрик, моечные отделения различных производств, прачечные) -- иногда до 90-- 95%, а в холодный период года -- до 100%, то есть до туманообразования.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование метеорологических условий в производственном помещении

Цель работы - овладеть методами оценки метеоусловий помещения; ознакомиться с приборами и методикой измерения параметров климата; принципами нормирования параметров климата помещения.

Лабораторная установка для измерения метеорологических условий включает в себя следующие приборы:

-п сихрометр (1)

Психрометр состоит из двух термометров. Резервуар одного из них остается сухим и термометр показывает температуру воздуха. Резервуар другого окружен полоской ткани, конец которой опущен в воду. Вода, испаряясь с поверхности резервуара термометра, поглощает тепло, вследствие чего показания «влажного» термометра ниже показаний «сухого». - а немометр чашечный (3) для измерения скорости движения воздуха от 1 до 20 м/с. Он состоит из крестовины с четырьмя полыми полушариями, установленной на вертикальной вращающейся оси, которая связана со счетчиком числа оборотов.

-б арометр-анероид (4) для измерения атмосферного давления. Главная часть барометра - герметичная металлическая коробка, которая с помощью передаточного механизма соединена со стрелкой-указателем давления;

-т умблер (5) для включения установки;

-в ращающееся колесо (6) для изменения скорости движения воздуха.

Результаты измерений:

Скорость V = 0 м/с.

Температура t, °C

Влажность

Период года

ГОСТ 12.1.005-88

Допустимая

Оптимальная

абсолютная К г/мі

относительная R, %

помещения

холодный

постоянная

Легкая - Ia

Не более 0.1

Вычисления:

tсух = 21 (°C)

tвлаж = 19 (°C)

21-19=2 => R = 83%

fсух = 18.65 (мм)

fвлаж = 16.48 (мм)

K = 18.65Ч83:100 = 15.48 ? 15.5 (г/мі)

tэфф = 21.5 (°C)

t (°C) от 22 до 24

Влажность воздуха 40-60%

Скорость воздуха 0,1 м/сек

После сравнения с ГОСТ можно сделать вывод, что температура в помещении ниже нормы на 0.5 °C, влажность воздуха превышена на 23%. Скорость воздуха в пределах нормы.

метеорологический помещение климат анемометр

Скорость V 0, м/с.

Показания анемометра, об

С2 - С1/t, об/с

Скорость, V, м/с

Психометрический коэффициент

Температура, °C

Упругость водяных паров мм рт. ст

Влажность

абсолютная К г/мі

относительная R, %

Вычисления:

5256-5006=250 (об/с)

K = 16.48-0.0008Ч(21-19)Ч726 = 15.3 (г/мі)

R = 15.3: 16.48Ч100 = 92.84 (%)

tэкв-эфф. = 19.5 (°C)

В соответствии с ГОСТ 12.1.005. - 88 оптимальные нормы на рабочем месте в холодное время года должны быть следующие:

t (°C) от 22 до 24

Влажность воздуха 40-60%

Скорость воздуха 0,1 м/сек

После сравнения с ГОСТ можно сделать вывод, что температура в помещении ниже нормы на 2.5°С. Относительная влажность воздуха выше нормы на 32.84%, а по отношению к допустимой выше на 17.24%.

Разность между tэкв.-эфф и tэфф составляет 2 °С. Это может означать, что скорость воздуха (V ) влияет на итоговую температуру в помещении. Таким образом, в ходе этой работы мы научились вычислять общие значения метеорологических условий в производственном помещении, а также ознакомились с приборами и методикой измерения параметров климата.

Размещено на Allbest.ru

...

Подобные документы

    Практическое усвоение методики исследования и гигиенической оценки параметров метеорологических условий на рабочих местах в рабочей зоне производственного помещения. Определение скорости движения воздуха анемометром. Гигиеническая оценка метеоусловий.

    лабораторная работа , добавлен 13.01.2015

    Четыре фактора оценки микроклимата: температура и скорость движения воздуха, относительная влажность и тепловое излучение. Формула определения комфортности метеорологических условий. Средства измерения показателей микроклимата промышленного предприятия.

    презентация , добавлен 17.03.2014

    Параметры микроклимата на рабочем месте: влажность, температура, скорость движения воздуха, тепловое излучение. Определение оптимальных микроклиматических условий. Приборы для исследования параметров микроклимата: термометры, психрометры, гигрометры.

    контрольная работа , добавлен 30.10.2011

    Комплекс метеорологических условий в помещении. Основные параметры микроклимата. Химический состав воздуха. Температура воздуха и освещение. Прямой, рассеянный и отраженный солнечный свет. Коэффициент естественной освещенности. Влияние шума на человека.

    презентация , добавлен 03.04.2017

    Описание микроклимата производственных помещений, нормирование его параметров. Приборы и принципы измерения температуры, относительной влажности и скорости движения воздуха, интенсивности теплового излучения. Установление оптимальных условий микроклимата.

    презентация , добавлен 13.09.2015

    Принципы нормирования производственного освещения. Системы естественного и искусственного освещения, их краткая характеристика. Способы рационализации зрительных условий труда и повышения зрительной работоспособности. Устройство люксметра Ю-116.

    методичка , добавлен 09.10.2012

    Измерение параметров микроклимата на рабочих местах. Приборы для измерения температуры, влажности и скорости движения воздуха. Меры профилактики и нормализации условий микроклимата. Санитарно-гигиенические мероприятия. Средства индивидуальной защиты.

    реферат , добавлен 17.03.2009

    Исследование температуры, влажности и скорости движения воздуха в производственных помещениях ООО Абакан-КАМИ. Сопоставление фактических значений параметров микроклимата на предприятии с нормативными. Анализ их влияния на работоспособность персонала.

    курсовая работа , добавлен 13.07.2011

    Описание оптимальных и допустимых микроклиматических условий, в которых может работать человек. Изучение расчетных параметров внутреннего воздуха. Назначение систем вентиляции, кондиционирования воздуха и отопления. Допустимые параметры влажности воздуха.

    контрольная работа , добавлен 03.12.2010

    Допустимые нормы температуры, относительной влажности и скорости воздуха в рабочих зонах. Классификация условий труда согласно метрологическим требованиям. Анализ санитарно-гигиенических условий и техники безопасности в помещении маркетингового отдела.

Воздушная среда в помещениях

Среда защиты от опасных и вредных факторов

Если невозможно обеспечить безопасность человека при возникновении опасных и вредных факторов за счет мероприятий, заложенных в оборудование, технологию и т.п., то применяются средства защиты человека.

Средства защиты ─ это средства, используемые для предотвращения или уменьшения воздействия на человека опасных или вредных факторов.

По характеру применения средства защиты подразделяют на средства коллективной защиты и средства индивидуальной защиты.

К средствам коллективной защиты относят средства, применяемые для защиты двух и более человек, включая

сигнализацию, средства нормализации воздушной среды, освещения, защиты от поражения электрическим током и др.

К средствам индивидуальной защиты относятся средства, применяемые индивидуально, включая костюмы, средства защиты органов дыхания, слуха и т.д.

При всем многообразии средства защиты можно рассматривать как субъективные и объективные.

Применение субъективных вызывает защитные действия человека за счет его сознательных действий. Основными видами субъективных средств коллективной защиты являются устройства автоматического контроля, сигнализации, плакаты, знаки безопасности и др.

Объективные средства защиты работают независимо от человека ─ звукоизоляция, зануление, предохранительные устройства и др.

Состояние воздушной среды в помещениях определяется метеорологическими условиями (микроклимат) и составом воздуха, который может быть загрязнен газами, парами, пылью.

Характеризуются температурой, влажностью и скоростью движения воздуха в помещениях. Эти параметры воздушной среды оказывают влияние на теплообменные процессы между организмом и воздушной средой и жизнедеятельность человека.

В организме человека в состоянии покоя или работы происходит образование тепла. Причем, чем больше физических (мышечных) усилий совершает человек, тем больше образуется тепла. Образующееся тепло человек отдает в окружающее пространство конвекцией, теплоизлучением, с испарением пота, дыханием. Количество отдаваемого тепла и способов теплоотдачи зависят от метеорологических условий, т.е. температуры, влажности и скорости движения воздуха. В комфортных условиях примерно 30 % тепла человек отдает конвекцией, 45% - теплоизлучением, 25% - испарение пота и дыханием. При температуре воздуха более 37°С практически 100% образующегося тепла отдается с испарением пота, а при низкой температуре тепло отдается в основном конвекцией и теплоизлучением.

Температура тела человека не будет изменяться в том случае, если теплообразование организма равно теплоотдаче. Это состояние поддерживается за счет терморегуляции организма.



Терморегуляция организма ─ это совокупность теплообменных процессов между организмом и окружающей средой, в результате которых температура тела поддерживается на одинаковом уровне. Терморегуляция в основном осуществляется за счет изменения

интенсивностей потовыделения и кровообращения. Их увеличение способствует увеличению теплоотдачи и поддержанию нормальной температуре тела.

При благоприятных метеорологических условий за счет терморегуляции температура тела человека практически не меняется. Но возможности механизма терморегуляции ограничены. При неблагоприятных метеорологических условиях может происходить перегрев или переохлаждение организма, ведущее к заболеваниям.

Для обеспечения благоприятных метеорологических условий установлены нормы метеорологических условий в рабочих помещениях (они применимы и для бытовых помещений).

Оптимальные и допустимые температура, относительная влажность и скорость движения воздуха нормированы в зависимости от времени года, характеристики производственных помещений и категории выполняемой работы. В нормах приняты два времени года ─ теплый, со среднесуточной температурой наружного воздуха +10°С и выше, и холодной ─ ниже +10°С; три категории работ (легкие, средней тяжести, тяжелые соответственно с энергозатратами 172, 172-293 и более 293 Дж/с); и две характеристики помещений ─ с незначительными избытками явной теплоты (23,2 Дж/(м³с) и менее) и со значительными избытками ─ больше приведенных значений.

При контроле метеорологических условий в помещениях температуру воздуха замеряют термометрами, относительную влажность воздуха ─ психрометрами, скорость движения воздуха ─ анемометрами.

Поддержание требуемых метеорологических условий в помещениях обеспечивается за счет вентиляции, отопления, кондиционирования воздуха и поддержания помещений в исправном состоянии.

Некоммерческое акционерное общество

«АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ»

Кафедра Охраны труда

Дисциплина: Основы безопасности жизнедеятельности

ОТЧЁТ

по лабораторной работе №1

на тему: «Исследование метеорологических условий производственных помещений»

Специальность: 050702 – Автоматизация и Управление

Выполнили: студенты Аджи-Ходжаев М.А., Ерешкина К.А., Зарубин В.Р Группа: АИСУ-07-2

Руководитель: ст.преподаватель Приходько Н.Г.

_____________________ «____» ___________________________2010 г.

Алматы 2010

Лабораторная работа №1. Исследование метеорологических условий производственных помещений.

Цель работы: Определение параметров микроклимата в рабочей зоне и сравнение полученных данных с оптимальными нормами по ГОСТу 12.1.005-88.

Теоретические сведения

Контроль состояния микроклимата в производственных помещениях производится путем замеров параметров микроклимата в рабочей зоне с использованием следующих приборов.

Для определения температуры воздуха используется термометры 9ртутные и спиртовые), термографы, термоанемометры. При наличии тепловых излучений используются парные термометры, состоящие из 2-х термометров. У одного термометра поверхность резервуара для ртути зачернена, у другого посеребрена;

Для определения влажности используются психрометры либо без вентилятора или с вентилятором. В обоих случаях психрометр состоят из 2-х термометров – сухого и увлажненного. Увлажнение термометра осуществляется путем смачивания водой ткани, покрывающей шарик одного из термометров. В аспирационном психрометре Ассмана термометры заключены в металлическую оправу, шарики термометров находятся в двойных металлических гильзах, что позволяет использовать прибор в условиях теплового излучения, а применения вентилятора исключается влияние других потоков воздуха. На основании показаний двух термометров по эмпирической формуле вычисляют сначала абсолютную, а затем относительную влажность воздуха. Зная показания сухого и влажного термометров, можно определить относительную влажность и по номограммам.

Для определения скорости движения воздуха используются анемометры, принцип действия которых основан на определении числа оборотов вертушки, вращающейся за счет энергии воздушного потока. Крыльчатый анемометр применяется при скорости движения воздуха от 1 до 10 м/с, чашечный до 30 м/с. Скорость движения воздуха менее 1 м/с измеряется кататермометром (или термоанемометром), так как обычный анемометр в этом диапазоне дает большие отклонения от действительных значений за счет инертности механизма прибора.

Атмосферное давление не является нормируемым параметром микроклимата, однако, для расчета величин абсолютной, а затем и относительной влажности необходимо знать его значение. Для измерения атмосферного давления служат барометры-анероиды разных моделей.

Определение атмосферного давления

Определить атмосферное давление по барометру – анероиду ВАМИ, на циферблате которого вмонтирован дугообразный ртутный термометр, по показанию которого вводится поправка на температуру окружающей среды. Перед снятием показаний прибора для устранения влияния в механизме необходимо слегка постучать по корпусу прибора. Во избежание искажений при отсчете, глаз наблюдателя должен быть расположен перпендикулярно плоскости прибора. После снятия показаний необходимо учесть 3 поправки: шкаловую, температурную и добавочную, т.е.

Поправка на шкалу прибора приведена в таблице 1

Таблица 1 – Поправка на шкалу прибора

Температурная поправка определяется по формуле

Где ∆Р - температурная поправка на 1ºС (∆Р=0,06 мм. рт.ст.); t – температура по термометру барометра, снимается с точностью до десятых долей градуса.

Добавочная поправка (Рдоб) по поверочному свидетельству прибора принимается равным 13 мм.рт.ст.

Пример: По барометру-анероиду сняты показания Рпр=694 мм.рт.ст. и температура 23 ºС. Шкаловая поправка(Ршк) в соответствии с табл.1 составит (-1,15) мм.рт.ст., температурная поправка Ртемп=∆Р*t=0,06*23=1,38 мм.рт.ст., добавочная поправка Рдоб=13 мм.рт.ст. Тогда Р=694-1,15+1,38+13=707,23 мм.рт.ст. Возникает необходимость перевода мм.рт.ст. в Па, надо учитывать, что 1 мм.рт.ст.=133,322 Па. Вычисленное значение атмосферного давления заносится в табл. 2 протокола исследований.

Определение температуры воздуха

Определить температуру воздуха в лаборатории, пользуясь сухим термометром психрометра Ассмана. Показания записать в табл. 2, 4 протокола исследований.

Определение относительной влажности воздуха

Рассчитать значение относительной влажности воздуха в лаборатории, используя аспирационный психрометр Ассмана. Для этого за 3-4 мин до снятия показаний сухого и влажного термометров смачивают вату на резервуаре влажного термометра, вводя воду снизу, пользуясь пипеткой, находящейся на стенде. Включают вентилятор и через 3 мин работы выключают. Одновременно снимают показания сухого и влажного термометров, которые записывают в табл.2 протокола.

Определение скорости движения воздуха

Определение скорости движения воздуха под воздушном душировании. Это производится путем сопоставления двух отчетов по циферблату анемометру – до начала опыта и после опыта. Разность между этими отсчетами делят на время проведения опыта и затем графику определяют фактическую скорость движения воздуха. Анемометр расположен на стенде в аэродинамической трубе, где поток воздуха создается вентилятором. Для включения необходимо переключатель на стенде повернуть в положение 1. Заметно в отчет, включают стрелки прибора и секундомер, фиксируют второй отсчет. Для получения более точных результатов обычно делают 3 замера (по 100 с), вычисляют разницу в показаниях счетчика, результаты складывают и делят на сумму времени проведения всех трех замеров. Затем по тарировочную графику среднее число делений в секунду переводят в скорость, измеряемую в м/с. Полученные данные заносят в табл. 3,4 протокола.

Определение санитарно-гигиенической оценки микроклимата

Дать санитарно-гигиеническую оценку микроклимата в лаборатории. Для этого из действующего ГОСТ-12.1.005-88 в табл 4 протокола внести значения оптимальных параметров микроклимата для данной категории работ и периода года и те фактические параметры, которые определены в процессе работы. На основании сопоставления делают выводы и предложения о мерах создания благоприятного микроклимата.

Таблица 3 – Определение скорости движения воздуха

Таблица 4 – Сравнение полученных данных с ГОСТ-12.1.005-88

Затем вычисляют абсолютную владность (А), т.е. количество водяных паров, которое содержится в воздухе в момент исследования, выраженное в весовых единицах (г/м) или как давление водяных паров в мм.рт.ст.

Где Fвл – давление насыщенных водяных паров при температуре влажного термометра, мм.рт.ст.

0,5 – постоянных психрометрический коэффициент;

tc-tвл – разница показаний сухого и влажного термометров, ºС;

Р – атмосферное давление, мм.рт.ст., рассчитанное в задании по формуле.

А=11,96-(0,5*(8,8)*707,23)/755=7,84 мм.рт.ст.

С:22,8-20,822 мм.рт.ст. - Fc

Затем рассчитывается относительная влажность воздуха (В) как отношение абсолютной влажности к максимальной (М) (наибольшее возможное количество водяных паров в воздухе при данной температуре), выраженное в процентах

Где Fс – давление насыщенных водяных паров при температуре сухого термометра.

В=А/Fc*100%=7,84/20,822=37,7%

Затем определяют относительную влажность по психометрическому графику номограмме, приведенному на столе. Вертикальные линии на графике соответствуют показаниям сухого термометра, а наклонные – влажного. Искомая относительная влажность определяется как точка пересечения вертикальной и наклонной линий, соответствующих замерам сухого и влажного термометров. Полученное значение заносят в табл.2, сравнивают с вычисленным значением В и определяют расхождение в процентах. Расхождение не должно превышать 5%.

Таблица 2 – Протокол исследование параметров микроклимата

Наименование

Значение

1.Место замера

2.Показания сухого термометра, ºС

3.Показания влажного термометра, ºС

4.Атмосферное давление Р, мм.рт.ст.

5.Давление насыщенных водяных паров при температуре сухого термометра Fc, мм.рт.ст.

6.Давление насыщенных водяных паров при температуре сухого термометра Fc, мм.рт.ст.

7.Значение абсолютной влажности А, мм.рт.ст.

8.Значение относительной влажности, В,%

9.Значение относительной влажности по номограмме,%

10.Расхождения в полученных значениях, %

Вывод

  1. Исследование и обоснование направлений увеличения прибыли "УП Витебсклифт"

    Дипломная работа >> Экономика

    Данные периодической печати. В процессе исследований , анализа и систематизации полученной информации применены... труда. Для создания оптимальных метеорологических условий труда в производственных помещениях завода осуществляются следующие мероприятия: ...

  2. Условия труда исследователей и разработчиков их совершенствование в инновационном процессе

    Курсовая работа >> Менеджмент

    ... исследования , прикладные исследования , разработки. Фундаментальные исследования – экспериментальные или теоретические исследования ... Для обеспечения нормальных метеорологических условий в производственных помещениях проводится большая исследовательская...

  3. Условие и охрана труда на предприятии

    Реферат >> Экономика

    Температура в помещениях является одним из ведущих факторов, определяющих метеорологические условия производственной среды. Высокие... должен обеспечить: 1.проведение расчетов; 2.лабораторных исследований ; 3.экспертизы с привлечением специальных экспертов; ...

Поделиться: