Задачи и примеры на все действия с обыкновенными дробями. Правила арифметических действий над обыкновенными дробям

Девиз урока: “Никогда не беритесь за последующее, не усвоив предыдущее”. И. Павлов.

  • усвоение и обобщение учащимися правил сложения, вычитания, умножения и деления обыкновенных дробей, формирование умений и навыков применения их при решении задач, уравнений;
  • развитие памяти учащихся, культуры устной речи, познавательного интереса школьников;
  • воспитать ответственное отношение к учебному труду, самостоятельность, трудолюбие.

Оборудование:

Карточки с заданиями к игре “Поле чудес”

Карточки к проверочной работе;

Сигнальные карточки к устным упражнениям;

Модели цветов.

Структура урока.

Этапы урока Вид деятельности Тип деятельности Форма деятельности
1 Организационный момент.
2 Постановка цели урока и мотивация учебной деятельности учащихся. 1) Вступительное слово учителя.

2) Сообщение учащихся: “История возникновения обыкновенных дробей”.

Развивающая

Коллективная

3 Воспроизведение и коррекция опорных знаний, повторение и анализ основных фактов. 1) Отгадывание кроссворда.

2) Устные упражнения (тесты).

Повторительная

Тренировочные

Фронтальная

Фронтальная

4 Обобщение и систематизация знаний и их применение при выполнении практических заданий. 1) Игра “Поле чудес”.

2) Физкультминутка: “Поляна Правил”.

Закрепляющая

Повторительная

Коллективная

Фронтальная

5 Проверка умений учащихся самостоятельно применять знания. Проверочная работа (дифференцированная) Контролирующая Индивидуальная
6 Домашнее задание: усвоение ведущих идей и основных теорий. 1) Кроссворд.

2) Сочинение сказки.

3) №925 (б, в)

Творческая

Закрепляющая

Индивидуальная
7 Подведение итогов урока

Ход урока

1.Организационный момент. Слайд 1.

2.Постановка цели урока и мотивация учебной деятельности учащихся.

Слайд 2 . Ребята, сегодня мы отправимся с вами в необычное путешествие, мы посетим страну “Обыкновенные дроби”. В этой стране мы сделаем несколько остановок: побываем в “деревне Исторической”, посетим “замок Кроссвордный”, заглянем на “Тестодром”, поиграем на “Поле чудес”, отдохнём на “поляне Правил”, одолеем “горы Ума”, побродим в “лесу Сказочном”. На каждой остановке вам надо будет показать свои знания правил сложения, вычитания, умножения и деления обыкновенных дробей, умение применять их при решении задач и уравнений, проявить активность, находчивость и смекалку.

Слайд 3. Попасть в страну Обыкновенные дроби, минуя “деревню Историческую” нельзя. Поэтому первую остановку мы сделаем здесь, где группа учащихся расскажет об истории возникновения дробей.

Сообщение учащихся: “История возникновения обыкновенных дробей”.

3. Воспроизведение и коррекция опорных знаний, повторение и анализ основных фактов.

Слайд 4. Следующая остановка “замок Кроссвордный” , здесь учащимся нужно отгадать кроссворд.

1.
3.
6.
1.
2.
5.

По вертикали: 1. Как называется дробь, записанная в виде ?

По горизонтали:

2. Как называется число, записанное над чертой дроби?

3. Как называется число, записанное под чертой дроби?

4. Как называется дробь, у которой числитель и знаменатель делятся на одно и то же число?

5. Как называется дробь, у которой числитель меньше знаменателя?

6. Как называется дробь, у которой числитель больше или равен знаменателю?

Слайд 5. (Ответы)

1.
3. с о к р а т и м а я
б
ы
к
6. н е п р а в и л ь н а я
о
в
1. ч и с л и т е л ь
н
2. з н а м е н а т е л ь
а
5. п р а в и л ь н а я

Слайд 6. А сейчас мы заглянем на “Тестодром” , где обучающиеся должны найти и показать правильные ответы на вопросы, подняв соответствующую сигнальную карточку.

В данном разделе рассматриваются действия с обыкновенными дробями. В случае, если необходимо провести математическую операцию со смешанными числами, то достаточно перевести смешанную дробь в необыкновенную, провести необходимые операции и, в случае необходимости, конечный результат снова представить в виде смешанного числа. Данная операция будет описана ниже.

Сокращение дроби

Математическая операция. Сокращение дроби

Чтобы сократить дробь \frac{m}{n} нужно найти наибольший общий делитель ее числителя и знаменателя: НОД(m,n), после чего поделить числитель и знаменатель дроби на это число. Если НОД(m,n)=1, то дробь сократить нельзя. Пример: \frac{20}{80}=\frac{20:20}{80:20}=\frac{1}{4}

Обычно сразу найти наибольший общий делитель представляется сложной задачей и на практике дробь сокращают в несколько этапов, пошагово выделяя у числителя и знаменателя очевидные общие множители. \frac{140}{315}=\frac{28\cdot5}{63\cdot5}=\frac{4\cdot7\cdot5}{9\cdot7\cdot5}=\frac{4}{9}

Приведение дробей к общему знаменателю

Математическая операция. Приведение дробей к общему знаменателю

Чтобы привести две дроби \frac{a}{b} и \frac{c}{d} к общему знаменателю нужно:

  • найти наименьшее общее кратное знаменателей: M=НОК(b,d);
  • умножить числитель и знаменатель первой дроби на M/b (после чего знаменатель дроби становится равным числу M);
  • умножить числитель и знаменатель второй дроби на M/d (после чего знаменатель дроби становится равным числу M).

Тем самым мы преобразуем исходные дроби к дробям с одинаковыми знаменателями (которые будут равны числу M).

Например, дроби \frac{5}{6} и \frac{4}{9} имеют НОК(6,9) = 18. Тогда: \frac{5}{6}=\frac{5\cdot3}{6\cdot3}=\frac{15}{18};\quad\frac{4}{9}=\frac{4\cdot2}{9\cdot2}=\frac{8}{18} . Тем самым полученные дроби имеют общий знаменатель.

На практике нахождение наименьшего общего кратного (НОК) знаменателей является не всегда простой задачей. Поэтому в качестве общего знаменателя выбирается число, равное произведению знаменателей исходных дробей. Например, дроби \frac{5}{6} и \frac{4}{9} приводятся к общему знаменателю N=6\cdot9:

\frac{5}{6}=\frac{5\cdot9}{6\cdot9}=\frac{45}{54};\quad\frac{4}{9}=\frac{4\cdot6}{9\cdot6}=\frac{24}{54}

Сравнение дробей

Математическая операция. Сравнение дробей

Для сравнения двух обыкновенных дробей необходимо:

  • сравнить числители получившихся дробей; дробь с большим числителем будет больше.
Например, \frac{9}{14}

При сравнении дробей имеются несколько частных случаев:

  1. Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}
  2. Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13}
  3. Та дробь, у которой одновременно больший числитель и меньший знаменатель , больше. Например, \frac{11}{3}>\frac{10}{8}

Внимание! Правило 1 действует для любых дробей, если их общий знаменатель является положительным числом. Правила 2 и 3 действуют для положительных дробей (у которых и числитель и знаменатель больше нуля).

Сложение и вычитание дробей

Математическая операция. Сложение и вычитание дробей

Чтобы сложить две дроби, нужно:

  • привести их к общему знаменателю;
  • сложить их числители, а знаменатель оставить без изменений.

Пример: \frac{7}{9}+\frac{4}{7}=\frac{7\cdot7}{9\cdot7}+\frac{4\cdot9}{7\cdot9}=\frac{49}{63}+\frac{36}{63}=\frac{49+36}{63}=\frac{85}{63}

Чтобы из одной дроби вычесть другую, нужно:

  • привести дроби к общему знаменателю;
  • из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений.

Пример: \frac{4}{15}-\frac{3}{5}=\frac{4}{15}-\frac{3\cdot3}{5\cdot3}=\frac{4}{15}-\frac{9}{15}=\frac{4-9}{15}=\frac{-5}{15}=-\frac{5}{3\cdot5}=-\frac{1}{3}

Если исходные дроби изначально имеют общий знаменатель, то пункт 1 (приведение к общему знаменателю) пропускается.

Преобразование смешанного числа в неправильную дробь и обратно

Математическая операция. Преобразование смешанного числа в неправильную дробь и обратно

Чтобы преобразовать смешанную дробь в неправильную, достаточно просуммировать целую часть смешанной дроби с дробной частью. Результатом такой суммы станет неправильная дробь, числитель которой равен сумме произведения целой части на знаменатель дроби с числителем смешанной дроби, а знаменатель останется прежним. Например, 2\frac{6}{11}=2+\frac{6}{11}=\frac{2\cdot11}{11}+\frac{6}{11}=\frac{2\cdot11+6}{11}=\frac{28}{11}

Чтобы преобразовать неправильную дробь в смешанное число необходимо:

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель, а знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Например, дробь \frac{23}{4} . При делении 23:4=5,75, то есть целая часть 5, остаток от деления равен 23-5*4=3. Тогда смешанное число запишется: 5\frac{3}{4} . \frac{23}{4}=\frac{5\cdot4+3}{4}=5\frac{3}{4}

Преобразование десятичной дроби в обыкновенную

Математическая операция. Преобразование десятичной дроби в обыкновенную

Для того, чтобы обратить десятичную дробь в обыкновенную, надо:

  1. в качестве знаменателя взять n-ую степень десяти (здесь n – количество десятичных знаков);
  2. в качестве числителя взять число, стоящее после десятичной точки (если целая часть исходного числа не равна нулю, то брать в том числе и все стоящие впереди нули);
  3. отличная от нуля целая часть записывается в числителе в самом начале; нулевая целая часть опускается.

Пример 1: 0.0089=\frac{89}{10000} (десятичных знаков 4, поэтому в знаменателе 10 4 =10000, поскольку целая часть равна 0, то в числителе записано число после десятичной точки без начальных нулей)

Пример 2: 31.0109=\frac{310109}{10000} (в числитель записываем число после десятичной точки со всеми нулями: "0109", а затем перед ним дописываем целую часть исходного числа "31")

Если целая часть десятичной дроби отлична от нуля, то её можно перевести в смешанную дробь. Для этого переводим число в обыкновенную дробь как если бы целая часть равнялась нулю (пункты 1 и 2), а целую часть просто переписываем перед дробью - это будет целая часть смешанного числа. Пример:

3.014=3\frac{14}{100}

Чтобы перевести обыкновенную дробь в десятичную, достаточно просто произвести деление числителя на знаменатель. Иногда получится бесконечная десятичная дробь. В этом случае необходимо произвести округление до нужного десятичного знака. Примеры:

\frac{401}{5}=80.2;\quad \frac{2}{3}\approx0.6667

Умножение и деление дробей

Математическая операция. Умножение и деление дробей

Чтобы перемножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей.

\frac{5}{9}\cdot\frac{7}{2}=\frac{5\cdot7}{9\cdot2}=\frac{35}{18}

Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй (обратная дробь - дробь, в которой поменяны местами числитель и знаменатель).

\frac{5}{9}:\frac{7}{2}=\frac{5}{9}\cdot\frac{2}{7}=\frac{5\cdot2}{9\cdot7}=\frac{10}{63}

В случае, если одна из дробей является натуральным числом, то указанные выше правила умножения и деления остаются в силе. Просто нужно учитывать, что целое число это та же дробь, знаменатель которой равен единице. Например: 3:\frac{3}{7}=\frac{3}{1}:\frac{3}{7}=\frac{3}{1}\cdot\frac{7}{3}=\frac{3\cdot7}{1\cdot3}=\frac{7}{1}=7

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить прежним.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

Итак, требуется разделить дробь на число 2 . Здесь делимым является дробь , а делителем число 2.

Чтобы разделить дробь на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить на

Все действия с обыкновенными дробями.

ЦЕЛИ УРОКА:

Образовательные – систематирзирвать, обобщить и повторить знания по теме «Обыкновенные дроби»; закрепить умения и навыки учащихся при решении задач по данной теме.

Развивающие –– развивать память, внимание, познавательные способности учащихся; формировать навык исследовательской работы.

Воспитательные – воспитывать умение внимательно выслушивать мнение других, уважительно относится к ответам однокласников, работать в группах.

План урока :

1. Вводно-мотивационная часть урока.

    Организационный момент.

    Знакомство учащихся с целями и ходом урока.

2. Основная (операционная) часть урока.

    Устная работа.

    Математический диктант по теории.

    Самопроверка диктанта, анализ ошибок.

    Решение задач.

    Историческая справка.

3. Рефлексивно-оценочная часть урока.

    Итог урока, выставление оценок.

    Рефлексия.

Ход урока.

Вводно-мотивационная часть урока.

Деятельность учителя

Деятельность ученика

Объявление темы и цели урока.

Сегодня необычный урок – урок соревнование. За правильно выполненные задания, за активную работу ученик награждается баллами, которые суммируется в конце урока. Итоги будут подводится как среди команд, так и в личном первенстве. Таким образом, каждый учащийся получит в конце урока оценку.

Представляет гостей. Рассказывает кто в каких моментах урока будет задействован.

Класс разделён на три команды.

Записывают в тетрадях число и тему урока.

Основная (операционная) часть урока.

Деятельность учителя

Деятельность ученика

Устная работа

Объясняет условия работы.

Учащиеся одной из команд дают задания для устного счёта второй команде. Если ответ последовал неверный, то право ответа предоставляется третьей команде. Затем команды меняются ролями.

Объявляет о начале диктанта. Объясняет, что он будет проходить с помощью презентации в программе Microsoft Power Рoint. Предупреждает, что слайды будут меняться через определённое время и возврата к ним не будет. Объявляет о количестве вопросов и форме ответов.

Подписывают выданные листы, с закреплёнными на них копировками. Записывают на листах номер варианта. За верное высказывание ставят знак «+», за неверное – знак «-».

Самопроверка диктанта, анализ ошибок.

На экране слайд с верными ответами. Обсуждает с учащимися ошибки. При необходимости возвращается к слайду с вопросами.

Сдают листы с копировками организаторам урока. По оставшимся листам и проверяют правильность ответов, анализируют ошибки.

Решение задач.

Распределяет учащихся для решения тестов и задач. Направляет организаторов.

Половина учащихся выполняют тесты. Остальные учащиеся решают задачи по индивидуальным карточкам. Тесты созданы таким образом, что сами проверяют правильность ответов и выставляют количество баллов за них. Организаторы фиксируют баллы и заносят в сводную ведомость.

Историческая справка.

Когда все учащиеся выполнили тест и решили задачу, организаторы подводят итоги урока. Учитель заслушивает выступление команд с историческими справками о дробях.

Представители каждой команды выступают с историческими сведениями о дробях, тем самым зарабатывая дополнительные баллы для себя и для своей команды.

Рефлексивно-оценочная часть урока часть урока.

Приложения

Математический диктант по теории.

Вариант 1

1. При сложении дробей с одинаковыми знаменателями знаменатель остаётся тем же, а числители складываются.

2. Если знаменатели дробей – взаимно простые числа, то наименьшим общим знаменателем будет произведение этих знаменателей.

3. При нахождении дроби от числа надо число разделить на дробь.

4. Чтобы сложить смешанные числа, надо сложить их целые части и отнять сумму дробных частей.

5. Если при сложении дробей получается неправильная дробь, то надо результат записать в виде смешанного числа.

6. При вычитании правильной дроби из целого числа, надо целое число записать в виде дроби со знаменателем один и выполнить вычитание дробей.

7. При делении смешанного числа на дробь, надо смешанное число записать в виде неправильной дроби и выполнить действие.

8. При умножении целого числа на дробь, надо целое число умножить на числитель, а знаменатель оставить тем же.

9. При делении единицы на дробь получается данная дробь.

10. Чтобы разделить дробь на дробь, надо делимое умножить на число обратное делителю.

Вариант 2

1. Чтобы вычесть дроби с разными знаменателями, надо привести их к наибольшему общему знаменателю и выполнить вычитание дробей с одинаковыми знаменателями.

2. Если один из знаменателей делится на другой, то наименьшим общим знаменателем будет меньший знаменатель.

3. Древнегреческий математик Евклид доказал, что наибольшего простого числа не существует.

4. При нахождении числа по его дроби, надо число умножить на дробь.

5. Чтобы из единицы вычесть дробь, надо единицу записать в виде неправильной дроби со знаменателем равным знаменателю дроби, которую вычитаем.

6. Произведение двух дробей есть дробь, в числителе которой произведение знаменателей, а в знаменателе – произведение числителей.

7. Чтобы выделить целую часть из неправильной дроби, надо числитель умножить на знаменатель.

8. При умножении единицы на дробь получается та же самая дробь.

9. При делении дроби на единицу получается дробь обратная данной.

10. Два числа называются взаимно обратными, если их частное равно единице.

Тест

Вариант 1

1. Сумма чисел и равна:

а) ; б) ; в) ; г) .

2. Разность чисел и 0,12 равна:

а) 0,18; б) ; в) ; г) 0,21.

3. Значение выражения
равно:

а) ; б) ; в) ; г) .

4. 15% от числа 30 равны:

а) 2; б) 4,5; в) 15; г) 0,45.

5. Чему равно число х , если числа х равны 2,1?

а) ; б) ; в) 0,9; г) 4,9.

6. Какую часть составляет разность чисел и 0,5 от их суммы?

а) ; б) ; в) ; г) правильного ответа нет.

7. Решите уравнение
.

а) ; б) ; в) ; г) .

Вариант 2

1. Разность чисел и равна:

а) ; б) ; в) ; г) .

2. Сумма чисел и 0,15 равна:

а) ; б) 0,31; в) ; г) .

3. Значение выражения равно:

а) ; б) ; в) ; г) .

4. 35% от числа 70 равны:

а) 24,5; б) 2; в) 2,45; г) 35.

5. Чему равно число у , если числа у равны 4,8?

а) ; б)1,8; в) 12,8; г) .

6. Какую часть составляет разность чисел 0,1 и от их суммы?

а) ; б) правильного ответа нет; в) ; г) .

7. Решите уравнение.

а) ; б) ; в) ; г) .

Задачи.

Вариант 1

В совхозе всей земли занимают луга, остатка – посевная площадь, а остальная земля занята лесом. Найти площадь всей земли, если известно, что площадь лугов больше посевной площади на 520 га.

Вариант 2

Из кассы в первый раз выдали всех наличных денег, во второй - остатка, а в третий – остальные деньги. Сколько денег выдано из кассы, если в первый раз выдано на 1400 руб. больше, чем во второй?

Вариант 3

Автомобиль прошёл в первый день всего пути, во второй - того, что прошёл в первый день, а в третий день прошёл на 35 км меньше, чем во второй. Сколько километров прошёл автомобиль за три дня?

Вариант 4

В колхозе всей земли засеяно озимыми, остатка – кукурузой, а остальная земля занята овощами. Определить площадь всей земли в колхозе, если известно, что под озимыми посевами на 780 га больше, чем под кукурузой.

Вариант 5

В первый час автобус прошёл всего пути, а во второй - , а в третий – остальную часть пути. Какое расстояние прошёл автобус за три часа, если за третий час он прошёл на 20 км меньше, чем за первый?

Вариант 6

Колхоз в первый день сдал государству всего зерна, намеченного по плану, во второй - того, что сдал в первый день, а в третий – остальное зерно, причём за третий день сдано на 42 т больше, чем за второй день. Сколько зерна сдал колхоз за три дня?

Вариант 7

Кирпичный завод за первую неделю выполнил месячного задания, за вторую неделю - того, что было сделано за первую неделю, а за третью – остальные 28000 штук кирпича. Сколько кирпича должен был изготовить завод за месяц?

Вариант 8

Комбайнёр собрал с участка урожай пшеницы за три дня. В первый день он собрал урожай с всего участка, во второй - с участка, а в третий - с оставшихся 27 га. Сколько пшеницы собрал комбайнёр со всего участка, если с каждого гектара собирал по ц пшеницы?

Дополнительное задание.

Катер по течению прошёл расстояние между двумя пристанями за 5 часов, а возвращаясь обратно, он то же расстояние прошёл за 6 часов. Сколько времени будет плыть плот на этом участке?

Дифференцированное домашнее задание.

Для тех, кто получил оценку «5»: № 704.

Для тех, кто получил оценку «4»: № 711, 716(з).

Для остальных учащихся: № 711, 716(в,г,з), 632(3,4).

Возьмём отрезок a . Чтобы найти его длину, выберем в качестве единицы длины отрезок е. (рис. 1) При

измерении оказалось, что длина отрезка е

а больше 3 е , но меньше 4 е . Поэтому её е1

нельзя выразить натуральным числом рис 1

(при единице длины е ). Но если разбить отрезок е на 4 равные части, каждая из которых равна е 1 , то длина отрезка а окажется равной 14е1 . Если же вернуться к первоначальной единице длины е , то мы должны сказать, что отрезок а состоит из 14 отрезков, равных четвёртой части отрезка е , т.е., говоря о длине отрезка а , мы вынуждены оперировать двумя натуральными числами 14 и 4 . Условились в такой ситуации длину отрезка записывать в виде 14/4 е , а символ называть дробью.

В общем виде понятие дроби определяют так: пусть даны отрезок а и единичный отрезок е , причём отрезок е является суммой n отрезков, равных е 1 . Если отрезок а состоит из m отрезков, равных е 1 , то его длина может быть представлена в виде е . Символ называют дробью, в нём m и n - натуральные числа. Читают этот символ «эм энных».

Вернёмся к рис.1 . Выбранный отрезок е 1 есть четвёртая часть отрезка е . Очевидно, что это не единственный вариант выбора такой доли отрезка е , которая укладывается целое число раз в отрезке а . Можно взять восьмую часть отрезка е , тогда отрезок а будет состоять из 28 28/8 е . Можно взять шестнадцатую часть отрезка е , тогда отрезок а будет состоять из 56 таких долей и его длина будет равна е . Если представить себе этот процесс продолженным неограниченно, получим, что длина отрезка а может быть выражена бесконечным множеством различных дробей: 14/4, 28/8 , 56/16 ,…

Вообще, если при единице длины е длина отрезка а выражается дробью, то она может быть выражена любой дробью, где k- натуральное число.

Определение. Дроби, выражающие длину одного и того же отрезка при единице длины е , называют равными дробями.

Если дроби и равны, то пишут: = . Например, дроби 14/4 и 28/8 выражают длину одного и того же отрезка при единице длины е , следовательно, 14/4 = 28/8 .

Существует признак, пользуясь которым определяют, равны ли данные дроби:

Для того, чтобы дроби m / n и p / q были равны, необходимо и достаточно, чтобы mq = np.

1. Покажем, что m / n = p / q => mq = np . Так как m / n = p / q для любого натурального q , а p / q = pn / qn для любого натурального n , то, из равенства дробей m / n и p / q следует равенство mq / nq = pn / qn , из которого в свою очередь вытекает, что mq = np .

2. Покажем, что mp = pq => m / n = p / q . Если разделить обе части истинного равенства mq = np на натуральное число nq , то получим истинное равенство mq / nq = np / nq . Но mq / nq = m / n , а np / nq = p / q , => m / n = p / q .

Пример.Определим, равны ли дроби 17/19 и 23/27 . Для этого сравним произведения 17*27 и 19*23 ; 17*27=459 , 19*23=437 . Так как 459 ¹ 437 , то 17/19 ¹ 23/27.

Из рассмотренных ниже фактов вытекает основное свойство дроби:

Если числитель и знаменатель данной дроби умножить на одно и тоже натуральное число, то получится дробь, равная данной.

На этом свойстве основано сокращение дробей и приведение дробей к общему знаменателю.

Сокращение дробей- это замена данной дроби другой, равной данной, но с меньшим числителем и знаменателем.

Если числитель и знаменатель дроби одновременно делятся только на единицу, то дробь называют несократимой . Например, 3/19 - несократимая дробь.

Пример. Сократим дробь 48/80 . Чтобы получить равную ей несократимую дробь, необходимо числитель и знаменатель данной дроби разделить на их наибольший общий делитель. Найдем его: Д (48;80 ) = 16 . Разделив 48 на 16 и 80 на 16 , получаем, что 48/80 = 3/5. Дробь 3/5 - несократимая.

Приведение дробей к общему знаменателю- это замена дробей равными им дробями, имеющими одинаковые знаменатели.

Общим знаменателем двух дробей m / n и p / q является общее кратное чисел n и q , а наименьшим общим знаменателем- их наименьшее общее кратное К (n , q ).

Пример. Приведём к НОЗ дроби 8/15 и 4/35. Разложим числа 15 и 35 на простые множители: 15 =3*5 , 35 =5*7 . Тогда К (15,35 )=3*5*7 =105 . Поскольку 105=15*7=35*3 , то = 8/15 = 8*7/15*7 = 56/105, 4/35 = 4*3/35*3 = 12/105 .

Сложение и вычитание

Пусть отрезки a , b , c таковы, что c = a + b и при выбранной единице длины e a = е, b= e (рис.2). тогда c = a + b = e + e = 6 e 1 = 7 e 1 = (6+7)*е 1 = 13е 1 = е 1 , т.е. длина отрезка е выражается числом, которое целесообразно рассматривать, как сумму чисел 6/4 и 7/4 .

Определение: Если положительные рациональные числа представлены дробями m/n и p/n , то суммой чисел a и b называется число, представляемое дробью m+p/n .

m/n + p/n = m+p/n (1)

Если положительные рациональные числа представлены дробями с разными знаменателями, то эти дроби приводят к НОЗ , а потом складывают по правилу (1 ). Например: 5/12+2/15=25/60+8/60=25+8/60=33/60=11/20 .

Сумма любых двух положительных чисел существует и единственна. Сложение положительных рациональных чисел подчиняется переместительному и сочетательному законам:

a+b=b+a для любых a,b, Î Q+

(a+b)+c = a+(b+c) для любых a,b,c Î Q+

Различают правильные и неправильные дроби. Дробь называют правильной, если её числитель меньше знаменателя, и неправильной, если её числитель больше знаменателя или равен ему.

Пусть m / n - неправильная дробь. Тогда m ³ n . Если m кратно n ,то в этом случае дробь m / n является записью натурального числа. Например, если дана дробь 15/3 , то 15/3 =5 . Если число m не кратно n , то разделим m на n с остатком: m = nq + r , где r < n . Поставим nq + r вместо m в дробь m / n и применим правило (1): m / n = nq + r / n = nq / n + r / n = q + r / n .

Поскольку r < n , то дробь r / n правильная => дробь m / n оказалась представлена в виде суммы натурального числа q и правильной дроби r / n . Это действие называют выделением целой части из неправильной дроби. Например, 13/4=4*3+1/4=4*3/4+1/4=3+1/4. Принято сумму натурального числа и правильной дроби записывать без знака сложения, т.е вместо 3+1/4 пишут 3 1/4 и называют такую запись смешанным числом.

Рассмотрим вычитание положительных рациональных чисел.

Определениe Разностью положительных рациональных чисел a и b называется такое положительное рациональное число c, что a=b+c

Понятие разности определено, а как практически из одного положительного рационального числа вычесть другое?

Пусть a = m / n , b = p / n , а разность а- b пусть представляется дробью x / n . Найти x . По определению разности m / n = p / n + x / n , а по правилу (1) p / n + x / n = p + x / n . Таким образом, m = p + x , но m , p и x _числа натуральные, а для них эта запись означает, что x = m p .

Приходим к следующему правилу:

M/n-p/n=m-p/n (2)

Умножение и деление

На рис.3 приведены такие отрезки: a, e, и e1, что a=11/3 e; e=6/5 e1. Надо узнать, каким будет значение длины данного отрезка а при единице длины е1. Так как 3 a =11 e, а 5е=6е1 , то, умножив первое равенство на 5, а второе на 11 , получим 5*3а=11*5е и 11*5е=6*11е1, или 15а=66е1. Последнее равенство означает, что а=66/15е1 , т.е. длина отрезка а при единице длины е1 выражается числом 66/15 , которое целесообразно рассматривать как произведение 11/3 и 6/5.

Определение Если положительные рациональные числа представлены дробями m/n и p/q, то их произведение есть число, представленное дробью mp/nq

m/n*p/q=mp/nq (3)

Определение Частное двух положительных рациональных чисел a и b называется такое число с, что a=b*c. Частное двух положительных рациональных чисел находят по формуле:

m/n:p/q=mq/np (4)

Заметим, что знак черты в записи дроби m/ n можно рассматривать как знак действия деления. Действительно, возьмем два натуральных числа m и n , и найдем их частное по правилу (4):

m:n=m/1:n/1=m*1/n*1=m/n

Обратно, если дана дробь m / n , то m / n = m *1/ n *1 . Так как m / n = m : n , то любое положительное рациональное число можно рассматривать как частное двух натуральных чисел. Кстати, термин «рациональное число» произошел от латинского слова ratio , что в переводе на русский язык означает «отношение» (частное).

Поделиться: