Скорость. ускорение


По принципу суперпозиции:

Þ

внутри объёма , вне объёма . (16)

Разность потенциалов

Þ Þ

. (15)

Таким образом, поле заряженных плоскостей однородно и сосредоточено в объёме между плоскостями.

32. Укажите, что мы называем массой (m) тела.

г) Меру инертности тел и их гравитационных свойств.

33. Что называется силой?

б) Причина ускорения тела.

34. Что называется импульсом тела?

а) Произведение массы тела на его скорость ().

35. Укажите единицу измерения импульса тела в системе СИ.

д) кг×м/с.

36. В чем состоит основная прямая задача динамики.

а) По заданной массе тела и зависимости результирующей силы , найти радиус-вектор тела в любой момент времени и определить траекторию движения тела.

37. В чем состоит обратная задача динамики?

б) По заданной массе тела и известной зависимости , определить силы, обеспечившие данное движение.

38. Что мы называем импульсом силы?

в) Величину равную

39. Найдите продолжение фразы «Момент силы это вектор направленный …»

а) параллельно силе.

40. Укажите выражение реактивной силы по отношению к системе координат, связанной с движущимся телом.

41. Какое из представленных ниже соотношений отображает универсальную форму записи основного уравнения динамики поступательного движения?

42. Какое из представленных ниже соотношений отображает универсальную форму записи второго закона Ньютона?

43. От чего зависит изменение импульса тела?

в) От массы тела и скорости его движения.

44. В каких случаях можно воспользоваться следующей формой записи второго закона Ньютона
F = ma?

г) При рассмотрении прямолинейных движений тел постоянной массы.

45. В каких случаях следует пользоваться только следующей формой записи второго закона
Ньютона ?

г) При рассмотрении движения тел неизменной массы.

46. В каких случаях нужно воспользоваться следующей формой записи второго закона Ньютона ?

в) При рассмотрении движения тел переменной массы.

47. Что мы называем центром масс?

а) Это точка, определяемая соотношением

48. На каких рисунках правильно изображены силы реакции опоры?

Б, В

48-а. На каком из рисунков изображено тело,

находящееся в состоянии безразличного равновесия?


?50. Какой из рисунков правильно отражает связь между линейной и угловой скоростями точки?

51. Какие соотношения соответствуют связям между линейными и угловыми кинематическими характеристиками движения?

52. Как связаны между собой элементарные линейное и угловое перемещения точки, движущейся по окружности?

53. Как направлен вектор угловой скорости секундной стрелки часов, когда Вы смотрите на них?

д) Вдоль оси вращения от нас, если мы смотрим на циферблат.

54. Как направлен вектор углового ускорения, если ось вращения неподвижна?

а) По касательной к траектории движения в сторону вращения, если e > < 0. б) Перпендикулярно к траектории движения к центру кривизны, если e > 0, или в противоположную сторону, если e < 0. в) Вдоль направления движения, если e > 0, или в противоположную сторону, если e < 0. г) Вдоль оси вращения сонаправлено с угловой скоростью, если e > 0, или в противоположную сторону, если e < 0. д) Правильного ответа нет. (Свой вариант ответа)

55. Как направлен вектор угловой скорости?

а) По касательной к траектории движения в сторону вращения, если e > 0, или в противоположную сторону, если e < 0. б) Перпендикулярно к траектории движения к центру кривизны, если e > 0, или в противоположную сторону, если e < 0. в) Вдоль направления движения, если e > 0, или в противоположную сторону, если e < 0. г) Вдоль оси вращения так, чтобы из его конца движение точек тела наблюдалось происходящим против часовой стрелки. д) Правильного ответа нет. (Свой вариант ответа)

56. Что называется вектором углового ускорения?

а) Вектор, характеризующий поворот тела на некоторый угол j, заданный в виде отрезка, длина которого равна j, а направление совпадает с осью вращения. б) Аксиальный вектор, направленный по оси вращения так, что с конца этого вектора видно вращение тела против часовой стрелки. в) Вектор, направленный вдоль оси, вокруг которой вращается тело. г) Физическая величина , характеризующая быстроту изменения вектора угловой скорости тела. д) Вектор, характеризующий неравномерное вращения тела, направленный в ту же сторону, что в , если >0 и в противоположную сторону в противном случае.

57. Что называется вектором угловой скорости (w )?

а) Вектор характеризующий поворот тела на некоторый угол j заданный в виде отрезка, длина которого равна j, а направление совпадаете осью вращения. б) Аксиальный вектор, направленный по оси вращения так, что с конца этого вектора вращение тела видно происходящим против часовой стрелки. в) Вектор , направленный вдоль оси, вокруг которой вращается тело, в сторону, определяемую правилом правого винта. г) Физическая величина, характеризующая быстроту изменения угла поворота тела в единицу времени. д) Правильного ответа здесь нет. (Свой вариант)

58. Момент импульса точки

в) Моментом импульса материальной точки называется векторное произведение .

59. В каких единицах измеряется момент силы?

г) кг×м 2 /с 2

60. В каких единицах измеряется момент импульса?

б) кг×м 2 /с

61. В каких единицах измеряется момент инерции?

г) кг×м 2

62. Какое соотношение является универсальной формой записи основного уравнения динамики вращательного движения точки?

63. Какое из уравнений является основным уравнением динамики вращательного движения абсолютно твердого тела?

а) б) в) г) д)

64. Какая из приведенных формул является наиболее общей записью основного закона динамики вращательного движения атт?

а) б) в) г) д)

65. Найдите продолжение фразы «Момент инерции – это …»

а) … инерция в данный момент времени. б) … мера взаимодействия между телами, участвующими во вращательном движении. в) … мера инертности тела в данный момент времени. г) … мера инертности тела при его вращательном движении. д) Правильного продолжения нет. (Свой вариант)

66. Найдите продолжение фразы «Момент силы – это …»


Оглавление

1.Основные понятия механики (перемещение, скорость, ускорение, сила).

Перемещением называется вектор, соединяющий начальную и конечную точки траектории.
Перемеще?ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка - это модуль перемещения, измеряется в метрах (СИ).
Можно определить перемещение, как изменение радиус-вектора точки:
Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.
Мгновенная скорость точки определяется как предел отношения перемещения к малому промежутку времени, за которое оно совершено. Более строго:

Ско?рость (от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстроту перемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.
В науке используется также скорость в широком смысле, как быстрота изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще изменения во времени, но также в пространстве или любой другой). Так, например, говорят о скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения, угловой скорости и т. д. Математически характеризуется производной функции.

Скорость тела в механике
Вектор скорости материальной точки в каждый момент времени определяется производной по времени радиус-вектора этой точки:
Здесь - модуль скорости, - направленный вдоль скорости единичный вектор касательной к траектории в точке.
Скорость направлена вдоль касательной к траектории и равна по модулю производной дуговой координаты по времени.
Говорят, что тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).
В общем случае, скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса величина скорости точек на ободе относительно дороги принимает значения от нуля (в точке касания с дорогой) до удвоенного значения скорости автомобиля (в точке, диаметрально противоположной точке касания). Распределение скоростей в твёрдом теле определяется с помощью кинематической формулы Эйлера.
Если скорость тела (как векторная величина) не меняется во времени, то движение тела - равномерное (ускорение равно нулю) и тогда:
Скорость - характеристика движения точки, при равномерном движении численно равная отношению пройденного пути s к промежутку времени t, за который этот путь пройден.
Следует различать координатную и физическую скорости. При введении криволинейных или обобщённых координат положение тел описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями.

Мгновенная и средняя скорость

Следует отличать понятие средней скорости перемещения от понятия средней скорости пути, равной отношению пройденного точкой пути ко времени, за которое этот путь был пройден. В отличие от скорости перемещения, средняя скорость пути - скаляр.
Когда говорят о средней скорости, для различения, скорость согласно выше приведённому определению называют мгновенной скоростью.
Так, хотя мгновенная скорость бегуна, кружащего по стадиону, в каждый момент времени отлична от нуля, его средняя скорость (перемещения) от старта до финиша оказывается равной нулю, если точки старта и финиша совпадают. Заметим, что при этом, средняя путевая скорость остаётся отличной от нуля.

Ускоре?ние- производная скорости по времени, векторная величина, показывающая, на сколько изменяется вектор скорости точки (тела) при её (его) движении за единицу времени (то есть ускорение учитывает не только изменение величины скорости, но и её направления).
Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с?.
Единицей ускорения в Международной системе единиц (СИ) служит метр в секунду за секунду (m/s2, м/с2), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с2.
Производная ускорения по времени, то есть величина, характеризующая скорость изменения ускорения, называется рывок.
Вектор ускорения материальной точки в любой момент времени находится путём дифференцирования вектора скорости материальной точки по времени:

Сила.
Си?ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.
Сила как векторная величина характеризуется модулем, направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором. В физике эти векторы называются свободными векторами. В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы).
Законы Ньютона

Основным разделом механики является динамика, в её основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исключительную роль в механике и являются обобщением результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом.

Первый закон Ньютона: всякая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Первый закон Ньютона утверждает существование инерциальных систем отсчёта – систем, относительно которых материальная точка либо покоится, либо движется равномерно и прямолинейно.
Второй закон Ньютона: ускорение, приобретаемое материальной точкой, пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорци онально массе материальной точки тел. Это основной закон динамики поступательного движения. Отвечает на вопрос, как изменяется механическое движение материальной точки тела под действием приложенных к ней сил. Справедлив только в инерциальных системах отсчёта.

Учитывая, что масса материальной точки в классической механике ест величина постоянная, в выражении её можно внести под знак производной:

Таким образом, можем получить более общую формулировку второго закона Ньютона:

Третий закон Ньютона: всякое действие материальных точек друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

Где F12 – сила, действующая на первую материальную точку со стороны второй; F21 – сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам, всегда действуют парами и являются силами одной природы.
Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

2. Квантово-механическая модель атома.

Введение.
Понятие «атом» возникло и оформилось как система представлений об устройстве окружающего мира в воззрениях древнегреческих философов в 500- 200 гг. до н. э. Левкипп утверждал, что мир состоит из мельчайших частиц и пу­стоты. Демокрит назвал эти частицы атомами (неделимыми) и считал, что они вечно существуют и способны двигаться. Размеры атомов полагались настолько малыми, что не могли быть измерены. Форма, внешнее различие атомов, как считалось, придают определенные свойства телам. Например, атомы воды - гладкие, они способны перекатываться, и поэтому жидкости свойственна текучесть; атомы железа имеют зубчики, которыми они зацепляются друг за друга, что придает железу свойства твердого тела. Способность атомов самостоятельно взаимодействовать друг с другом была предположена Эпикуром.

Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).
Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице.
Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).
Массу атома принято измерять в атомных единицах массы, равных 1?12 от массы атома стабильного изотопа углерода 12C.
Представления о стационарных состояниях атома и двойственной природе электрона, а также требования принципа неопределенности были использованы австрийским физиком Эрвином Шредингером, который в 1926 г. предложил модель, описывающую электрон в атоме как своего рода стоячую волну, причем вместо точного положения электрона в пространстве рассматривалась вероятность его пребывания в определенном месте.
Для того чтобы представить себе электрон в виде трехмерной стоячей волны, остановимся сначала на более простой одномерной модели стоячей волны, в качестве которой можно взять струну, закрепленную на концах. Струна способна издавать звуки только определенных частот, так как на ее длине может уложиться лишь целое число полуволн - это и есть квантование энергии колебаний струны. Для описания характера стоячих волн одномерной системы достаточно одного числа п, которое однозначно определяет длину волны и число узловых точек, в которых струна неподвижна, как и на закрепленных концах.
Моделью двумерной системы, испытывающей стационарные колебания, может служить круглая мембрана, закрепленная по периметру, например, в телефонной трубке. Здесь также возможны лишь определенные, квантованные колебания, для описания которых необходимы уже два числа.
Теперь очевидно, что для описания пространственного движения электрона в атоме как трехмерной стоячей волны необходимы и достаточны три числа, получившие название квантовых чисел. Квантово-механическое описание атома не требует никаких дополнительных постулатов, квантование энергии электрона естественным образом возникает из природы самого атома или так называемых граничных условий, которые сводятся к тому, что электрон не покидает атом и способен двигаться с конечной скоростью.

В волновой механике электрон, как и любая микрочастица, описывается с помощью волновой функции. Его движение определяется уравнением, предложенным Шредингером, - знаменитым уравнением Шредингера. Решением этого уравнения является волновая функция |/, которая соответствует разрешенной энергии электрона и описывает зависимость амплитуды стационарной волны, соответствующей электрону, от трех его пространственных координат. Квадрат волновой функции определяет вероятность пребывания электрона в некоторой пространственной области. Здесь мы как раз встречаемся со случаем точного знания энергии электрона и вероятностного описания его положения в пространстве. Во многих случаях удобно рассматривать электрон как размытое в пространстве облако отрицательного заряда. Плотность такого электронного облака в любой точке пропорциональна V) /2. Модель электронного облака наглядно описывает распределения электронной плотности в пространстве, хотя она физически несовершенна, так как одноименно заряженные части облака должны отталкиваться друг от друга, вызывая его рассеивание. На самом же деле электрон не отталкивается "сам от себя". Это обстоятельство несколько ограничивает аналогию между электроном и облаком, но не мешает нам говорить об электронных облаках во всех случаях, когда мы не интересуемся деталями, связанными с их потенциальной энергией.

Заключение.
В процессе написания вопроса были сделаны следующие выводы:

    Атом представляет собой сложную микросистему находящихся в движении элементарных частиц. Он состоит из положительного заряженного ядра и отрицательно заряженных электронов.
    Современная теория строения атома основана на законах, описывающих движение микрочастиц (микрообъектов).
    Квантование энергии, волновой характер движения микрочастиц, принцип неопределенности? все это показывает, что классическая механика совершенно непригодна для описания поведения микрочастиц.
    В создании современной теории строения атома особую роль сы грали Эрнест Резерфорд, постро ивший планетарную модель атома (1911), и Нильс Бор, выдвинувший первую квантовую теорию атома (1913).
5. Волновое уравнение Шредингера, в квантовой механике играет такую же роль, какую законы Ньютона играют в классической механике

3. Современная синтетическая теория эволюции.

Введение.
Синтетическая теория эволюции (также современный эволюционный синтез) - современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

Рассматривая основные факторы эволюции, мы могли убедиться, что первоначальная теория эволюции Дарвина в дальнейшем подверглась значительным уточнениям, дополнениям и исправлениям. Генетика привела к новым представлениям об эволюции, получившим название неодарвинизма, который можно определить как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически. Другое общепринятое название неодарвинизма - синтетическая, или общая, теория эволюции. В ней элементарной единицей эволюции служит популяция, поскольку именно в ее рамках происходят наследственные изменения генофонда. Кроме того, механизм эволюции стал рассматриваться как состоящий из двух частей: случайные мутации на генетическом уровне и наследование наиболее удачных с точки зрения приспособления к окружающей среде мутаций, так как их носители выживают и оставляют потомство.
Становление теории началось с созданной в 1926 году С.С. Четвериковым популяционной генетики. Из его работ стало ясно, что отбору подвергаются не отдельные признаки и отдельные особи, а генотип всей популяции. Через фенотипические признаки отдельных особей осуществляется отбор генотипов популяции, ведущий к распространению полезных изменений. Затем в создание новой теории включились около 50 ученых из восьми стран, их коллективными трудами и была создана СТЭ.
Структурно СТЭ состоит из теорий микро- и макроэволюции. Теория микроэволюции изучает необратимые преобразования генетико-экологической структуры популяции, которые могут привести к формированию нового вида. Реально вид существует в виде популяций. Именно популяция является элементарной единицей эволюции.
Теория макроэволюции изучает происхождение надвидовых таксонов (семейств, отрядов, классов и т.д.), основные направления и закономерности развития жизни на Земле в целом, включая возникновение жизни и происхождение человека как биологического вида.
Изменения, которые изучаются в рамках микроэволюции, доступны непосредственному наблюдению, тогда как макроэволюция происходит на протяжении длительного исторического периода времени и поэтому ее процесс может быть только реконструирован задним числом. Но макро- и микроэволюция происходят в конечном итоге под воздействием изменений в окружающей среде.
Сегодня биологами, изучающими микро- и макроэволюцию, накоплено достаточно материалов, которые можно систематизировать в виде основных положений СТЭ:

1. Главный движущий фактор эволюции - естественный отбор как следствие конкурентных отношений борьбы за существование, особенно острой внутри вида или популяции. Факторами видообразования являются также мутационный процесс (мутации разных типов), дрейф генов (генетико-автоматические процессы) и различные формы изоляции.

2. Эволюция протекает дивергентно, постепенно, через отбор мелких случайных мутаций. Новые формы могут образовываться через крупные наследственные изменения (сальтации). Их жизненность также определяется отбором.

3. Эволюционные изменения случайны и ненаправленны. Исходным материалом для эволюции являются мутации разного типа. Сложившаяся исходная организация популяции и последовательные изменения условий среды ограничивают и канализируют наследственные изменения в направлении неограниченного прогресса.

4. Макроэволюция, ведущая к образованию надвидовых групп, осуществляется через процессы микроэволюции и каких-либо особых механизмов возникновения новых форм жизни не имеет.

Н.В. Тимофеев-Ресовский сформулировал положение об элементарных явлениях и факторах эволюции: 1) популяция -элементарная эволюционная структура; 2) изменение генотипического состава популяции - элементарное эволюционное явление; 3) генофонд популяции - элементарный эволюционный материал; 4) элементарные эволюционные факторы - мутационный процесс, «волны жизни», изоляция, естественный отбор.
Оказалось, что популяция в качестве элементарной структуры должна быть способной изменяться с течением времени и должна реально существовать в природных условиях. Тогда ее определение таково: популяция - это совокупность особей данного вида, занимающих территорию внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций.
В свою очередь элементарным эволюционным явлением считаются наследственные изменения популяций, в результате спонтанных мутаций, представляющих собой гетерогенную смесь различных генотипов. Изменения эти тем отчетливее, чем более интенсивно и длительно воздействие факторов, их вызывающих. В результате происходит изменение генофонда, или генотипического состава популяции.
Еще одно требование к популяциям, выступающим в качестве единиц эволюции, - способность трансформироваться в элементарный эволюционный материал. А это осуществимо при следующих условиях: 1) у всех особей, составляющих популяцию, должны происходить наследственные изменения материальных единиц; 2) эти изменения должны затрагивать все свойства особей, вызывая их отклонения от исходных; 3) они должны затрагивать биологически важные свойства особей; 4) изменения эти должны быть четко выражены у популяций, обитающих в природных условиях; 5) часть таких изменений должна «выходить» на историческую арену эволюции, участвуя в образовании таксонов низшего ранга; 6) скрещивающиеся таксоны должны различаться наборами и комбинациями элементарных единиц наследственной изменчивости.
Согласно постулатам СТЭ, требованиям элементарного эволюционного материала удовлетворяют различного рода мутации. К их числу относят генные, хромосомные, геномные мутации. Чтобы мутации служили материалом эволюции, необходимы: достаточная частота возникновения мутаций, четкость в проявлении мутантных признаков и четко выраженная биологическая значимость этих признаков, генетические различия между природными таксонами.
Не менее важны и так называемые элементарные эволюционные факторы, воздействующие на количественные соотношения генов конкретной популяции. Такого рода факторы должны удовлетворять следующим требованиям: 1) быть поставщиком элементарного эволюционного материала, необходимого для проявления элементарного эволюционного явления - изменения генотипического состава популяции; 2) расчленять исходную популяцию на две или несколько, разделенные различными изоляционными барьерами; 3) создавать внутрипопуляционные барьеры; 4) вызывать адаптивные изменения.
Первый фактор, удовлетворяющий вышеназванным требованиям, это мутационный процесс, одновременно являющийся и поставщиком элементарного эволюционного материала. Но сам по себе этот фактор не способен оказывать направляющее воздействие на эволюционный процесс. Для этого нужен второй фактор - популяционные волны, или «волны жизни», - количественные колебания в численности популяций под воздействием различных причин - сезонной периодики, климатических, природно-катастрофических и пр.
Эволюционная роль «волн жизни» проявляется в двух планах. Во-первых, в изменении частот генов в популяциях, приводящем к снижению наследственной изменчивости. Процесс этот, названный американским генетиком С. Райтом «дрейфом генов», а Н.П. Дубининым - «генетико-автоматическим процессом», всегда имеет место при резком снижении численности популяции. Генотипически это сопровождается увеличением гомозиготности, что связано с увеличением числа близкородственных скрещиваний. Другое проявление «волн жизни» сводится к изменениям в концентрации различных мутаций, а также к уменьшению разнообразия генотипов, содержащихся в популяции. А это в свою очередь может привести к изменениям направленности и интенсивности действия отбора.
Третий элементарный эволюционный фактор - это изоляция. Нарушая свободное скрещивание, изоляция закрепляет возникшие как случайно, так и под действием отбора различия в наборах и численности генотипов в изолированных частях популяции. Различают два типа изоляции: территориально-механическую, или пространственно- географическую, и биологическую, или репродуктивную. Смысл первой ясен из названия. Биологическая же изоляция имеет пять форм: этологическую (различия в поведении особей), экологическую (различия в предпочтении разных мест обитания), сезонную (различия в сроках размножения), морфологическую (различия в размерах, структуре как всего тела организма, так и отдельных его органов), генетическую (различия наследственного аппарата, приводящие к несовместимости половых клеток). Общим итогом изоляции является возникновение независимых генофондов двух популяций, которые в итоге могут трансформироваться в самостоятельные виды.
Четвертый элементарный эволюционный фактор - естественный отбор. Его генетическая сущность - дифференцированное (неслучайное) сохранение в популяции определенных генотипов и избирательное их участие в передаче генов следующему поколению. Здесь важно подчеркнуть, что естественный отбор воздействует не на отдельный фенотипический признак, не на отдельный ген, то есть молекулярно-генетическую систему. Его роль разыгрывается на уровне фенотипа, то есть целостной живой системы - организма, сформированного в результате взаимодействия с генотипом, имеющим определенную норму реакции.
В настоящее время известны три формы отбора. Это движущий отбор, при котором в результате новых мутаций или перекомбинаций уже имеющихся генотипов или при изменении условий среды в популяции возникают новые генотипы с селективными свойствами. Тогда может возникнуть новый вектор, или направленность, отбора. Под контролем такого отбора генофонд популяции изменяется как единое целое, то есть отсутствует дивергенция дочерних форм.
Второй вид отбора получил название стабилизирующего. Его роль сводится к тому, что в конкретных условиях на основе

Разных генотипов в популяции становится преобладающим оптимальный для этих условий фенотип. При длительной неизменности таких условий стабилизирующий отбор как бы охраняет ставший устойчивым фенотип от давления любой фенотипической изменчивости.
Третья форма отбора называется дизруптивной. Ее роль в том, чтобы внутри популяции могли возникнуть отчетливо различающиеся формы. При снижении возможности скрещивания между такими популяциями, например, в условиях изоляции, может происходить их дальнейшее расхождение, вплоть до образования новых видов.
СТЭ не является застывшей концепцией. У нее есть ряд трудностей, на которых основываются недарвиновские концепции эволюции, как уже упоминавшиеся выше, так и недавно возникшие, например, пунктуализм. Сторонники этой концепции считают, что процесс эволюции идет путем редких и быстрых скачков, а в 99 процентах своего времени вид пребывает в стабильном состоянии (стазисе). В предельных случаях скачок к новому виду может совершаться в течение одного или нескольких поколений, и в популяции, состоящей всего из десятка особей.
Эта гипотеза опирается на широкую генетическую базу, заложенную рядом фундаментальных открытий в молекулярной генетике и биохимии.
Пунктуализм отверг генетико-популяционную модель видообразования, идею Дарвина о том, что разновидности и подвиды являются зарождающимися видами, и сфокусировал свое внимание на молекулярной генетике особи как носителе всех свойств вида.
Ценность этой концепции заключается в идее разобщенности микро- и макроэволюции и независимост и управляемых ими факторов.
Тем не менее, возможно, в будущем СТЭ и недарвиновские концепции эволюции, дополняя друг друга, объединятся в новую единую теорию жизни.

4. Луна и ее строение.

Введение
Луна, единственный естественный спутник Земли и ближайшее к нам небесное тело; среднее расстояние до Луны - 384000 километров.
Возраст Луны – 4,65 млрд. лет.

Форма Луны

Форма Луны очень близка к шару с радиусом 1737 км, что равно 0,2724 экваториального радиуса Земли. Площадь поверхности Луны составляет 3,8 * 107 км2, а объем 2,2 * 1025 см3. Более детальное определение фигуры Луны затруднено тем, что на Луне, из за отсутствия океанов, нет явно выраженной уровенной поверхности по отношению к которой можно было бы определить высоты и глубины; кроме того, поскольку Луна повернута к Земле одной стороной, измерять с Земли радиусы точек поверхности видимого полушария Луны (кроме точек на самом краю лунною диска) представляется возможным лишь на основании слабого стереоскопического эффекта, обусловленного либрацией. Полярная ось меньше экваториальной, направленной в сторону Земли, примерно на 700 м и меньше экваториальной оси, перпендикулярной направлению на Землю, на 400 м. Таким образом, Луна под влиянием приливных сил, немного вытянута в сторону Земли. Масса Луны точнее всего определяется из наблюдений её искусственных спутников. Она в 81 раз меньше массы земли, что соответствует 7.35 *1025 г. Средняя плотность Луны равна 3,34 г. см3 (0.61 средней плотности Земли). Ускорение силы тяжести на поверхности Луны в 6 раз больше, чем на Земле, составляет 162.3 см. сек2 и уменьшается на 0.187 см. сек2 при подъеме на 1 километр. Первая космическая скорость 1680 м. сек, вторая 2375 м. сек. Вследствие малого притяжения Луна не смогла удержать вокруг себя газовой оболочки, а также воду в свободном состоянии.

Поверхность Луны

Поверхность Луны довольно темная, ее альбедо равно 0.073, то есть она отражает в среднем лишь 7.3 % световых лучей Солнца. Визуальная звездная величина полной Луны на среднем расстоянии равна - 12.7; она посылает в полнолуние на Землю в 465 000 раз меньше света, чем Солнце. В зависимости от фаз, это количество света уменьшается гораздо быстрее, чем площадь освещенной части Луны, так что когда Луна находится в четверти, и мы видим половину ее диска светлой, она посылает нам не 50 %, а лишь 8 % света от полной Луны Показатель цвета лунного света равен + 1.2, то есть он заметно краснее солнечного. Луна вращается относительно Солнца с периодом, равным синодическому месяцу, поэтому день на Луне длится почти 1.5 сутки и столько же продолжается ночь. Не будучи защищена атмосферой, поверхность Луны нагревается днем до + 110о С, а ночью остывает до -120° С, однако, как показали радионаблюдения, эти огромные колебания температуры проникают вглубь лишь на несколько дециметров вследствие чрезвычайно слабой теплопроводности поверхностных слоев. По той же причине и во время полных лунных затмений нагретая поверхность быстро охлаждается, хотя некоторые места дольше сохраняют тепло, вероятно, вследствие большой теплоемкости (так называемые “горячие пятна”).
Даже невооруженным глазом на Луне видны неправильные темноватые протяжённые пятна, которые были приняты за моря; название сохранилось, хотя и было установлено, что эти образования ничего общего с земными морями не имеют. Телескопические наблюдения, которым положил начало в 1610 Г. Галилей, позволили обнаружить гористое строение поверхности Луны. Выяснилось, что моря - это равнины более темного оттенка, чем другие области, иногда называемые континентальными (или материковыми), изобилующие горами, большинство которых имеет кольцеобразную форму (кратеры).

Рельеф лунной поверхности

Рельеф лунной поверхности был в основном выяснен в результате многолетних телескопических наблюдений. “Лунные моря”, занимающие около 40 % видимой поверхности Луны, представляют собой равнинные низменности, пересеченные трещинами и невысокими извилистыми валами; крупных кратеров на морях сравнительно мало. Многие моря окружены концентрическими кольцевыми хребтами. Остальная, более светлая поверхность покрыта многочисленными кратерами, кольцевидными хребтами, бороздами и так далее. Кратеры менее 15-20 килом
и т.д.................

> Второй закон Ньютона: сила и ускорение

Изучите второй закон Ньютона в физике: формулировка и формула, сила и ускорение Второго закона Ньютона, линейный импульс, скорость и масса в уравнении.

Второй закон Ньютона гласит: чистая сила равна скорости изменения или производной ее линейного импульса.

Задача обучения

  • Разобраться во втором законе Ньютона.

Основные пункты

  • Три закона Ньютона объясняют связь влияющих на тело сил и созданных движением. Выступают основой механики.
  • Второй закон расшифровывает связь силы и движения при помощи линейного импульса.
  • Линейный импульс (р) выходит из массы и скорости: p = mv.
  • Чистая сила равна производной или скорости изменения линейного импульса.

Термины

  • Ускорение – количество, с которым увеличивается скорость.
  • Импульс – продукт массы и скорости тела.
  • Равнодействующая сила ­­­– сумма всех влияющих на объект сил.

Пример

Линейный импульс применяют при упругом столкновении: оба тела движутся навстречу с одинаковой скоростью. При ударе более крупное тело приложит больше силы, и заставит меньший объект отскочить с большей скоростью.

Английский ученый Исаак Ньютон интересовался перемещением объектов в различных условиях. В 1687 году он описал три знаменитых закона движения, применимых для характеристики физических объектов и систем в физике. Они составляют основу механики и описывают связь сил, воздействующих на тело, и вызванные этим движения. Три закона Ньютона гласят:

  • Если объект не испытывает никакого силового влияния, то скорость останется стабильной. Если объект пребывает в покое, то скорость равняется нулю.
  • Ускорение параллельно и прямо пропорционально чистой силе, влияющей на объект, и находится в направлении чистой силы и обратно пропорционально массе.
  • Если первый объект влияет силой на второй, то тот одновременно влияет на первый. То есть их силы равны по величине и противоположны по направлению.

Первый закон Ньютона определяет исключительно естественное состояние движения (чистая сила равна нулю). Из-за этого мы не можем количественно определить силу и ускорение (количество изменения скорости). Чистая сила объекта равна скорости изменения линейного импульса.

Линейный импульс

Это векторное понятие, характеризующееся величиной и направлением. Создается от массы и скорости в данный временной промежуток:

где р – импульс, m – масса и v – скорость. Из этого уравнения видно, что объекты с большей массой обладают большим импульсом.

Второй закон движения

Рассмотрим второй закон Ньютона. Возьмем два шара с разными массами, но перемещающихся в одном направлении. Если они одновременно ударят о стену, то крупный приложит больше силы. Этот пример проиллюстрирован ниже и отображает второй закон Ньютона, где подчеркивается, что чистая сила тела равна скорости изменения линейного импульса. Если получим линейный импульс, то выходит:

где F – сила, а t – время. Отсюда можно упростить:

где а – ускорение.

Ускорение это изменение скорости в единицу времени.
a = V / t
Ускорение в физике это не основная физическая величина, а производная.
Преобразуем: V = S / t тогда: a = S / t 2
именно это дает запись формулы ускорения в основных величинах и единицу измерения ускорения: метры на секунды в квадрате.

Таким образом: ускорение есть там, где есть линейная скорость движения и эта скорость - меняется в числовом значении.
Но у скорости есть еще направление.
И физики не смогли это дело оставить так, чтобы не запутать и сказали: раз скорость векторная величина, пусть будет так, что ускорение возникает и при изменении направления....
Так ускорение появляется при равномерном круговом движении?
Для нас ясность тут очень важна, так как это траектория движения планет.
Как так, спрашиваем мы, скорость движения постоянна, а появилось ускорение?
Это же нонсенс!

Предлагается:1. чтобы исключить двойное толкование, принять ускорение, как только изменение линейной скорости в единицу времени.
Далее"
2.Основным написанием формулы ускорения считать a = S / t 2,
а написание a = V / t - производным.
3. Считать ускорение не физической, а математической величиной, употребимой в узких пределах.
4. Определение "изменение направления" к ускорению не применять. Считать ускорением только изменение величины, а не направления.

Где мы в формулах встречаем ускорение?
Формула силы. По второму закону Ньютона F = m х a означает, что, если к массе m приложить силу F , то тело будет двигаться с скоростью, которая имеет ускорение а. И чтобы вычислить ускорение, нам надо замерить путь и время, так зачем же оно? Только для облегчения записи вычислений.
Ускорение означает только то, что за одну единицу времени тело будет проходить все более меньший путь.
В случае со свободным падением тела используется понятие ускорение свободного падения тела (без учета сопротивления воздуха) g

И формула пишется F = m х g. Но эта формула справедлива только для случая, когда есть состояние свободного падения. Если тело неподвижно относительно центра Земли, то эта формула не используется, так как приводит к ошибке.
Например. Тело массой m (1 кг.) лежит на весах.
Что показывают весы? Они показывают массу в 1 кг.
А не вес, как силу притяжения (m х g).
Тело давит на опору весов, с силой притяжения, а по Закону Всемирного тяготения
сила тяжести m х M / R2 ускорения свободного падения не содержит и вес показывают только массу. Таким образом, если задать задачу: арбуз массой m положили на весы и спросили какой вес? А потом перемножить m х g получим неверный результат, потому что весы показывают значение массы, а ускорения g
здесь вообще нет.

Напишите такое уравнение:

M х g = m х M / R2 и получите, после сокращения массы g = M / R2
и эта формула хороша только тем, что объясняет почему ускорение свободного падения не зависит от массы тела, а зависит только от массы Земли и радиуса в квадрате.

Но математически эта формула выглядит как неверная, так как не совпадают единицы измерения.
Наши ученые тут опять отличились. Они ввели гравитационную постоянную и G дали ей единицу измерения м3·с;2·кг;1 (ответ сошелся) а вопрос остался:
Есть от чего сойти с ума: во втором законе ускорение от массы зависит, а при свободном падении - нет!
А происходит это от того, что при увеличении массы силя притяжения растет, а ускорение по второму закону уменьшается и результирующая остается неизменной от массы.

Вообще, вес это еще одна производная от действия гравитации величина, которая в уважающих себя учебниках физики не рассматривается, но очень важна на базаре.

Рассмотрим случай невесомости, когда вес исчезает. Например, парашютист прыгает
с самолета, а парашют дома забыл. (сопротивление воздуха не учитываем, как всегда, зачем ему теперь воздух нужен) Скорость растет с величиной 9.8 метров пройденного пути в секунду!
И здесь появляется еще один парадокс: сила гравитации есть, масса есть, ускорение...тоже есть, а давления на опору (как рыночного понятия веса) нет!

А, если есть сопротивление воздуха?
Тогда: F = m х (g - а)
Здесь а это то реальное ускорение, которое возникает и оно меньше ускорения свободного падения. И, если оно равно g - сила давление опору (или вес) равен нулю.

После перерыва продолжим.

Скорость () - это физическая величина, характеризующая быстроту пространственного перемещения тела и определяемая отношением вектора перемещения к промежутку времени, за которое это перемещении произошло:

. (1)

Модуль вектора скорости
.

Перейдем к понятию средней путевой скорости (это скалярная величина):

(2)

Скорость измеряется в метрах на секунду (м/с ).

Равномерным поступательным называется движение, при котором за любые равные промежутки времени тело проходит равные пути (
).

Ускорение () – физическая величина, характеризующая быстроту изменения вектора скорости и определяемая отношением изменения вектора скорости
к промежутку времени
, за которое оно произошло:

. (3)

Ускорение измеряется в метрах на секунду в квадрате (м/с 2 ).

Равнопеременным , то есть равноускоренным или равнозамедленным, называется движение, при котором ускорение с течением времени остается неизменным (
).

1.1.3. Кинематика вращательного движения

Равномерное движение по окружности (
) не является равноускоренным, хотя и обладает центростремительным ускорением

. (4)

Поскольку центростремительное ускорение направлено по радиусу вращения к центру окружности, а сам радиус при вращательном движении все время меняет свое пространственное положение, то, как векторная величина,
.

Пусть материальная точка движется по окружности радиуса вокруг осии за время
(рис. 3) радиус повернется на угол
.

Рис.3. Вращательное движение

Угловая скорость (
) - это физическая величина, определяемая отношением угла поворота
радиусак промежутку времени
, за которое этот поворот произошел:

. (5)

Особенностью вращательного движения является то, что все точки тела в любой момент времени имеют относительно оси вращения одинаковые угловые скорости
. Угловая скорость измеряется в радианах на секунду (рад/с ).

1.2. Динамика материальной точки

Динамика – раздел физики, изучающий движение тел и причины, вследствие которых движение возникает или изменяется его характер. Динамика оперирует понятиями скорости, ускорения, силы, массы, импульса.

1.2.1. Масса, сила, принцип суперпозиции сил

Масса (
) – мера инертности и гравитационного взаимодействия тел. Масса измеряется в килограммах (кг ).

С массой тесно связано понятие плотности вещества.

Плотность вещества () определяется массой, заключенной в единице объема:

. (6)

Плотность измеряется в килограммах на кубический метр (кг/м 3 ).

Сила () – мера воздействия на тело других тел или полей, в результате чего тело приобретает ускорение или деформируется. Сила - величина векторная. Понятия «сила подействовала» и «тело подействовало» – равнозначны. Сила измеряется в ньютонах (Н ). При действии на тело нескольких сил их равнодействующая находится по правилу сложения векторов.

Правила сложения векторов

Векторной суммой двух векторов
называют вектор, изображаемый диагональю параллелограмма, построенного на составляющих (правило параллелограмма, рис.4,а ).

Поделиться: