Зоны френеля. Принцип Гюйгенса – Френеля

Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране Э в окрестности точки Р, лежащей на линии, соединяющей S с центром диска.

В данном случае закрытый диском участок фронта волны надо исключить из рассмотрения и зоны Френеля строить, начиная с краев диска.

Пусть диск закрывает m первых зон Френеля. Тогда амплитуда результатирующего колебания в точке Р равна

т.к. выражения в скобках равны нулю. Следовательно, в точке Р всегда наблюдается интерфереционный max, соответствующий половине действия первой открытой зоны Френеля. Экспериментально светлое пятно (пятно Пуассона) впервые получил Ораго. Как и в случае дифракции на круглом отверстии, центральный max окружен концетрическими с ним темными и светлыми кольцами, и интенсивность максимумов убывает с расстоянием от центра картины.

С увеличением радиуса диска первая открытая зона Френеля удаляется от точки Р и, что особенно существенно, увеличивается угол α между нормалью к поверхности этой зоны и направлением на точку Р. В результате интенсивность центрального максимума с увеличением размеров диска уменьшается. При больших размерах диска (его радиус во много раз больше радиуса закрытой им центральной зоны Френеля), за ним наблюдается обычная тень, вблизи границ которой имеет место весьма слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно.

Дифракция на круглом отверстии и на диске впервые была рассмотрена Френелем с использованием метода Гюйгенса-Френеля и основанного на нем метода зон Френеля.

Недостатки теории Френеля:

1.В теории Френеля предполагается, что непрозрачные части экранов не являются источниками вторичных волн а также, что амплитуды и начальные фазы колебаний в точке поверхности Ф, не закрытых непрозрачными экранами, такие же, как и в отсутствие последних. Это неверно, т.к. граничные условия на поверхности экрана зависят от его материала. Правда, это сказывается лишь на малых, порядка λ, расстояниях от экрана. На отверстиях и экранах, размеры которых значительно больше λ, теория Френеля хорошо согласуется с опытом.

2. Теория Френеля дает неправильное значение фазы результатирующей волны. Например, при графическом сложении векторов амплитуд колебаний, возбужденных в точке Р всеми малыми элементами открытого фронта волны, оказывается, что фаза результатирующего вектора А отличается на от начальной фазы колебаний в точке Р, происходящих в действительности.

3. Базируется на чисто качественном постулируемом допущении о зависимости амплитуды вторичных волн от угла α.

Теория Френеля дает лишь приближенный расчетный прием. Математическое обоснование и уточнение метода Гюйгенса-Френеля было сделано в 1882 году Кирхгофом.

§ Дифракция Фраунгофера.

Явление дифракции принято классифицировать в зависимости от расстояний источника и точки наблюдения (экрана) от препятствия, поставленного на пути распространения света. Дифракция сферических волн, картина распределения интенсивности которой наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, называется дифракцией Френеля. Если же расстояния от препятствия до источника и точки наблюдения очень велики (бесконечно велики), говорят о дифракции Фраунгофера.

Между френелевой и фраунгоферовой дифракциями нет принципиального различия и резкой границы. Одна непрерывно переходит в другую. Если для точки наблюдения, лежащей на оси системы, в отверстии препятствия, например, укладывается заметная часть первой зоны или несколько зон Френеля, то дифракция считается френелевой. Если в отверстии укладывается незначительная часть первой зоны Френеля, то дифракция будет фраунгоферовой.

Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград.

Рассмотрим плоскую преграду ab (рис. 69). На рисунке показаны построенные по принципу Гюйгенса волновые поверхности позади преграды. Видно, что волны действи-

тельно загибаются в область тени. Но принцип Гюйгенса ничего не говорит об амплитуде колебаний в волне за преградой. Ее можно найти, рассматривая интерференцию волн, приходящих в область геометрической тени. Распределение амплитуд колебаний позади преграды называетсядифракционной картиной . Полный вид дифракционной картины позади преграды зависит от соотношения между длиной волны Л, размером преграды d и расстоянием L от преграды до точки наблюдения. Если длина волны Л больше размеров преграды d, то волна его почти не замечает. Если длина волны Л одного порядка с размером преграды d, то дифракция проявляется даже на очень малом расстоянии L, и волны за преградой лишь чуть-чуть слабее, чем в свободном волновом поле с обеих сторон. Если, наконец, длины волн много меньше размеров препятствия, то дифракционную картину можно наблюдать только на большом расстоянии от преграды, величина которой зависит от Л и d.

Принцип Гюйгенса - Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта (поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.



Принцип Гюйгенса - Френеля формулируется следующим образом:

Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля .

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.

Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

Для нахождения результата интерференции вторичных волн Френель предложил метод разбиения волнового фронта на зоны, называемые зонами Френеля. 

Предположим, что источник света S (рис. 17.18) точечный и монохроматический, а среда, в которой распространяется свет, изотропная. Волновой фронт в произвольный момент времени будет иметь форму сферы радиусом \(~r=ct.\) Каждая точка на этой сферической поверхности является вторичным источником волн. Колебания во всех точках волновой поверхности происходят с одинаковой часто-той и в одинаковой фазе. Следовательно, все эти вторичные источники когерентны. Для нахождения амплитуды колебаний в точке М необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности.

Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до точки М отличались на \(\frac{\lambda}{2},\) т.е. \(P_1M - P_0M = P_2M - P_1M = \frac{\lambda}{2}.\)

Так как разность хода от двух соседних зон равна \(\frac{\lambda}{2},\) то колебания от них приходят в точку М в противоположных фазах и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М будет равна

\(A = A_1 - A_2 + A_3 - A_4 + \ldots \pm A_m,\) (17.5)

где \(A_1, A_2, \ldots , A_m,\) - амплитуды колебаний, возбуждаемых 1-й, 2-й, .., m-й зонами.

Френель предположил также, что действие отдельных зон в точке М зависит от направления распростронения (от угла \(\varphi_m\) (рис. 17.19) между нормалью \(~\vec n \) к поверхности зоны и направлением на точку М). С увеличением \(\varphi_m\) действие зон убывает и при углах \(\varphi_m \ge 90^\circ\) амплитуда возбуждаемых вторичных волн равна 0. Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом и вследствие увеличения расстояния от зоны до точки М Учитывая оба фактора, можно записать, что

\(A_1 >A_2 >A_3 > \cdots\)

1. Объяснение прямолинейности распространения света.

Общее число зон Френеля, вмещающихся на полусфере радиусом SP 0 , равным расстоянию от источника света S до фронта волны, очень велико. Поэтому в первом приближении можно считать, что амплитуда колебаний А m от некоторой m-й зоны равна среднему арифметическому от амплитуд, примыкающих к ней зон, т.е.

\(A_m = \frac{ A_{m-1} + A_{m+1} }{2}.\)

Тогда выражение (17.5) можно записать в виде

\(A = \frac{A_1}{2} + \Bigr(\frac{A_1}{2} - A_2 + \frac{A_3}{2} \Bigl) + \Bigr(\frac{A_3}{2} - A_4 + \frac{A_5}{2} \Bigl) + \ldots \pm \frac{A_m}{2}.\)

Так как выражения, стоящие в скобках, равны 0, а \(\frac{A_m}{2}\) ничтожно мала, то

\(A = \frac{A_1}{2} \pm \frac{A_m}{2} \approx \frac{A_1}{2}.\) (17.6)

Таким образом, амплитуда колебаний, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной. Из рисунка 17.19 радиус г m-ной зоны зоны Френеля \(r_m = \sqrt{\Bigr(b + \frac{m \lambda}{2} \Bigl)^2 - (b + h_m)^2}.\) Так как \(~h_m \ll b\) и длина волны света мала, то \(r_m \approx \sqrt{\Bigr(b + \frac{m \lambda}{2} \Bigl)^2 - b^2} = \sqrt{mb \lambda + \frac{m^2 \lambda^2}{4}} \approx \sqrt{mb\lambda}.\) Значит, радиус первой Учитывая, что \(~\lambda\) длина волны может иметь значения от 300 до 860 нм, получим \(~r_1 \ll b.\) Следовательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, диаметр которого меньше радиуса первой зоны Френеля, т.е. прямолинейно.

2. Дифракция на круглом отверстии.

Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием (рис. 17.20). Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Согласно (17.5) и (17.6) в точке B амплитуда результирующего колебания 

\(A = \frac{A_1}{2} \pm \frac{A_m}{2},\)

где знак "плюс" соответствует нечетным m, а знак "минус" - четным m.

Когда отверстие открывает нечетное число зон Френеля, то амплитуда колебаний в точке В будет больше, чем при отсутствии экрана. Если в отверстии укладывается одна зона Френеля, то в точке В амплитуда \(~A = A_1\) т.е. вдвое больше, чем в отсутствие непрозрачного экрана. Если в отверстии укладываются две зоны Френеля, то их действие в точке В практически уничтожает друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если m - четное, то в центре темное кольцо, если m - нечетное - светлое кольцо), причем интенсивность максимумов убывает с расстоянием от центра картины.

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 514-517.

Дифракция света (от лат. diffractus - разломанный, преломлённый) - отклонение при распространении света от законов геометрической оптики, выражающееся в огибании лучами света границы непрозрачных тел, проникновение света в область геометрической тени, огибание светом малых препятствий. Дифракция наблюдается при распространении света в среде с резко выраженными неоднородностями. Дифракция света - проявление волновых свойств света в предельных условиях перехода от волновой оптики к геометрической. Явление дифракции света можно объяснить на основании принципа Гюйгенса.

Принцип Гюйгенса - принцип, согласно которому каждая точка волнового фронта в данный момент времени является центром вторичных элементарных волн, огибающая которых дает положение волнового фронта в следующий момент времени. Принцип Гюйгенса позволяет объяснить законы отражения и преломления света, однако он недостаточен для объяснения дифракционных явлений, Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн.

Гюйгенса-Френеля принцип - дальнейшее развитие принципа Х. Гюйгенса О. Френелем, введшего представление о когерентности и интерференции вторичных элементарных волн. Согласно принципу Гюйгенса-Френеля волновое возмущение в некоторой точке может быть представлено как результат интерференции когерентных вторичных элементарных волн, излучаемых каждым элементом некоторой волновой поверхности (волнового фронта). Принцип Гюйгенса-Френеля позволяет объяснить и дифракционные явления. Каждый элемент волновой поверхности площадью является источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента. В точку наблюдения от этого элемента приходит колебание

(6.37.21)

где - коэффициент, зависящий от угла между нормалью к поверхности и направлением на точку наблюдения; - расстояние от элемента поверхности до точки наблюдения; - фаза колебания в месте расположения элемента .

Результирующее колебание в точке наблюдения представляет собой суперпозицию когерентных колебаний от всех элементов волновой поверхности, пришедших в точку наблюдения. Для расчета амплитуды результирующего колебания для случаев, отличающихся симметрией, Френель предложил метод, получивший название метода зон Френеля. Различают два вида дифракции: дифракция Фраунгофера и дифракция Френеля.

Дифракция Фраунгофера (в параллельных лучах) - дифракция плоских волн на препятствии (источник света удалён от препятствия на бесконечно большое расстояние).

Дифракция Френеля - дифракция сферической световой волны на неоднородности (например, отверстии в экране). Дифракция Френеля осуществляется в тех случаях, когда источник света и экран, служащий для наблюдения дифракционной картины, находятся на конечных расстояниях от препятствия, вызвавшего дифракцию.


Метод зон Френеля.

Зоны Френеля - кольцевые участки, на которые разбивают сферическую поверхность фронта световой волны при рассмотрении задач о дифракции волн в соответствии с принципом Гюйгенса - Френеля для упрощения вычислений при определении амплитуды волны в заданной точке пространства. Пусть монохроматическая волна распространяется из точки в точку наблюдения . Положение волнового фронта в определенный момент времени указано на рисунке. Согласно принципу Гюйгенса - Френеля действие источника заменяют действием вторичных (воображаемых) источников, расположенных на поверхности фронта сферической волны, которую разбивают на кольцевые зоны так, чтобы расстояния от краёв соседних зон до точки наблюдения отличались на где - длина волны. (На рисунке - точка пересечения фронта волны с линией , расстояние = , = ). Тогда расстояние от края -й зоны до точки наблюдения равно

(6.37.22)

Внешний радиус -й зоны Френеля

(6.37.23)

площадь -й зоны

(6.37.24)

при не слишком больших площади зон Френеля одинаковы.

Так как колебания от соседних зон проходят до точки расстояния, отличающиеся на то в точку они приходят в противофазе. При вычислении амплитуды результирующего колебания в точке методом зон Френеля необходимо также учесть, что с ростом номера зоны амплитуды колебаний, приходящих в точку , монотонноубывают: А 1 > А 2 > А 3 > А 4 > …. Можно положить, что амплитуда колебания А m равна среднему арифметическому амплитуд примыкающих к ней зон: Поэтому амплитуда результирующего светового колебания, приходящего от всего волнового фронта в точку будет равна:

А = А 1 - А 2 + А 3 - А 4 + …….. А к.

Это выражение можно представить в следующем виде:

так как выражения в скобках равны нулю, а амплитуда от последней зоны Френеля бесконечно мала. Следовательно, амплитуда, создаваемая в точке всем сферическим волновым фронтом, равна половине амплитуды, создаваемой центральной зоной Френеля. Если 1м, 0,5 мкм, то радиус первой зоны Френеля равен 0,5 мм. Следовательно, свет от источника к точке наблюдения распространяется как бы в пределах узкого прямого канала, т.е. практически прямолинейно.

Колебания от четных и нечетных зон Френеля находятся в противофазе и взаимно ослабляют друг друга. Если какое-либо препятствие перекрывает часть сферического волнового фронта, то при расчете амплитуды результирующего колебания в точке наблюдения методом зон Френеля учитываются только открытые зоны Френеля. Если поставить на пути световой волны пластинку, которая перекрывала бы все четные или нечетные зоны Френеля, то амплитуда колебания в точке наблюдения резко возрастает. Такая пластинка называется зонной . Зонная пластинка во много раз увеличивает интенсивность света в точке , действуя подобно собирающей линзе.

Принцип Гюйгенса - Френеля в рамках волновой теории должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмот­рев взаимную интерференцию вторичных волн и применив прием, получивший назва­ние метода зон Френеля .

Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис. 257). Согласно принципу Гюйген­са - Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся поверхностью фронта волны, идущей из S (поверхность сферы с центром S). Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на l /2, т. е. Р 1 М – Р 0 М = Р 2 М – Р 1 М = Р 3 М – Р 2 М = ... = l /2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точ­ке М сферы радиусами b + , b + 2 , b + 3 , ... . Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на l /2, то в точку М они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М

(177.1) где А 1 , А 2 , ... - амплитуды колебаний, возбуждаемых 1-й, 2-й, ..., т -й зонами.

Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m -й зоны выделяет на волновой поверхности сферический сегмент высоты h m (рис. 258). Обозначив площадь этого сегмента через s m , найдем, что площадь m -й зоны Френеля равна Ds m = s m s m – 1 , где s m – 1 -площадь сферического сегмента, выделяемого внешней границей (m – 1)-й зоны. Из рисунка следует, что (177.2) После элементарных преобразований, учитывая, что l <<a и l <<b , получим

(177.3) Площадь сферического сегмента и площадь т -й зоны Френеля соответственно равны (177.4) Выражение (177.4) не зависит от т, следовательно, при не слишком больших т площа­ди зон Френеля одинаковы. Таким образом, построение зон Френеля разбивает волно­вую поверхность сферической волны на равные зоны.

Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол j т (рис. 258) между нормалью n к поверхности зоны и направлением на М, т. е. действие зон постепенно убывает от центральной (около Р 0) к периферичес­ким. Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом т и вследствие увеличения расстояния от зоны до точки М. Учитывая оба этих фактора, можем записать Общее число зон Френеля, умещающихся на полусфере, очень велико; например при а=b= 10 см и l=0,5мкм Поэтому в качестве допустимо­го приближения можно считать, что амплитуда колебания А m от некоторой m -й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т. е. (177.5) Тогда выражение (177.1) можно записать в виде (177.6) так как выражения, стоящие в скобках, согласно (177.5), равны нулю, а оставшаяся часть от амплитуды последней зоны ±А m /2 ничтожно мала. Таким образом, амплитуда результирующих колебаний в произвольной точке М определяется как бы действием только половины центральной зоны Френеля. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, меньшего центральной зоны. Если в выражении (177.2) положим, что высота сегмента h <<а (при не слишком больших т ), тогда . Подставив сюда значение (177.3), найдем радиус внешней границы т -й зоны Френеля: (177.7)

При а =b= 10 см и l= 0,5 мкм радиус первой (центральной) зоны r 1 = 0,158 мм. Сле­довательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, т.е. прямолинейно. Таким образом, принцип Гюйгенса - Френеля позволяет объяснить прямолинейное распро­странение света в однородной среде.

Правомерность деления волнового фронта на зоны Френеля подтверждена экс­периментально. Для этого используютсязонные пластинки -в простейшем случае стеклянные пластинки, состоящие из системы чередующихся прозрачных и непрозрач­ных концентрических колец, построенных по принципу расположения зон Френеля, т. е. с радиусами r m зон Френеля, определяемыми выражением (177.7) для заданных значений а, b и l (т = 0, 2, 4,... для прозрачных и т = 1, 3, 5,... для непрозрачных колец). Если поместить зонную пластинку в строго определенном месте (на расстоянии а от точечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки), то для света длиной волны l она перекроет четные зоны и оставит свободными нечетные начиная с центральной. В результате этого результирующая амплитуда A=A 1 +A 3 +A 5 +... должна быть больше, чем при полностью открытом волновом фронте. Опыт подтверждает эти выводы: зонная пластинка увеличивает освещенность в точке М, действуя подобно собирающей линзе.


Похожая информация.


Поделиться: