Какая матрица называется нулевой. Матрицы

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Над такими матрицами производят различные действия: перемножают друг на друга, находят определители, и т.п. Матрица - частный случай массива: если массив может иметь любое количество измерений, то матрицей называют только двумерный массив.

В программировании матрицей также называют двумерный массив. Любой из массивов в программе имеет имя, как если бы это была одна переменная. Чтобы уточнить, какая из ячеек массива имеется в виду, при упоминании его в программе совместно с переменной используют номер ячейки в ней. Как двумерная матрица, так и n-мерный массив в программе может содержать не только числовую, но и символьную, строковую, булевую и иную информацию, но всегда одну и ту же в пределах всего массива.

Обозначаются матрицы заглавными буквами А:MxN, где А – имя матрицы, M– количество строк в матрице, а N– количество столбцов. Элементы – соответствующими строчными буквами с индексами, обозначающими их номер в строке и в столбце a (m, n).

Наиболее часто распространены матрицы прямоугольной формы, хотя в далеком прошлом математики рассматривали и треугольные. Если количество строк и столбцов матрицы одинаково, она называется квадратной. При этом M=N уже имеет наименование порядка матрицы. Матрица, имеющая всего одну строку, именуется строкой. Матрица с всего одним столбцом называется столбцом. Диагональная матрица – это квадратная матрица, в которой не равны нулю только элементы, расположенные по диагонали. Если все элементы равны единице, матрица называется единичной, если нулю – нулевой.

Если в матрице поменять местами строки и столбцы, она станет транспонированной. Если все элементы заменить комплексно-сопряженными, она станет комплексно-сопряженной. Кроме того, существуют и другие виды матриц, определяющиеся условиями, которые накладываются на матричные элементы. Но большинство таких условий применимо только к квадратным .

Видео по теме

Матрица - это особый объект в математике. Изображается в форме прямоугольной или квадратной таблицы, сложенной из определенного числа строк и столбцов. В математике имеется большое разнообразие видов матриц, различающихся по размерам или содержанию. Числа ее строк и столбцов именуются порядками. Эти объекты употребляются в математике для упорядочивания записи систем линейных уравнений и удобного поиска их результатов. Уравнения с использованием матрицы решаются посредством метода Карла Гаусса, Габриэля Крамера, миноров и алгебраических дополнений, а также многими другими способами. Базовым умением при работе с матрицами является приведение к стандартному виду. Однако для начала давайте разберемся, какие виды матриц выделяют математики.

Нулевой тип

Все компоненты этого вида матрицы - нули. Между тем, число ее строк и столбцов абсолютно различно.

Квадратный тип

Количество столбцов и строк этого вида матрицы совпадает. Иначе говоря, она представляет собой таблицу формы "квадрат". Число ее столбцов (или строк) именуются порядком. Частными случаями считается существование матрицы второго порядка (матрица 2x2), четвертого порядка (4x4), десятого (10x10), семнадцатого (17x17) и так далее.

Вектор-стобец

Это один из простейших видов матриц, содержащий только один столбец, который включает в себя три численных значения. Она представляет ряд свободных членов (чисел, независимых от переменных) в системах линейных уравнений.

Вид, аналогичный предыдущему. Состоит из трех численных элементов, в свою очередь организованных в одну строку.

Диагональный тип

Числовые значения в диагональном виде матрицы принимают только компоненты главной диагонали (выделена зеленым цветом). Основная диагональ начинается с элемента, находящегося в правом верхнем углу, а заканчивается числом в третьем столбце третьей строки. Остальные компоненты равны нулю. Диагональный тип представляет собой только квадратную матрицу какого-либо порядка. Среди матриц диагонального вида можно выделить скалярную. Все ее компоненты принимают одинаковые значения.

Подвид диагональной матрицы. Все ее числовые значения являются единицами. Используя единичный тип матричных таблиц, выполняют ее базовые преобразования или находят матрицу, обратную исходной.

Канонический тип

Канонический вид матрицы считается одним из основных; приведение к нему часто необходимо для работы. Число строк и столбцов в канонической матрице различно, она необязательно принадлежит к квадратному типу. Она несколько похожа на единичную матрицу, однако в ее случае не все компоненты основной диагонали принимают значение, равное единице. Главнодиагональных единиц может быть две, четыре (все зависит от длины и ширины матрицы). Или единицы могут не иметься вовсе (тогда она считается нулевой). Остальные компоненты канонического типа, как и элементы диагонального и единичного, равны нулю.

Треугольный тип

Один из важнейших видов матрицы, применяемый при поиске ее детерминанта и при выполнении простейших операций. Треугольный тип происходит от диагонального, поэтому матрица также является квадратной. Треугольный вид матрицы подразделяют на верхнетреугольный и нижнетреугольный.

В верхнетреугольной матрице (рис. 1) только элементы, которые находятся над главной диагональю, принимают значение, равное нулю. Компоненты же самой диагонали и части матрицы, располагающейся под ней, содержат числовые значения.

В нижнетреугольной (рис. 2), наоборот, элементы, располагающиеся в нижней части матрицы, равны нулю.

Вид необходим для нахождения ранга матрицы, а также для элементарных действий над ними (наряду с треугольным типом). Ступенчатая матрица названа так, потому что в ней содержатся характерные "ступени" из нулей (как показано на рисунке). В ступенчатом типе образуется диагональ из нулей (необязательно главная), и все элементы под данной диагональю тоже имеют значения, равные нулю. Обязательным условием является следующее: если в ступенчатой матрице присутствует нулевая строка, то остальные строки, находящиеся ниже нее, также не содержат числовых значений.

Таким образом, мы рассмотрели важнейшие типы матриц, необходимые для работы с ними. Теперь разберемся с задачей преобразования матрицы в требуемую форму.

Приведение к треугольному виду

Как же привести матрицу к треугольному виду? Чаще всего в заданиях нужно преобразовать матрицу в треугольный вид, чтобы найти ее детерминант, по-другому называемый определителем. Выполняя данную процедуру, крайне важно "сохранить" главную диагональ матрицы, потому что детерминант треугольной матрицы равен именно произведению компонентов ее главной диагонали. Напомню также альтернативные методы нахождения определителя. Детерминант квадратного типа находится при помощи специальных формул. Например, можно воспользоваться методом треугольника. Для других матриц используют метод разложения по строке, столбцу или их элементам. Также можно применять метод миноров и алгебраических дополнений матрицы.

Подробно разберем процесс приведения матрицы к треугольному виду на примерах некоторых заданий.

Задание 1

Необходимо найти детерминант представленной матрицы, используя метод приведения его к треугольному виду.

Данная нам матрица представляет собой квадратную матрицу третьего порядка. Следовательно, для ее преобразования в треугольную форму нам понадобится обратить в нуль два компонента первого столбца и один компонент второго.

Чтобы привести ее к треугольному виду, начнем преобразование с левого нижнего угла матрицы - с числа 6. Чтобы обратить его в нуль, умножим первую строку на три и вычтем ее из последней строки.

Важно! Верхняя строка не изменяется, а остается такой же, как и в исходной матрице. Записывать строку, в четыре раза большую исходной, не нужно. Но значения строк, компоненты которых нужно обратить в нуль, постоянно меняются.

Осталось только последнее значение - элемент третьей строки второго столбца. Это число (-1). Чтобы обратить его в нуль, из первой строки вычтем вторую.

Выполним проверку:

detA = 2 x (-1) x 11 = -22.

Значит, ответ к заданию: -22.

Задание 2

Нужно найти детерминант матрицы методом приведения его к треугольному виду.

Представленная матрица принадлежит к квадратному типу и является матрицей четвертого порядка. Значит, необходимо обратить в нуль три компонента первого столбца, два компонента второго столбца и один компонент третьего.

Начнем приведение ее с элемента, находящегося в нижнем углу слева, - с числа 4. Нам нужно обратить данное число в нуль. Удобнее всего сделать это, умножив на четыре верхнюю строку, а затем вычесть ее из четвертой. Запишем итог первого этапа преобразования.

Итак, компонент четвертой строки обращен в нуль. Перейдем к первому элементу третьей строки, к числу 3. Выполняем аналогичную операцию. Умножаем на три первую строку, вычитаем ее из третьей строки и записываем результат.

Нам удалось обратить в нуль все компоненты первого столбца данной квадратной матрицы, за исключением числа 1 - элемента главной диагонали, не требующего преобразования. Теперь важно сохранить полученные нули, поэтому будем выполнять преобразования со строками, а не со столбцами. Перейдем ко второму столбцу представленной матрицы.

Снова начнем с нижней части - с элемента второго столбца последней строки. Это число (-7). Однако в данном случае удобнее начать с числа (-1) - элемента второго столбца третьей строки. Чтобы обратить его в нуль, вычтем из третьей строки вторую. Затем умножим вторую строку на семь и вычтем ее из четвертой. Мы получили нуль вместо элемента, расположенного в четвертой строке второго столбца. Теперь перейдем к третьему столбцу.

В данном столбце нам нужно обратить в нуль только одно число - 4. Сделать это несложно: просто прибавляем к последней строке третью и видим необходимый нам нуль.

После всех произведенных преобразований мы привели предложенную матрицу к треугольному виду. Теперь, чтобы найти ее детерминант, нужно только произвести умножение получившихся элементов главной диагонали. Получаем: detA = 1 x (-1) x (-4) x 40 = 160. Следовательно, решением является число 160.

Итак, теперь вопрос приведения матрицы к треугольному виду вас не затруднит.

Приведение к ступенчатому виду

При элементарных операциях над матрицами ступенчатый вид является менее "востребованным", чем треугольный. Чаще всего он используется для нахождения ранга матрицы (т. е. количества ее ненулевых строк) или для определения линейно зависимых и независимых строк. Однако ступенчатый вид матрицы является более универсальным, так как подходит не только для квадратного типа, но и для всех остальных.

Чтобы привести матрицу к ступенчатому виду, сначала нужно найти ее детерминант. Для этого подойдут вышеназванные методы. Цель нахождения детерминанта такова: выяснить, можно ли преобразовать ее в ступенчатый вид матрицы. Если детерминант больше или меньше нуля, то можно спокойно приступать к заданию. Если же он равен нулю, выполнить приведение матрицы к ступенчатому виду не получится. В таком случае нужно проверить, нет ли ошибок в записи или в преобразованиях матрицы. Если подобных неточностей нет, задание решить невозможно.

Рассмотрим, как привести матрицу к ступенчатому виду на примерах нескольких заданий.

Задание 1. Найти ранг данной матричной таблицы.

Перед нами квадратная матрица третьего порядка (3x3). Мы знаем, что для нахождения ранга необходимо привести ее к ступенчатому виду. Поэтому сначала нам необходимо найти детерминант матрицы. Воспользуемся методом треугольника: detA = (1 x 5 x 0) + (2 x 1 x 2) + (6 x 3 x 4) - (1 x 1 x 4) - (2 x 3 x 0) - (6 x 5 x 2) = 12.

Детерминант = 12. Он больше нуля, значит, матрицу можно привести к ступенчатому виду. Приступим к ее преобразованиям.

Начнем его с элемента левого столбца третьей строки - числа 2. Умножаем верхнюю строку на два и вычитаем ее из третьей. Благодаря этой операции как нужный нам элемент, так и число 4 - элемент второго столбца третьей строки - обратились в нуль.

Мы видим, что в результате приведения образовалась треугольная матрица. В нашем случае продолжить преобразование нельзя, так как остальные компоненты не удастся обратить в нуль.

Значит, делаем вывод, что количество строк, содержащих числовые значения, в данной матрице (или ее ранг) - 3. Ответ к заданию: 3.

Задание 2. Определить количество линейно независимых строк данной матрицы.

Нам требуется найти такие строки, которые нельзя какими-либо преобразованиями обратить в нуль. Фактически нам нужно найти количество ненулевых строк, или ранг представленной матрицы. Для этого выполним ее упрощение.

Мы видим матрицу, не принадлежащую к квадратному типу. Она имеет размеры 3x4. Начнем приведение также с элемента левого нижнего угла - числа (-1).

Дальнейшие ее преобразования невозможны. Значит, делаем вывод, что количество линейно независимых строк в ней и ответ к заданию - 3.

Теперь приведение матрицы к ступенчатому виду не является для вас невыполнимым заданием.

На примерах данных заданий мы разобрали приведение матрицы к треугольному виду и ступенчатому виду. Чтобы обратить в нуль нужные значения матричных таблиц, в отдельных случаях требуется проявить фантазию и правильно преобразовать их столбцы или строки. Успехов вам в математике и в работе с матрицами!

Операции над матрицами и их свойства.

Понятие определителя второго и третьего порядков. Свойства определителей и их вычисление.

3. Общее описание задания.

4. Выполнение заданий.

5. Оформление отчета о лабораторной работе.

Глоссарий

Выучите определения следующих терминов :

Размерностью матрицы называется совокупность двух чисел, состоящая из числа её строк m и числа столбцов n.

Если m=n, то матрицу называют квадратной матрицей порядка n.

Операции над матрицами : транспонирование матрицы, умножение (деление) матрицы на число, сложение и вычитание, умножение матрицы на матрицу.

Переход от матрицы А к матрице А т, строками которой являются столбцы, а столбцами —строки матрицы А, называется транспонированием матрицы А.

Пример: А= , А т = .

Чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число.

Пример: 2А= 2· = .

Суммой (разностью) матриц А и В одинаковой размерности называется матрица С=А В, элементы которой равны с ij = a ij b ij для всех i и j .

Пример: А = ; В = . А+В= = .

Произведением матрицы А m n на матрицу В n k называется матрица С m k , каждый элемент которой c ij равен сумме произведений элементов i-ой строки матрицы А на соответствующий элемент j-го столбца матрицы В:

c ij = a i1 · b 1j + a i2 ·b 2j +…+ a in ·b nj .

Чтобы можно было умножить матрицу на матрицу, они должны быть согласованными для умножения, а именно число столбцов в первой матрице должно быть равно числу строк во второй матрице.

Пример: А= и В = .

А·В—невозможно, т.к. они не согласованы.

В·А= . = = .

Свойства операции умножения матриц .

1. Если матрица А имеет размерность m n, а матрица В—размерность n k , то произведение А·В существует.

Произведение В·А может существовать, только когда m=k.

2.Умножение матриц не коммутативно, т.е. А·В не всегда равно В·А даже если определены оба произведения. Однако если соотношение А·В= В·А выполняется, то матрицы А и В называются перестановочными .

Пример . Вычислить .

Минором элемента называется определитель матрицы порядка, полученный вычёркиванием -ой строки -го столбца.

Алгебраическим дополнением элемента называется .

Теорема разложения Лапласа :

Детерминант квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример . Вычислить .

Решение. .

Свойства определителей n-го порядка :

1) Величина определителя не изменится, если строки и столбца поменять местами.

2) Если определитель содержит строку (столбец) из одних нулей, то он равен нулю.

3) При перестановке двух строк (столбцов) определитель меняет знак.

4) Определитель, имеющий две одинаковые строки (столбца), равен нулю.

5) Общий множитель элементов любой строки (столбца) можно вынести за знак определителя.

6) Если каждый элемент некоторой строки (столбца) представляет собой сумму двух слагаемых, то определитель равен сумме двух определителей, в каждом из которых все строки (столбцы), кроме упомянутой, такие же, как и в данном определителе, а в упомянутой строке (столбце) первого определителя стоят первые слагаемые, второго - вторые.

7) Если в определителе две строки (столбца) пропорциональны, то он равен нулю.

8) Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

9) Определители треугольных и диагональных матриц равны произведению элементов главной диагонали.

Метод накопления нулей вычисления определителей основан на свойствах определителей.

Пример . Вычислить .

Решение. Вычтем из первой строки удвоенную третью, далее используем теорему разложения по первому столбцу.

~ .

Контрольные вопросы (ОК-1, ОК-2, ОК-11,ПК-1):

1. Что называется определителем второго порядка?

2. Какие основные свойства определителей?

3. Что называется минором элемента?

4. Что называется алгебраическим дополнением элемента определителя?

5. Как разложить определитель третьего порядка по элементам какой-либо строки (столбца)?

6. Чему равна сумма произведений элементов какой-либо строки (или столбца), определителя по алгебраическим дополнениям соответствующих элементов другой строки (или столбца)?

7. В чём заключается правило треугольников?

8. Как вычисляются определители высших порядков способом понижения порядка

10. Какая матрица называется квадратной? Нулевой? Что такое матрица-строка, матрица-столбец?

11. Какие матрицы называются равными?

12. Дать определения операций сложения, умножения матриц, умно-жения матрицы на число

13. Каким условиям должны удовлетворять размеры матриц при сло-жении, умножении?

14. В чём заключаются свойства алгебраических операций: коммута-тивность, ассоциативность, дистрибутивность ? Какие из них выпол-няются для матриц при сложении, умножении, а какие нет?

15. Что такое обратная матрица? Для каких матриц она определена?

16. Сформулировать теорему о существовании и единственности обратной матрицы.

17. Сформулировать лемму о транспонировании произведения мат-риц.

Практические задания общие (ОК-1, ОК-2, ОК-11,ПК-1):

№1. Найти сумму и разность матриц А и В:

а)

б)

в)

№2. Выполните указанные действия:

в) Z= -11А+7В-4С+D

если

№3. Выполните указанные действия:

в)

№4. При помощи применения четырех способов вычисления определителя квадратной матрица, найти определители следующих матриц:

№5. Найти определителей n-ого порядка, по элементам столбца (строки):

а) б)

№6. Найти определитель матрицы, используя свойства определителей:

а) б)

Матрица обозначается заглавными латинскими буквами (А , В , С,. ..).

Определение 1 . Прямоугольная таблица вида ,

состоящая из m строк и n столбцов, называется матрицей .

Элемент матрицы, i – номер строки, j – номер столбца.

Виды матриц:

элементов, стоящих на главной диагонали:

trA=a 11 +a 22 +a 33 +…+a nn .

§2. Определители 2, 3 и n-го порядка

Пусть даны две квадратные матрицы:

Определение 1 . Определителем второго порядка матрицы А 1 называется число, обозначаемое ∆ и равное , где

Пример . Вычислить определитель 2-го порядка:

Определение 2 . Определителем 3-го порядка квадратной матрицы А 2 называется число вида:

Это один из способов вычисления определителя.

Пример. Вычислить

Определение 3 . Если определитель состоит из n-строк и n-столбцов, то он называется определителем n-го порядка.

Свойства определителей:

    Определитель не меняется при транспонировании (т.е. если в нем строки и столбцы поменять местами с сохранением порядка следования).

    Если в определителе поменять местами какие-либо две строки или два столбца, то определитель изменит только знак.

    Общий множитель какой-либо строки (столбца) можно выносить за знак определителя.

    Если все элементы какой-либо строки (столбца) определителя равны нулю, то определитель равен нулю.

    Определитель равен нулю, если элементы каких-либо двух строк равны или пропорциональны.

    Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Пример.

Определение 4. Определитель, полученный из данного путем вычеркивания столбца и строки, называется минором соответствующего элемента. М ij элемента a ij .

Определение 5. Алгебраическим дополнением элемента а ij , называется выражение

§3. Действия над матрицами

Линейные операции

1)При сложении матриц складываются их одноименные элементы.

    При вычитании матриц вычитаются их одноименные элементы.

    При умножении матрицы на число каждый элемент матрицы умножается на это число:

3.2.Умножение матриц.

Произведение матрицы А на матрицу В есть новая матрица , элементы которой равны сумме произведений элементовi-той строки матрицы А на соответствующие элементы j-го столбца матрицы В . Произведение матрицы А на матрицу В можно находить только в том случае, если число столбцов матрицы А равно числу строк матрицы В. В противном случае, произведение невозможно.

Замечание:

(не подчиняется свойству коммутативности)

§ 4. Обратная матрица

Обратная матрица существует только для квадратной матрицы, причем матрица должна быть невырожденной.

Определение 1. Матрица А называется невырожденной , если определитель этой матрицы не равен нулю

Определение 2. А -1 называется обратной матрицей для данной невырожденной квадратной матрицы А , если при умножении этой матрицы на данную как справа, так слева получается единичная матрица.

Алгоритм вычисления обратной матрицы

1 способ (с помощью алгебраических дополнений)

Пример 1:

Поделиться: