Из двух протонов и двух нейтронов. Строение атомов - элементарные частицы вещества, электроны, протоны, нейтроны

Актобе, 2014

Адрон. Класс элементарных частиц, участвующих в сильном взаимодействии. Адроны состоят из кварков и делятся на две группы: барионы (из трех кварков) и мезоны (из кварка и антикварка). Большая часть наблюдаемого нами вещества состоит из барионов: протонов и нуклонов, входящих в ядра атомов.

Активность источника радиоактивного излучения - отношение общего числа распадов радиоактивных ядер в радиоактивном источнике ко времени распада.

Альфа-излучение - вид ионизирующего излучения - поток положительно заряженных частиц (альфа-частиц), испускаемых при радиоактивном распаде л ядерных реакциях. Проникающая способность альфа-излучения невелика (задерживается листом бумаги). Чрезвычайно опасно попадание источников альфа-излучения внутрь организма с пищей, воздухом или через повреждения кожи.

Альфа-распад (или α-распад) – самопроизвольное испускание атомными ядрами альфа-частиц (ядер атома гелия)

Альфа-частица - частица, состоящая из двух протонов и двух нейтронов. Идентична ядру атома гелия.

Аннигиляция (Annihilation) - взаимодействие элементарной частицы и античастицы, в результате которого они исчезают, а их энергия превращается в электромагнитное излучение.

Аннигиляция - реакция превращения частицы и античастицы при столкновении в другие частицы.

Античастица - частица, имеющая те же значения массы, спина, заряда и др. физических свойств, что и ее "двойник"-частица, но отличающаяся от нее знаками некоторых характеритик взаимодействия (например, знаком электрического заряда).

Античастицы – двойники обычных элементарных частиц, которые отличаются от последних знаком электрического заряда и знаками некоторых других характеристик. У частицы и античастицы совпадают массы, спины, времена жизни.

АС - атомная станция - промышленное предприятие для производства электрической или тепловой энергии с использованием одного или нескольких ядерных энергетических реакторов и комплекса необходимых систем, устройств, оборудования и сооружений с необходимым персоналом,

Атом - наименьшая частица химического элемента, сохраняющая его свойства. Состоит из ядра с протонами и нейтронами и электронов, движущихся вокруг ядра. Число электронов в атоме равно числу протонов в ядре.

Атомная масса - масса атома химического элемента, выраженная в атомных единицах массы (а.е.м.). За 1 а.е.м. принята 1/12 часть массы изотопа углерода с атомной массой 12. 1а.е.м.=1,6605655·10-27 кг. Атомная масса складывается из масс всех протонов и нейтронов в данном атоме.

Атомное ядро - положительно заряженная центральная часть атома, вокруг которой вращаются электроны и в которой сосредоточена практически вся масса атома. Состоит из протонов и нейтронов. Заряд ядра определяется суммарным зарядом протонов в ядре и соответствует атомному номеру химического элемента в периодической системе элементов.

Барионы – частицы, состоящие из трёх кварков, определяющих их квантовые числа. Все барионы, за исключением протона, нестабильны.

Бассейн-хранилище - установка, размещаемая на реакторной площадке атомной станции для временного хранения отработавшего ядерного топлива под слоем воды с целью снижения радиоактивности и остаточного тепловыделения.

Беккерель (Бк) - единица активности радиоактивного вещества в СИ. 1 Бк равен активности такого радиоактивного вещества, в котором за время 1 с происходит один акт распада.
β γ-лучи - поток быстрых электронов.
α-лучи - поток ядер гелия.
γ-лучи - электромагнитные волны с очень короткой длиной волны (Л ~ 10 -10 м).

Бета-излучение - вид ионизирующего излучения - поток электронов или позитронов, испускаемых при ядерных реакциях или радиоактивном распаде. Бета-излучение может проникать в ткани организма на глубину до 1 см. Представляет опасность для человека как с точки зрения внешнего, так и внутреннего облучения.

Бета-частицы – электроны и позитроны, испускаемые атомными ядрами, а также свободным нейтроном при бета-распаде. При электронном бета-распаде атомного ядра испускается электрон е - (а также антинейтрино ), при позитронном распаде ядер – позитрон е + (и нейтрино ν). При распаде свободного нейтрона (n) образуется протон (р) электрон и антинейтрино: n → р + е - + .
Электрон и позитрон – стабильные частицы со спином J = 1/2 (внутренним механическим моментом количества движения), относящиеся к классу лептонов. Позитрон является античастицей по отношению к электрону.

Биологическая защита - радиационный барьер, создаваемый вокруг активной зоны реактора и системы его охлаждения, для предотвращения вредного воздействия нейтронного и гамма-излучения на персонал, население и окружающую среду. На атомной станции основным материалом биологической защиты является бетон. Для реакторов большой мощности толщина бетонного защитного экрана достигает нескольких метров.

Бозоны (от фамилии индийского физика С. Бозе) – элементарные частицы, атомные ядра, атомы, обладающие нулевым или целым спином (0ћ, 1ћ, 2ћ, …).

Быстрые нейтроны - нейтроны, кинетическая энергия которых выше некоторой определенной величины. Эта величина может меняться в широком диапазоне и зависит от применения (физика реакторов, защита или дозиметрия). В физике реакторов эта величина чаще всего выбирается равной 0,1 МэВ.

Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения.

Гамма-излучение - вид ионизирующего излучения - электромагнитное излучение, испускаемое при радиоактивном распаде и ядерных реакциях, распространяющееся со скоростью света и обладающее большой энергией и проникающей способностью. Эффективно ослабляется при взаимодействии с тяжелыми элементами, например, свинцом. Для ослабления гамма-излучения в ядерных реакторах атомных станций используют толстостенный защитный экран из бетона.

Закон радиоактивного распада - закон, по которому находят число не распавшихся атомов: N = N 0 2 -t/T .

Дейтерий - "тяжелый" изотоп водорода с атомной массой 2.

Детектор ионизирующего излучения - чувствительный элемент средства измерений, предназначенный для регистрации ионизирующего излучения. Его действие основано на явлениях, возникающих при прохождении излучения через вещество.

Доза излучения - в радиационной безопасности - мера воздействия ионизирующего излучения на биологический объект, в частности человека. Различают экспозиционную, поглощенную и эквивалентную дозы.

Избыток массы (или дефект массы ) – выраженная в единицах энергии разность массы нейтрального атома и произведения числа нуклонов (суммарного числа протонов и нейтронов) в ядре этого атома на атомную единицу массы

Изотопы - нуклиды, имеющие одинаковый атомный номер, но различные атомные массы (например, уран-235 и уран-238).

Изотопы – атомные ядра, имеющие одинаковое число протонов Z, разное число нейтронов N и, следовательно, разное массовое число A = Z + N. Пример: изотопы кальция Са (Z = 20) - 38 Ca, 39 Ca, 40 Ca, 41 Ca, 42 Ca.

Радиоактивные изотопы - ядра-изотопы, испытывающие радиоактивный распад. Большинство известных изотопов - радиоактивные (~3500).

Камера Вильсона - прибор для наблюдения следов движущихся с большой скоростью микрочастиц (электронов, протонов, а-частиц и др.). Создана в 1912 г. английским физиком Вильсоном.

Кварк - элементарная заряженная частица, участвующая в сильном взаимодействии. Протоны и нейтроны состоят каждый из трех кварков.

Космическое излучение - фоновое ионизирующее излучение, которое состоит из первичного излучения, поступающего из космического пространства, и вторичного излучения, возникающего в результате взаимодействия первичного излучения с атмосферой.

Космические лучи - потоки заряженных элементарных частиц высокой энергии (в основном - протонов, альфа-частиц и электронов), распространяющихся в межпланетном и межзвездном пространстве и непрерывно "бомбардирующие" Землю.

Коэффициент размножения - важнейшая характеристика цепной реакции деления, показывающая отношение числа нейтронов данного поколения к числу нейтронов предыдущего поколения в бесконечной среде. Часто используется и другое определение коэффициента размножения - отношение скоростей генерации и поглощения нейтронов.

Критическая масса - наименьшая масса топлива, в которой может протекать самоподдерживающаяся цепная реакция деления ядер при определенной конструкции и составе активной зоны (зависит от многих факторов, например: состава топлива, замедлителя, формы активной зоны и др).

Кюри (Ки) - внесистемная единица активности, первоначально активность 1 г изотопа радия-226. 1Ки=3,7·1010 Бк.

Критическая масса (т к) - наименьшая масса ядерного горючего (урана, плутония), при которой осуществляется цепная ядерная реакция.

Кюри (Ки) - внесистемная единица активности радиоактивного вещества. 1 Ки = 3,7 10 10 Бк.

Лептоны (от греч. leptos – лёгкий, мелкий) – группа точечных частиц со спином 1/2ћ, не участвующих в сильном взаимодействии. Размер лептона (если он существует) <10 -17 см. Лептоны считаются точечными бесструктурными частицами. Существует три пары лептонов:

    • электрон (е –) и электронное нейтрино (ν e),
    • мюон (μ –) и мюонное нейтрино (ν μ),
    • тау-лептон (τ –) и тау-нейтрино (ν τ),

Магические ядра − атомные ядра, содержащие так называемые магические числа протонов или нейтронов.

Z
N

Эти ядра имеют энергию связи больше, чем соседние ядра. Они имеют большую энергию отделения нуклона и повышенную распространённость в природе.

Массовое число (А) - общее число нуклонов (прото^ нов и нейтронов) в атомном ядре; одна из основных характеристик атомного ядра.

Мощность дозы - отношение приращения дозы излучения за интервал времени к этому интервалу (например: бэр/с, Зв/с, мбэр/ч, мЗв/ч, мкбэр/ч, мкЗв/ч).

Нейтрон - нейтральная элементарная частая с массой, близкой массе протона. Вместе с протонами нейтроны образуют атомное ядро. В свободном состоянии нестабилен и распадается на протон и электрон.

Нуклид - вид атома с определенным числом протонов и нейтронов в ядре, характеризующийся атомной массой и атомным (порядковым) номером.

Обогащение (по изотопу):

2. Процесс, в результате которого увеличивается содержание определенного изотопа в смеси изотопов.

Обогащение урановой руды - совокупность процессов первичной обработки минерального ураносодержащего сырья, имеющих целью отделение урана от других минералов, входящих в состав руды. При этом не происходит изменения состава минералов, а лишь их механическое разделение с получением рудного концентрата.

Обогащенное ядерное топливо - ядерное топливо, в котором содержание делящихся нуклидов больше, чем в исходном природном сырье.

Обогащенный уран - уран, в котором содержание изотопа урана-235 выше, чем в природном уране.

Период полураспада (Т) - интервал времени, в течение которого распадется половина первоначального количества ядер.

Период полураспада – время, в течение которого распадается половина радиоактивных ядер. Эта величина, обозначаемая T 1/2 , является константой для данного радиоактивного ядра (изотопа). Величина T 1/2 наглядно характеризует скорость распада радиоактивных ядер и эквивалентна двум другим константам, характеризующим эту скорость: среднему времени жизни радиоактивного ядра τ и вероятности распада радиоактивного ядра в единицу времени λ.

Поглощенная доза излучения - отношение поглощенной энергии Е ионизирующего излучения к массе ею облучаемого вещества.

Постулаты Бора - основные допущения, введенные без доказательства Н. Бором, которые положены в основу квантовой теории атома.

Правило смещения: при а-распаде ядро теряет положительный заряд 2е, и его масса убывает приблизительно на 4 а.е.м.; при b-распаде заряд ядра увеличивается на 1е, а масса не изменяется.

Период полураспада радионуклида - время, в течение которого число ядер данного радионуклида в результате самопроизвольного распада уменьшится в два раза.

Позитрон - античастица электрона с массой, равной массе электрона, но положительным электрическим зарядом.

Протон - стабильная положительно заряженная элементарная частица с зарядом 1,61·10-19 Кл и массой 1,66·10-27 кг. Протон образует ядро "легкого" изотопа атома водорода (протия). Число протонов в ядре любого элемента определяет заряд ядра и атомный номер этого элемента.

Радиоактивность - самопроизвольное превращение (радиоактивный распад) нестабильного нуклида в другой нуклид, сопровождающееся испусканием ионизирующего излучения.

Радиоактивность - способность некоторых атомных ядер самопроизвольно превращаться в другие ядра, испуская при этом различные частицы.

Радиоактивный распад - самопроизвольное ядерное превращение.

Реактор-размножитель - быстрый реактор, в котором коэффициент конверсии превышает 1 и осуществляется расширенное воспроизводство ядерного топлива.

Cчётчик Гейгера (или счётчик Гейгера-Мюллера) - газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме.

Твэл - тепловыделяющий элемент. Главный конструкционный элемент активной зоны гетерогенного реактора, в виде которого в него загружается топливо. В твэлах происходит деление тяжелых ядер U-235, Pu-239 или U-233, сопровождающееся выделением энергии и от них происходит передача тепловой энергии теплоносителю. Твэлы состоят из топливного сердечника, оболочки и концевых деталей. Тип твэла определяется типом и назначением реактора, параметрами теплоносителя. Твэл должен обеспечить надежный отвод тепла от топлива к теплоносителю.

Тело рабочее - среда (теплоноситель), используемая для преобразования тепловой энергии в механическую.

Тёмная материя − невидимая (не излучающая и не поглощающая) субстанция. О её существовании определённо свидетельствуют гравитационные эффекты. Данные наблюдений свидетельствуют также о том, что это тёмное вещество-энергия делится на две части:

  • первая - так называемая тёмная материя (dark matter) с плотностью
    W dm = 0.20–0.25, – неизвестные, слабо взаимодействующие массивные частицы (не барионы). Это могут быть, например, стабильные нейтральные частицы с массами от 10 ГэВ/с2 до 10 ТэВ/с2, предсказываемые суперсимметричными моделями, в том числе гипотетические тяжёлые нейтрино;

вторая − так называемая тёмная энергия (dark energy) с плотностью
W Λ = 0.70–0.75), которую интерпретируют как вакуум. Имеется в виду особая форма материи − физический вакуум, т.е. наинизшее энергетическое состояние физических полей, пронизывающих пространство.

Термоядерные реакции − реакции слияния (синтеза) лёгких ядер, протекающие при высоких температурах. Эти реакции обычно идут с выделением энергии, поскольку в образовавшемся в результате слияния более тяжёлом ядре нуклоны связаны сильнее, т.е. имеют, в среднем, бoльшую энергию связи, чем в исходных сливающихся ядрах. Избыточная суммарная энергия связи нуклонов при этом освобождается в виде кинетической энергии продуктов реакции. Название “термоядерные реакции” отражает тот факт, что эти реакции идут при высоких температурах (> 10 7 –10 8 К), поскольку для слияния лёгкие ядра должны сблизиться до расстояний, равных радиусу действия ядерных сил притяжения, т.е. до расстояний ≈10 -13 см.

Трансурановые элементы − химические элементы с зарядом (числом протонов) большим, чем у урана, т.е. Z > 92.

Цепная реакция деления - самоподдерживающаяся реакция деления тяжелых ядер, в которой непрерывно воспроизводятся нейтроны, делящие все новые и новые ядра.

Цепная реакция деления - последовательность реакции деления ядер тяжелых атомов при взаимодействии их с нейтронами или другими элементарными частицами, в результате которых образуются более легкие ядра, новые нейтроны или другие элементарные частицы и выделяется ядерная энергия.

Цепная ядерная реакция - последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей - меньшего, равного или превосходящего единицу - реакция называется затухающей, самоподдерживающейся или нарастающей.

Цепные ядерные реакции – самоподдерживающиеся ядерные реакции, в которые последовательно вовлекается цепочка ядер. Это происходит тогда, когда один из продуктов ядерной реакции вступает в реакцию с другим ядром, продукт второй реакции реагирует со следующим ядром и т.д. Возникает цепочка следующих друг за другом ядерных реакций. Наиболее известным примером такой реакции является ядерная реакция деления, вызываемая нейтроном

Экзотермические реакции - ядерные реакции, протекающие с выделением энергии.

Элементарные частицы - мельчайшие частицы физической материи. Представления об элементарных частицах отражают ту ступень в познании строения материи, которая достигнута современной наукой. Вместе с античастицами открыто около 300 элементарных частиц. Термин "элементарные частицы" условен, поскольку многие элементарные частицы имеют сложную внутреннюю структуру.

Элементарные частицы – материальные объекты, которые нельзя разделить на составные части. В соответствии с этим определением к элементарным частицам не могут быть отнесены молекулы, атомы и атомные ядра, которые поддаются делению на составные части – атом делится на ядро и орбитальные электроны, ядро – на нуклоны.

Энергетический выход ядерной реакции - разность энергий покоя ядер и частиц до реакции и после реакции.

Эндотермические реакции - ядерные реакции, протекающие с поглощением энергии.

Энергия связи атомного ядра (Е св) - характеризует интенсивность взаимодействия нуклонов в ядре и равна той максимальной энергии, которую необходимо затратить, чтобы разделить ядро на отдельные невзаимодействующие нуклоны без сообщения им кинетической энергии.

Эффект Мёссбауэра - явление резонансного поглощения гамма-квантов атомными ядрами без потери энергии на отдачу импульса.

Ядерная (планетарная) модель атома - в центре расположено положительное заряженное ядро (диаметр порядка 10 -15 м); вокруг ядра, подобно планетам солнечной системы, двигаются электроны по круговым орбитам.

Ядерные модели – упрощенные теоретические описания атомных ядер, основанные на представлении ядра в виде объекта с заранее известными характерными свойствами.

Ядерная реакция деления - реакция деления атомных ядер тяжелых элементов под действием нейтронов.

Ядерная реакция - реакция превращения атомных ядер в результате взаимодействия друг с другом или какими-либо элементарными частицами.

Ядерная энергия – это энергия, освобождающаяся в результате внутренней перестройки атомных ядер. Ядерную энергию можно получить в ядерных реакциях или радиоактивном распаде ядер. Основные источники ядерной энергии – реакции деления тяжёлых ядер и синтеза (соединения) лёгких ядер. Последний процесс называют также термоядерными реакциями.

Ядерные силы - силы, действующие между нуклонами в атомных ядрах и определяющие строение и свойства ядер. Они короткодействующие, их радиус действия 10 -15 м.

Ядерный реактор - устройство, в котором осуществляется управляемая цепная реакция деления ядер.

Самоподдерживающаяся цепная реакция деления - цепная реакция в среде, для которой коэффициент размножения k >= 1.

Ядерная авария - ядерной аварией называется потеря управления цепной реакцией в реакторе, либо образование критической массы при перегрузке, транспортировке и хранении твэлов. В результате ядерной аварии из-за дебаланса выделяемого и отводимого тепла повреждаются твэлы с выходом наружу радиоактивных продуктов деления. При этом становится потенциально возможным опасное облучение людей и заражение окружающей местности.

Ядерная безопасность - общий термин, характеризующий свойства ядерной установки при нормальной эксплуатации и в случае аварии ограничивать радиационное воздействие на персонал, население и окружающую среду допустимыми пределами.

Ядерное деление - процесс, сопровождающийся расщеплением ядра тяжелого атома при взаимодействии с нейтроном или другой элементарной частицей, в результате которого образуются более легкие ядра, новые нейтроны или другие элементарные частицы и выделяется энергия.

Ядерный материал - любой исходный материал, специальный ядерный материал и иногда руды и рудные отходы.

Ядерное превращение - превращение одного нуклида в другой.

Ядерный реактор - устройство, в котором осуществляется контролируемая цепная ядерная реакция. Ядерные реакторы классифицируют по назначению, энергии нейтронов, типу теплоносителя и замедлителя, структуре активной зоны, конструкционному исполнению и другим характерным признакам.

Ядерная реакция - превращение атомных ядер, вызванное их взаимодействием с элементарными частицами, или друг с другом и сопровождающееся изменением массы, заряда или энергетического состояния ядер.

Ядерное топливо - материал, содержащий делящиеся нуклиды, который будучи помещенным в ядерный реактор, позволяет осуществить цепную ядерную реакцию. Отличается очень высокой энергоёмкостью (при полном делении 1 кг U-235 высвобождается энергия равная Дж, в то время как при сгорании 1 кг органического топлива выделяется энергия порядка (3-5) Дж в зависимости от вида топлива).

Ядерный топливный цикл - комплекс мероприятий для обеспечения функционирования ядерных реакторов, осуществляемых в системе предприятий, связанных между собой потоком ядерного материала и включающих урановые рудники, заводы по переработке урановой руды, конверсии урана, обогащению и изготовлению топлива, ядерные реакторы, хранилища отработавшего топлива, заводы по переработке отработавшего топлива и связанные с ними промежуточные хранилища и хранилища для захоронения радиоактивных отходов

Ядерная установка - любая, установка, на которой образуются, обрабатываются или находятся в обращении радиоактивные или делящиеся материалы в таких количествах, при которых необходимо учитывать вопросы ядерной безопасности.

Ядерная энергия - внутренняя энергия атомных ядер, выделяющаяся при ядерном делении или ядерных реакциях.

Ядерный энергетический реактор - ядерный реактор, главным назначением которого является выработка энергии.

Ядерный реактор - ядерным реактором называется устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления - последовательности ядерных реакций деления, в которых и выделяются свободные нейтроны, необходимые для деления новых ядер.

Ядерный реактор на быстрых нейтронах - реакторы существенно различаются по спектру нейтронов - распределению нейтронов по энергиям, а, следовательно, и по спектру поглощаемых (вызывающих деление ядер) нейтронов. Если активная зона не содержит легких ядер, специально предназначенных для замедления в результате упругого рассеяния, то практически всё замедление обусловлено неупругим рассеянием нейтронов на тяжелых и средних по массе ядрах. При этом большая часть делений вызывается нейтронами с энергиями порядка десятков и сотен кэВ. Такие реакторы называются реакторами на быстрых нейтронах.

Ядерный реактор на тепловых нейтронах - реактор, активная зона которого содержит такое количество замедлителя - материала, предназначенного для снижения энергии нейтронов без заметного их поглощения, что большая часть делений вызывается нейтронами с энергиями меньше 1 эВ.

Ядерные силы - силы, удерживающие нуклоны (протоны и нейтроны) в ядре.

Ядерные силы являются короткодействующими . Они проявляются лишь на очень малых расстояниях между нуклонами в ядре порядка 10 -15 м. Длина (1,5 - 2,2)·10 -15 называется радиусом действия ядерных сил .

Ядерные силы обнаруживают зарядовую независимость , т. е. притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нейтронного.

Ядерные силы обладают свойством насыщения , которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.

Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов . Подтверждается это различным характером рассеяния нейтронов молекулами орто- и пароводорода.

Ядерные силы не являются центральными силами .

  • Перевод

В центре каждого атома находится ядро, крохотный набор частиц под названием протоны и нейтроны. В этой статье мы изучим природу протонов и нейтронов, состоящих из частиц ещё мельче размером – кварков, глюонов и антикварков. (Глюоны, как и фотоны, являются античастицами сами себе). Кварки и глюоны, насколько нам известно, могут быть по-настоящему элементарными (неделимыми и не состоящими из чего-то мельче размером). Но к ним позже.

Как ни удивительно, у протонов и нейтронов масса почти одинаковая – с точностью до процента:

  • 0,93827 ГэВ/с 2 у протона,
  • 0,93957 ГэВ/с 2 у нейтрона.
Это ключ к их природе – они на самом деле очень похожи. Да, между ними существует одно очевидное различие: у протона положительный электрический заряд, а у нейтрона заряда нет (он нейтральный, отсюда и его название). Соответственно, электрические силы действуют на первый, но не на второй. На первый взгляд это различие кажется очень важным! Но на самом деле это не так. Во всех остальных смыслах протон с нейтроном почти близнецы. У них идентичны не только массы, но и внутреннее строение.

Поскольку они так похожи, и поскольку из этих частиц состоят ядра, протоны и нейтроны часто называют нуклонами.

Протоны идентифицировали и описали примерно в 1920 году (хотя открыты они были раньше; ядро атома водорода – это просто отдельный протон), а нейтроны нашли где-то в 1933-м. То, что протоны и нейтроны так похожи друг на друга, поняли почти сразу. Но то, что у них есть измеримый размер, сравнимый с размером ядра (примерно в 100 000 раз меньше атома по радиусу), не знали до 1954-го. То, что они состоит из кварков, антикварков и глюонов, постепенно понимали с середины 1960-х до середины 1970-х. К концу 70-х и началу 80-х наше понимание протонов, нейтронов, и того, из чего они состоят, по большей части устаканилось, и с тех пор остаётся неизменным.

Нуклоны описать гораздо труднее, чем атомы или ядра. Не сказать, что атомы в принципе простые , но по крайней мере, можно сказать, не раздумывая, что атом гелия состоит из двух электронов, находящихся на орбите вокруг крохотного ядра гелия; а ядро гелия – достаточно простая группа из двух нейтронов и двух протонов. А вот с нуклонами всё уже не так просто. Я уже писал в статье "Что такое протон, и что у него внутри? ", что атом похож на элегантный менуэт, а нуклон – на дикую вечеринку.

Сложность протона и нейтрона, судя по всему, всамделишные, и не проистекают из неполных физических знаний. У нас есть уравнения, используемые для описания кварков, антикварков и глюонов, а также сильных ядерных взаимодействий, происходящих между ними. Эти уравнения называются КХД, от "квантовая хромодинамика ". Точность уравнений можно проверять различными способами, включая измерение количества появляющихся на Большом адронном коллайдере частиц. Подставляя уравнения КХД в компьютер и запуская вычисления свойств протонов и нейтронов, и других сходных частиц (с общим названием «адроны»), мы получаем предсказания свойств этих частиц, хорошо приближающиеся к наблюдениям, сделанным в реальном мире. Поэтому у нас есть основания полагать, что уравнения КХД не врут, и что наше знание протона и нейтрона основано на верных уравнениях. Но просто иметь правильные уравнения недостаточно, ибо:

  • У простых уравнений могут оказаться очень сложные решения,
  • Иногда невозможно описать сложные решения простым способом.
Насколько мы можем судить, именно так дело обстоит с нуклонами: это сложные решения относительно простых уравнений КХД, и описать их парой слов или картинок не представляется возможным.

Из-за внутренней сложности нуклонов вам, читатель, придётся сделать выбор: как много вы хотите узнать по поводу описанной сложности? Неважно, как далеко вы зайдёте, удовлетворения это вам, скорее всего, не принесёт: чем больше вы будете узнавать, тем понятнее вам будет становиться тема, но итоговый ответ останется тем же – протон и нейтрон очень сложны. Я могу предложить вам три уровня понимания, с увеличением детализации; вы же можете остановиться после любого уровня и перейти на другие темы, или можете погружаться до последнего. По поводу каждого уровня возникают вопросы, ответы на которые я могу частично дать в следующем, но новые ответы вызывают новые вопросы. В итоге – как я делаю в профессиональных обсуждениях с коллегами и продвинутыми студентами – я могу лишь отослать вас к данным полученным в реальных экспериментах, к различным влиятельным теоретическим аргументам, и компьютерным симуляциям.

Первый уровень понимания

Из чего состоят протоны и нейтроны?

Рис. 1: чрезмерно упрощённая версия протонов, состоящих только из двух верхних кварков и одного нижнего, и нейтронов, состоящих только из двух нижних кварков и одного верхнего

Чтобы упростить дело, во многих книгах, статьях и на сайтах указано, что протоны состоят из трёх кварков (двух верхних и одно нижнего) и рисуют нечто вроде рис. 1. Нейтрон такой же, только состоящий из одного верхнего и двух нижних кварков. Это простое изображение иллюстрирует то, во что верили некоторые учёные, в основном в 1960-х. Но вскоре стало понятно, что эта точка зрения чрезмерно упрощена до такой степени, что уже не является корректной.

Из более искушённых источников информации вы узнаете, что протоны состоит из трёх кварков (двух верхних и одного нижнего), удерживаемых вместе глюонами – и там может появиться картинка, похожая на рис. 2, где глюоны нарисованы в виде пружинок или ниток, удерживающих кварки. Нейтроны такие же, только с одним верхним кварком и двумя нижними.


Рис. 2: улучшение рис. 1 за счёт акцента на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне

Не такой уж плохой способ описания нуклонов, поскольку он делает акцент на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне за счёт глюонов (точно так же, как с электромагнитным взаимодействием связан фотон, частица, из которых состоит свет). Но это тоже сбивает с толку, поскольку на самом деле не объясняет, что такое глюоны и что они делают.

Есть причины двигаться дальше и описывать вещи так, как я делал в : протон состоит из трёх кварков (двух верхних и одного нижнего), кучи глюонов и горы пар кварк-антикварк (в основном это верхние и нижние кварки, но есть и несколько странных). Все они летают туда и сюда с очень большой скоростью (приближаясь к скорости света); весь этот набор удерживается при помощи сильного ядерного взаимодействия. Я продемонстрировал это на рис. 3. Нейтроны опять такие же, но с одним верхним и двумя нижними кварками; изменивший принадлежность кварк указан стрелкой.


Рис. 3: более реалистичное, хотя всё равно неидеальное изображение протонов и нейтронов

Эти кварки, антикварки и глюоны не только бешено носятся туда-сюда, но и сталкиваются друг с другом, и превращаются друг в друга через такие процессы, как аннигиляция частиц (в которой кварк и антикварк одного типа превращаются в два глюона, или наоборот) или поглощение и испускание глюона (в котором могут столкнуться кварк и глюон и породить кварк и два глюона, или наоборот).

Что у этих трёх описаний общего:

  • Два верхних кварка и нижний кварк (плюс что-то ещё) у протона.
  • Один верхний кварк и два нижних кварка (плюс ещё что-то) у нейтрона.
  • «Ещё что-то» у нейтронов совпадает с «ещё чем-то» у протонов. То есть, у нуклонов «ещё что-то» одинаковое.
  • Небольшая разница в массе у протона и нейтрона появляется из-за разницы масс нижнего кварка и верхнего кварка.
И, поскольку:
  • у верхних кварков электрический заряд равен 2/3 e (где e – заряд протона, -e – заряд электрона),
  • у нижних кварков заряд равен -1/3e,
  • у глюонов заряд 0,
  • у любого кварка и соответствующего ему антикварка общий заряд равен 0 (к примеру, у антинижнего кварка заряд +1/3e, так что у нижнего кварка и нижнего антикварка заряд будет –1/3 e +1/3 e = 0),
Каждый рисунок относит электрический заряд протона на счёт двух верхних и одного нижнего кварка, а «ещё что-то» добавляет к заряду 0. Точно так же у нейтрона заряд нулевой благодаря одному верхнему и двум нижним кваркам:
  • общий электрический заряд протона 2/3 e + 2/3 e – 1/3 e = e,
  • общий электрический заряд нейтрона 2/3 e – 1/3 e – 1/3 e = 0.
Различаются эти описания в следующем:
  • сколько «ещё чего-то» внутри нуклона,
  • что оно там делает,
  • откуда берутся масса и энергия массы (E = mc 2 , энергия, присутствующая там, даже когда частица покоится) нуклона.
Поскольку большая часть массы атома, и, следовательно, всей обычной материи, содержится в протонах и нейтронах, последний пункт крайне важен для правильного понимания нашей природы.

Рис. 1 говорит о том, что кварки, по сути, представляют собой треть нуклона – примерно так, как протон или нейтрон представляют четверть ядра гелия или 1/12 ядра углерода. Если бы этот рисунок был правдив, кварки в нуклоне двигались бы относительно медленно (со скоростями гораздо меньшими световой) с относительно слабыми взаимодействиями, действующими между ними (хотя и при наличии некоей мощной силы, удерживающей их на месте). Масса кварка, верхнего и нижнего, составляла бы тогда порядка 0,3 ГэВ/с 2 , примерно треть массы протона. Но это простое изображение и навязываемые им идеи просто неверны.

Рис. 3. даёт совершенно другое представление о протоне, как о котле частиц, снующих в нём со скоростями, близкими к световой. Эти частицы сталкиваются друг с другом, и в этих столкновениях некоторые из них аннигилируют, а другие создаются на их месте. Глюоны не имеют массы, массы верхних кварков составляют порядка 0,004 ГэВ/с 2 , а нижних – порядка 0,008 ГэВ/с 2 - в сотни раз меньше протона. Откуда берётся энергия массы протона, вопрос сложный: часть её идёт от энергии массы кварков и антикварков, часть – от энергии движения кварков, антикварков и глюонов, а часть (возможно, положительная, возможно, отрицательная) из энергии, хранящейся в сильном ядерном взаимодействии, удерживающем кварки, антикварки и глюоны вместе.

В некотором смысле рис. 2 пытается устранить разницу между рис. 1 и рис. 3. Он упрощает рис. 3, удаляя множество пар кварк-антикварк, которые, в принципе, можно назвать эфемерными, поскольку они постоянно возникают и исчезают, и не являются необходимыми. Но она производит впечатление того, что глюоны в нуклонах являются непосредственной частью сильного ядерного взаимодействия, удерживающего протоны. И она не объясняет, откуда берётся масса протона.

У рис. 1 есть другой недостаток, кроме узких рамок протона и нейтрона. Она не объясняет некоторые свойства других адронов, к примеру, пиона и ро-мезона . Те же проблемы есть и у рис. 2.

Эти ограничения и привели к тому, что своим студентам и на моём сайте, я даю картинку с рис. 3. Но хочу предупредить, что и у неё есть множество ограничений, которые я рассмотрю позже.

Стоит отметить, что чрезвычайную сложность строения, подразумеваемая рис. 3, стоило ожидать от объекта, который удерживает вместе такая мощная сила, как сильное ядерное взаимодействие. И ещё одно: три кварка (два верхних и один нижний у протона), не являющиеся частью группы пар кварков-антикварков, часто называют «валентными кварками», а пары кварков-антикварков – «морем кварковых пар». Такой язык во многих случаях технически удобен. Но он даёт ложное впечатление того, что если бы вы смогли заглянуть внутрь протона, и посмотрели на определённый кварк, вы сразу смогли бы сказать, является ли он частью моря или валентным. Этого сделать нельзя, такого способа просто нет.

Масса протона и масса нейтрона

Поскольку массы протона и нейтрона так похожи, и поскольку протон и нейтрон отличаются только заменой верхнего кварка нижним, кажется вероятным, что их массы обеспечиваются одним и тем же способом, исходят из одного источника, и их разница заключается в небольшом отличии между верхним и нижним кварками. Но три приведённых рисунка говорят о наличии трёх очень разных взглядов на происхождение массы протона.

Рис. 1 говорит о том, что верхний и нижний кварки просто составляют по 1/3 от массы протона и нейтрона: порядка 0,313 ГэВ/с 2 , или из-за энергии, необходимой для удержания кварков в протоне. И поскольку разница между массами протона и нейтрона составляет долю процента, разница между массами верхнего и нижнего кварка тоже должна составлять долю процента.

Рис. 2 менее понятен. Какая часть массы протона существует благодаря глюонам? Но, в принципе, из рисунка следует, что большая часть массы протона всё равно происходит от массы кварков, как на рис. 1.

Рис. 3 отражает более тонкий подход к тому, как на самом деле появляется масса протона (как мы можем проверить напрямую через компьютерные вычисления протона, и не напрямую с использованием других математических методов). Он сильно отличается от идей, представленных на рис. 1 и 2, и оказывается не таким простым.

Чтобы понять, как это работает, нужно думать не в терминах массы m протона, но в терминах его энергии массы E = mc 2 , энергии, связанной с массой. Концептуально правильным вопросом будет не «откуда взялась масса протона m», после которого вы можете подсчитать E, умножив m на c 2 , а наоборот: «откуда берётся энергия массы протона E», после которого можно подсчитать массу m, разделив E на c 2 .

Полезно классифицировать взносы в энергию массы протона по трём группам:

А) Энергия массы (энергия покоя) содержащихся в нём кварков и антикварков (глюоны, безмассовые частицы, никакого вклада не делают).
Б) Энергия движения (кинетическая энергия) кварков, антикварков и глюонов.
В) Энергия взаимодействия (энергия связи или потенциальная энергия), хранящаяся в сильном ядерном взаимодействии (точнее, в глюонных полях), удерживающих протон.

Рис. 3 говорит о том, что частицы внутри протона двигаются с большой скоростью, и что в нём полно безмассовых глюонов, поэтому вклад Б) больше А). Обычно, в большинстве физических систем Б) и В) оказываются сравнимыми, при этом В) часто отрицательно. Так что энергия массы протона (и нейтрона) в основном получается из комбинации Б) и В), а А) вносит малую долю. Поэтому массы протона и нейтрона появляются в основном не из-за масс содержащихся в них частиц, а из-за энергий движения этих частиц и энергии их взаимодействия, связанной с глюонными полями, порождающими силы, удерживающие протон. В большинстве других знакомых нам систем баланс энергий распределён по-другому. К примеру, в атомах и в Солнечной системе доминирует А), а Б) и В) получаются гораздо меньше, и сравнимы по величине.

Подводя итоги, укажем, что:

  • Рис. 1 предполагает, что энергия массы протона происходит из вклада А).
  • Рис. 2 предполагает, что важны оба вклада А) и В), и немного своей доли вносит Б).
  • Рис. 3 предполагает, что важны Б) и В), а вклад А) оказывается незначительным.
Нам известно, что верен рис. 3. Для его проверки мы можем провести компьютерные симуляции, и, что более важно, благодаря различным убедительным теоретическим аргументам, мы знаем, что если бы массы верхнего и нижнего кварков были нулевыми (а всё остальное осталось, как есть), масса протона практически не изменилась бы. Так что, судя по всему, массы кварков не могут делать важные вклады в массу протона.

Если рис. 3 не врёт, массы кварка и антикварка очень малы. Какие они на самом деле? Масса верхнего кварка (как и антикварка) не превышает 0,005 ГэВ/с 2 , что гораздо меньше, чем 0,313 ГэВ/с 2 , который следует из рис. 1. (Массу верхнего кварка тяжело измерить, и это значение меняется из-за тонких эффектов, так что она может оказаться гораздо меньшей, чем 0,005 ГэВ/с 2). Масса нижнего кварка примерно на 0,004 ГэВ/с 2 больше массы верхнего. Это значит, что масса любого кварка или антикварка не превышает одного процента массы протона.

Обратите внимание, что это означает (противореча рис. 1), что отношение массы нижнего кварка к верхнему не приближается к единице! Масса нижнего кварка как минимум в два раза превышает массу верхнего. Причина того, что массы нейтрона и протона так похожи, не в том, что похожи массы верхнего и нижнего кварков, а в том, что массы верхнего и нижнего кварков очень малы – и разница между ними мала, по отношению к массам протона и нейтрона. Вспомните, что для превращения протона в нейтрон, вам нужно просто заменить один из его верхних кварков на нижний (рис. 3). Этой замены достаточно для того, чтобы сделать нейтрон немного тяжелее протона, и поменять его заряд с +е на 0.

Кстати, тот факт, что различные частицы внутри протона сталкиваются друг с другом, и постоянно появляются и исчезают, не влияет на обсуждаемые нами вещи – энергия сохраняется в любом столкновении. Энергия массы и энергия движения кварков и глюонов может меняться, как и энергия их взаимодействия, но общая энергия протона не меняется, хотя всё внутри него постоянно меняется. Так что масса протона остаётся постоянной, несмотря на его внутренний вихрь.

На этом моменте можно остановиться и впитать полученную информацию. Поразительно! Практически вся масса, содержащаяся в обычной материи, происходит из массы нуклонов в атомах. И большая часть этой массы происходит из хаоса, присущего протону и нейтрону – из энергии движения кварков, глюонов и антикварков в нуклонах, и из энергии работы сильных ядерных взаимодействий, удерживающих нуклон в целом состоянии. Да: наша планета, наши тела, наше дыхание являются результатом такого тихого, и, до недавнего времени, невообразимого столпотворения.

Изучая строение вещества, физики узнали, из чего сделаны атомы, добрались до атомного ядра и расщепили его на протоны и нейтроны. Все эти шаги давались довольно легко - надо было лишь разогнать частицы до нужной энергии, столкнуть их друг с другом, и тогда они сами разваливались на составные части.

А вот с протонами и нейтронами такой трюк уже не прошел. Хотя они и являются составными частицами, их не удается «разломать на части» ни в каком даже самом сильном столкновении. Поэтому физикам потребовались десятилетия для того, чтобы придумать разные способы заглянуть внутрь протона, увидеть его устройство и форму. В наши дни изучение структуры протона - одна из самых активных областей физики элементарных частиц.

Природа дает намеки

История изучения структуры протонов и нейтронов берет свое начало с 1930-х годов. Когда в дополнение к протонам были открыты нейтроны (1932), то, измерив их массу, физики с удивлением обнаружили, что она очень близка к массе протона. Более того, оказалось, что протоны и нейтроны «чувствуют» ядерное взаимодействие совершенно одинаковым образом. Настолько одинаковым, что, с точки зрения ядерных сил, протон и нейтрон можно считать как бы двумя проявлениями одной и той же частицы - нуклона: протон - это электрически заряженный нуклон, а нейтрон - нейтральный нуклон. Поменяйте протоны на нейтроны - и ядерные силы (почти) ничего не заметят.

Физики это свойство природы выражают как симметрию - ядерное взаимодействие симметрично относительно замены протонов на нейтроны, подобно тому как бабочка симметрична относительно замены левого на правое. Эта симметрия, кроме того что она сыграла важную роль в ядерной физике, была на самом деле первым намеком на то, что у нуклонов имеется интересное внутреннее строение. Правда, тогда, в 30-е годы, физики этот намек не осознали.

Понимание пришло позже. Началось с того, что в 1940–50-е годы в реакциях столкновения протонов с ядрами различных элементов ученые с удивлением обнаруживали всё новые и новые частицы. Не протоны, не нейтроны, не открытые к тому времени пи-мезоны, которые удерживают нуклоны в ядрах, а какие-то совсем новые частицы. При всём своем разнообразии эти новые частицы обладали двумя общими свойствами. Во-первых, они, так же как и нуклоны, очень охотно участвовали в ядерных взаимодействиях - сейчас такие частицы называют адронами. А во-вторых, они были исключительно нестабильными. Самые неустойчивые из них распадались на другие частицы всего за триллионную долю наносекунды, не успев пролететь даже на размер атомного ядра!

Долгое время «зоопарк» адронов представлял из себя полную мешанину. В конце 1950-х годов физики узнали уже достаточно много разных видов адронов, начали сравнивать их друг с другом и вдруг увидели некую общую симметричность, даже периодичность их свойств. Была высказана догадка, что внутри всех адронов (в том числе и нуклонов) сидят некие простые объекты, которые получили название «кварки». Комбинируя кварки разными способами, можно получать разные адроны, причем именно такого типа и с такими свойствами, которые обнаруживались в эксперименте.

Что делает протон протоном?

После того как физики открыли кварковое устройство адронов и узнали, что кварки бывают нескольких разных сортов, стало понятно, что из кварков можно сконструировать много различных частиц. Так что уже никого не удивляло, когда последующие эксперименты продолжали один за другим находить новые адроны. Но среди всех адронов обнаружилось целое семейство частиц, состоящих, точно так же как и протон, только из двух u -кварков и одного d -кварка. Этакие «собратья» протона. И вот тут физиков подстерегал сюрприз.

Давайте сначала сделаем одно простое наблюдение. Если у нас есть несколько предметов, состоящих из одинаковых «кирпичиков», то более тяжелые предметы содержат больше «кирпичиков», а более легкие - меньше. Это очень естественный принцип, который можно называть принципом комбинирования или принципом надстройки, и он прекрасно выполняется как в повседневной жизни, так и в физике. Он проявляется даже в устройстве атомных ядер - ведь более тяжелые ядра просто состоят из большего числа протонов и нейтронов.

Однако на уровне кварков этот принцип совершенно не работает, и, надо признаться, физики еще не до конца разобрались, почему. Оказывается, тяжелые собратья протона тоже состоят из тех же самых кварков, что и протон, хотя они в полтора, а то и в два раза тяжелее протона. Они отличаются от протона (и различаются между собой) не составом, а взаимным расположением кварков, тем, в каком состоянии относительно друг друга эти кварки находятся. Достаточно изменить взаимное положение кварков - и мы из протона получим другую, заметно более тяжелую, частицу.

А что будет, если все-таки взять и собрать вместе больше трех кварков? Получится ли новая тяжелая частица? Удивительно, но не получится - кварки разобьются по трое и превратятся в несколько разрозненных частиц. Почему-то природа «не любит» объединять много кварков в одно целое! Лишь совсем недавно, буквально в последние годы, стали появляться намеки на то, что некоторые многокварковые частицы всё же существуют, но это лишь подчеркивает, насколько природа их не любит.

Из этой комбинаторики следует очень важный и глубокий вывод - масса адронов вовсе не складывается из массы кварков. Но если массу адрона можно увеличить или уменьшить простым перекомбинированием составляющих его кирпичиков, значит, вовсе не сами кварки ответственны за массу адронов. И действительно, в последующих экспериментах удалось узнать, что масса самих кварков составляет лишь около двух процентов от массы протона, а вся остальная тяжесть возникает за счет силового поля (ему отвечают специальные частицы - глюоны), связывающего кварки вместе. Изменяя взаимное расположение кварков, например отодвигая их подальше друг от друга, мы тем самым изменяем глюонное облако, делаем его более массивным, из-за чего и возрастает масса адрона (рис. 1).

Что творится внутри быстро летящего протона?

Всё описанное выше касается неподвижного протона, на языке физиков - это устройство протона в его системе покоя. Однако в эксперименте структура протона была впервые обнаружена в других условиях - внутри быстро летящего протона.

В конце 1960-х годов в экспериментах по столкновению частиц на ускорителях было замечено, что летящие с околосветовой скоростью протоны вели себя так, словно энергия внутри них не распределена равномерно, а сконцентрирована в отдельных компактных объектах. Эти сгустки вещества внутри протонов знаменитый физик Ричард Фейнман предложил называть партонами (от английского part - часть).

В последующих экспериментах были изучены многие свойства партонов - например, их электрический заряд, их количество и доля энергии протона, которую каждый из них несет. Оказывается, заряженные партоны - это кварки, а нейтральные партоны - это глюоны. Да-да, те самые глюоны, которые в системе покоя протона просто «прислуживали» кваркам, притягивая их друг к другу, теперь являются самостоятельными партонами и наряду с кварками несут «вещество» и энергию быстро летящего протона. Опыты показали, что примерно половина энергии запасена в кварках, а половина - в глюонах.

Партоны удобнее всего изучать в столкновении протонов с электронами. Дело в том, что, в отличие от протона, электрон не участвует в сильных ядерных взаимодействиях и его столкновение с протоном выглядит весьма просто: электрон на очень короткое время испускает виртуальный фотон, который врезается в заряженный партон и порождает в конце концов большое число частиц (рис. 2). Можно сказать, что электрон является отличным скальпелем для «вскрытия» протона и разделения его на отдельные части - правда, лишь на очень короткое время. Зная, как часто происходят такие процессы на ускорителе, можно измерить количество партонов внутри протона и их заряды.

Кто такие партоны на самом деле?

И здесь мы подходим к еще одному поразительному открытию, которое сделали физики, изучая столкновения элементарных частиц при высоких энергиях.

В обычных условиях вопрос о том, из чего состоит тот или иной предмет, имеет универсальный ответ для всех систем отсчета. Например, молекула воды состоит из двух атомов водорода и одного атома кислорода - и не важно, смотрим ли мы на неподвижную или на движущуюся молекулу. Однако это правило - казалось бы, такое естественное! - нарушается, если речь идет об элементарных частицах, движущихся со скоростями, близкими к скорости света. В одной системе отсчета сложная частица может состоять из одного набора субчастиц, а в другой системе отсчета - из другого. Получается, что состав - понятие относительное !

Как такое может быть? Ключевым здесь является одно важное свойство: количество частиц в нашем мире не фиксировано - частицы могут рождаться и исчезать. Например, если столкнуть вместе два электрона с достаточно большой энергией, то вдобавок к этим двум электронам может родиться либо фотон, либо электрон-позитронная пара, либо еще какие-нибудь частицы. Всё это разрешено квантовыми законами, именно так и происходит в реальных экспериментах.

Но этот «закон несохранения» частиц работает при столкновениях частиц. А как же получается, что один и тот же протон с разных точек зрения выглядит состоящим из разного набора частиц? Дело в том, что протон - это не просто три кварка, сложенные вместе. Между кварками существует силовое глюонное поле. Вообще, силовое поле (как, например, гравитационное или электрическое поле) - это некая материальная «сущность», которая пронизывает пространство и позволяет частицам оказывать силовое влияние друг на друга. В квантовой теории поле тоже состоит из частиц, правда из особенных - виртуальных. Количество этих частиц не фиксировано, они постоянно «отпочковываются» от кварков и поглощаются другими кварками.

Покоящийся протон действительно можно представить себе как три кварка, между которыми перескакивают глюоны. Но если взглянуть на тот же протон из другой системы отсчета, словно из окна проезжающего мимо «релятивистского поезда», то мы увидим совсем иную картину. Те виртуальные глюоны, которые склеивали кварки вместе, покажутся уже менее виртуальными, «более настоящими» частицами. Они, конечно, по-прежнему рождаются и поглощаются кварками, но при этом какое-то время живут сами по себе, летят рядом с кварками, словно настоящие частицы. То, что выглядит простым силовым полем в одной системе отсчета, превращается в другой системе в поток частиц! Заметьте, сам протон мы при этом не трогаем, а только смотрим на него из другой системы отсчета.

Дальше - больше. Чем ближе скорость нашего «релятивистского поезда» к скорости света, тем более удивительную картину внутри протона мы увидим. По мере приближения к скорости света мы заметим, что глюонов внутри протона становится всё больше и больше. Более того, они иногда расщепляются на кварк-антикварковые пары, которые тоже летят рядом и тоже считаются партонами. В результате ультрарелятивистский протон, т. е. протон, движущийся относительно нас со скоростью, очень близкой к скорости света, предстает в виде взаимопроникающих облачков кварков, антикварков и глюонов, которые летят вместе и как бы поддерживают друг друга (рис. 3).

Читатель, знакомый с теорией относительности, может забеспокоиться. Вся физика основана на том принципе, что любой процесс протекает одинаково во всех инерциальных системах отсчета. А тут получается, что состав протона зависит от системы отсчета, из которой мы его наблюдаем?!

Да, именно так, но это никак не нарушает принцип относительности. Результаты физических процессов - например, какие частицы и сколько рождаются в результате столкновения - действительно оказываются инвариантными, хотя состав протона зависит от системы отсчета.

Эта необычная на первый взгляд, но удовлетворяющая всем законам физики ситуация схематично проиллюстрирована на рисунке 4. Здесь показано, как столкновение двух протонов с большой энергией выглядит в разных системах отсчета: в системе покоя одного протона, в системе центра масс, в системе покоя другого протона. Взаимодействие между протонами осуществляется через каскад расщепляющихся глюонов, но только в одном случае этот каскад считается «внутренностью» одного протона, в другом случае - частью другого протона, а в третьем - это просто некий объект, которым обмениваются два протона. Этот каскад существует, он реален, но к какой части процесса его надо относить - зависит от системы отсчета.

Трехмерный портрет протона

Все результаты, про которые мы только что рассказали, базировались на экспериментах, выполненных довольно давно - в 60–70-х годах прошлого века. Казалось бы, с тех пор всё уже должно быть изучено и все вопросы должны найти свои ответы. Но нет - устройство протона по-прежнему остается одной из самых интересных тем в физике элементарных частиц. Более того, в последние годы интерес к ней снова возрос, потому что физики поняли, как получить «трехмерный» портрет быстро движущегося протона, который оказался гораздо сложнее портрета неподвижного протона.

Классические эксперименты по столкновению протонов рассказывают лишь о количестве партонов и их распределении по энергии. В таких экспериментах партоны участвуют как независимые объекты, а значит, из них нельзя узнать, как партоны расположены друг относительно друга, как именно они складываются в протон. Можно сказать, что долгое время физикам был доступен лишь «одномерный» портрет быстро летящего протона.

Для того чтобы построить настоящий, трехмерный, портрет протона и узнать распределение партонов в пространстве, требуются гораздо более тонкие эксперименты, чем те, которые были возможны 40 лет назад. Такие эксперименты физики научились ставить совсем недавно, буквально в последнее десятилетие. Они поняли, что среди огромного количества разных реакций, которые происходят при столкновении электрона с протоном, есть одна особенная реакция - глубоко-виртуальное комптоновское рассеяние , - которая и сможет рассказать о трехмерной структуре протона.

Вообще, комптоновским рассеянием, или эффектом Комптона, называют упругое столкновение фотона с какой-нибудь частицей, например с протоном. Выглядит оно так: прилетает фотон, поглощается протоном, который на короткое время переходит в возбужденное состояние, а потом возвращается в исходное состояние, испуская фотон в каком-нибудь направлении.

Комптоновское рассеяние обычных световых фотонов не приводит ни к чему интересному - это простое отражение света от протона. Для того чтобы «вступила в игру» внутренняя структура протона и «почувствовались» распределения кварков, надо использовать фотоны очень большой энергии - в миллиарды раз больше, чем в обычном свете. А как раз такие фотоны - правда, виртуальные - легко порождает налетающий электрон. Если теперь объединить одно с другим, то и получится глубоко-виртуальное комптоновское рассеяние (рис. 5).

Главная особенность этой реакции состоит в том, что она не разрушает протон. Налетающий фотон не просто бьет по протону, а как бы тщательно его ощупывает и затем улетает прочь. То, в какую сторону он улетает и какую часть энергии у него отбирает протон, зависит от устройства протона, от взаимного расположения партонов внутри него. Именно поэтому, изучая этот процесс, можно восстановить трехмерный облик протона, как бы «вылепить его скульптуру».

Правда, для физика-экспериментатора сделать это очень непросто. Нужный процесс происходит довольно редко, и зарегистрировать его трудно. Первые экспериментальные данные об этой реакции были получены лишь в 2001 году на ускорителе HERA в немецком ускорительном комплексе DESY в Гамбурге; новая серия данных сейчас обрабатывается экспериментаторами. Впрочем, уже сегодня, на основании первых данных, теоретики рисуют трехмерные распределения кварков и глюонов в протоне. Физическая величина, про которую физики раньше строили лишь предположения, наконец стала «проступать» из эксперимента.

Ждут ли нас какие-нибудь неожиданные открытия в этой области? Вполне вероятно, что да. В качестве иллюстрации скажем, что в ноябре 2008 года появилась интересная теоретическая статья, в которой утверждается, что быстро летящий протон должен иметь вид не плоского диска, а двояковогнутой линзы. Так получается потому, что партоны, сидящие в центральной области протона, сильнее сжимаются в продольном направлении, чем партоны, сидящие на краях. Было бы очень интересно проверить эти теоретические предсказания экспериментально!

Почему всё это интересно физикам?

Зачем вообще физикам надо знать, как именно распределено вещество внутри протонов и нейтронов?

Во-первых, этого требует сама логика развития физики. В мире есть много поразительно сложных систем, с которыми современная теоретическая физика пока не может полностью совладать. Адроны - одна из таких систем. Разбираясь с устройством адронов, мы оттачиваем способности теоретической физики, которые вполне могут оказаться универсальными и, возможно, помогут в чем-то совсем ином, например при изучении сверхпроводников или других материалов с необычными свойствами.

Во-вторых, тут есть непосредственная польза для ядерной физики. Несмотря на почти вековую историю изучения атомных ядер, теоретики до сих пор не знают точный закон взаимодействия протонов и нейтронов.

Им приходится этот закон отчасти угадывать, исходя из экспериментальных данных, отчасти конструировать на основе знаний о структуре нуклонов. Тут-то и помогут новые данные о трехмерном устройстве нуклонов.

В-третьих, несколько лет назад физики сумели получить ни много ни мало новое агрегатное состояние вещества - кварк-глюонную плазму. В таком состоянии кварки не сидят внутри отдельных протонов и нейтронов, а свободно гуляют по всему сгустку ядерного вещества. Достичь его можно, например, так: тяжелые ядра разгоняются в ускорителе до скорости, очень близкой к скорости света, и затем сталкиваются лоб в лоб. В этом столкновении на очень короткое время возникает температура в триллионы градусов, которая и расплавляет ядра в кварк-глюонную плазму. Так вот, оказывается, что теоретические расчеты этого ядерного плавления требуют хорошего знания трехмерного устройства нуклонов.

Наконец, эти данные очень нужны для астрофизики. Когда тяжелые звезды взрываются в конце своей жизни, от них часто остаются чрезвычайно компактные объекты - нейтронные и, возможно, кварковые звезды. Сердцевина этих звезд целиком состоит из нейтронов, а может быть даже и из холодной кварк-глюонной плазмы. Такие звезды уже давно обнаружены, но что происходит у них внутри - можно только догадываться. Так что хорошее понимание кварковых распределений может привести к прогрессу и в астрофизике.

Все физические тела природы построены из разновидности материи, называемой веществом. Вещества подразделяются на две основные группы - вещества простые и сложные.

Сложными веществами называются такие вещества, которые путем химических реакций могут быть разложены на другие, более простые вещества. В отличие от сложных простыми веществами называются такие, которые химическим путем не могут быть разложены на еще более простые вещества.

Примером сложного вещества может служить вода, которая путем химической реакции может быть разложена на два других, более простых вещества - водород и кислород. Что же касается последних двух, то они химическим путем уже не могут быть разложены на более простые вещества, а поэтому являются простыми веществами, или, иначе, химическими элементами.

В первой половине XIX века в науке существовало предположение, что химические элементы являются неизменными веществами, не имеющими общей связи друг с другом. Однако русский ученый Д. И. Менделеев (1834 - 1907) впервые в 1869 г. выявил связь химических элементов, показав, что качественная характеристика каждого из них находится в зависимости от его количественной характеристики - атомного веса.

Изучая свойства химических элементов, Д. И. Менделеев подметил, что свойства их периодически повторяются в зависимости от их атомного веса. Эту периодичность он отобразил в форме таблицы, вошедшей в науку под названием «Периодическая система элементов Менделеева».

Ниже приведена современная периодическая таблица химических элементов Менделеева.

Атомы

Согласно современным представлениям науки каждый химический элемент состоит из совокупности мельчайших материальных (вещественных) частиц, называемых атомами.

Атомом называется самая малая доля химического элемента, которая уже не может быть разложена химическим путем на другие, более мелкие и простые материальные частицы.

Атомы различных по своей природе химических элементов отличаются друг от друга своими физико-химическими свойствами, структурой, размерами, массой, атомным весом, собственной энергией и некоторыми иными свойствами. Например, атом водорода резко отличается по своим свойствам и структуре от атома кислорода, а последний - от атома урана и т. д.

Установлено, что атомы химических элементов чрезвычайно малы по своим размерам. Если условно принять, что атомы имеют шарообразную форму, то поперечники их должны быть равны стомиллионным долям сантиметра. Например, поперечник атома водорода - самого маленького атома в природе - равен одной стомиллионной доле сантиметра (10 -8 см), а поперечники самых больших атомов, например атома урана, не превышают трех стомиллионных долей сантиметра (3 · 10 -8 см). Следовательно, атом водорода во столько раз меньше шарика радиусом в один сантиметр, во сколько последний меньше земного шара.

В соответствии с весьма малыми размерами атомов их масса также очень мала. Например, масса атома водорода равна т = 1,67· 10 -24 г. Это значит, что в одном грамме водорода содержится примерно 6 · 10 23 атомов.

За условную единицу измерения атомных весов химических элементов принята 1/16 часть веса атома кислорода, В соответствии с этим атомным весом химического элемента называют отвлеченное число, показывающее, во сколько раз вес данного химического элемента больше 1/16 части веса атома кислорода.

В периодической таблице элементов Д. И. Менделеева приведены атомные веса всех химических элементов (см. число, помещенное под названием элемента). Из этой таблицы мы видим, что наиболее легким атомом является атом водорода, имеющий атомный вес 1,008. Атомный вес углерода равен 12, кислорода - 16 и т. д.

Что же касается более тяжелых химических элементов, то их атомный вес превышает атомный вес водорода более чем в двести раз. Так, атомный вер ртути равен 200,6, радия - 226 и т.д.Чем выше порядок номера, занимаемого химическим элементом в периодической системе элементов, тем больше атомный вес.

Большая часть атомных весов химических элементов выражается дробными числами. Это в известной мере объясняется тем, что такие химические элементы состоят из совокупности скольких сортов атомов, обладающих различными атом весами, но одинаковыми химическими свойствами.

Химические элементы, занимающие один вый номер в периодической системе элементов, а следовательно, обладающие одинаковыми химическими свойствами, но различными атомными весами, называются изотопами.

Изотопы найдены у большинства химических элементов, имеет два изотопа, кальций - четыре, цинк - пять, олово - одиннадцать и т. д. Многие изотопы получены искусстве путем, среди них некоторые имеют большое практическое значение.

Элементарные частицы вещества

Долгое время считалось, что атомы химических элем являются пределом делимости вещества, т. е. как бы элементарными "кирпичиками" мироздания. Современная наука отвергла эту гипотезу, установив, что атом любого химического эле представляет собой совокупность еще более мелких материальных частиц, чем сам атом.

Согласно электронной теории строения вещества атом любого химического элемента представляет собой систему, состоящую из центрального ядра, вокруг которого вращаются "элементарные" вещественные частицы, называемые электронами. Ядра атомов, согласно общепринятым взглядам состоят из совокупности "элементарных" вещественных частиц - протонов и нейтронов.

Чтобы понять строение атомов и физико-химические процессы в них, необходимо хотя бы вкратце ознакомиться с основными характеристиками элементарных частиц, входящих в состав атомов.

Установлено, что электрон - это вещественная частица, обладающая самым малым наблюдаемым в природе отрицательным электрическим зарядом .

Если условно считать, что электрон как частица имеет шарообразную форму, то поперечник электрона должен быть равным 4 · 10 -13 см, т. е. он меньше поперечника любого атома в десятки тысяч раз.

Электрон, как и всякая иная вещественная частица, обладает массой. "Масса покоя" электрона, т. е. та масса, которой он обладает в состоянии относительного покоя, равна m о = 9,1 · 10 -28 г.

Исключительно малая "масса покоя" электрона свидетельствует о том, что инертные свойства электрона проявляются исключительно слабо, а это значит, что электрон под влиянием переменной электрической силы может колебаться в пространстве с частотой во много миллиардов периодов в секунду.

Масса электрона настолько мала, что для получения одного грамма электронов их потребовалось бы взять 1027 единиц. Чтобы иметь хотя бы некоторое физическое представление об этом колоссально большом числе, приведем такой пример. Если бы можно было один грамм электронов расположить на прямой линии вплотную друг к другу, то они образовали бы цепочку длиной в четыре миллиарда километров.

Масса электрона, как и всякой иной вещественной микрочастицы, зависит от скорости его движения. Электрон, находясь в состоянии относительного покоя, обладает "массой покоя", имеющей механическую природу, как и масса всякого физического тела. Что же касается "массы движения" электрона, увеличивающейся с ростом скорости его движения, то она электромагнитного происхождения. Она обусловлена наличием у движущегося электрона электромагнитного поля как некоторого вида материи, обладающего массой и электромагнитной энергией.

Чем быстрее движется электрон, тем больше проявляются инерционные свойства его электромагнитного поля, тем, следовательно, больше масса последнего и соответственно электромагнитная энергия его. Так как электрон со своим электромагнитным полем составляет единую, органически связанную материальную систему, то естественно, что массу движения электромагнитного поля электрона можно непосредственно приписать самому электрону.

Электрон, помимо свойств частицы, обладает и волновыми свойствами. Опытом установлено, что поток электронов, подобно световому потоку, распространяется в форме волнообразного движения. Характер волнового движения электронного потока в пространстве подтверждается явлениями интерференции и дифракции электронных волн.

Интерференция электронов - это явление наложения электронных воли друг на друга, а дифракция электронов - это явление огибания электронными волнами краев узкой щели, сквозь которую проходит электронный поток. Следовательно, электрон - это не просто частица, а "частица-волна", длина которой зависит от массы и скорости движения электрона.

Установлено, что электрон, помимо своего поступательного движения, совершает еще и вращательное движение вокруг своей оси. Этот вид движения электрона получил название "спина" (от английского слова "спин" - веретено). В результате такого движения электрон, кроме электрических свойств, обусловленных электрическим зарядом, приобретает еще и магнитные свойства, напоминая в этом отношении элементарный магнитик.

Протон - это вещественная частица, обладающая положительным электрическим зарядом, равным по абсолютной величине электрическому заряду электрона.

Масса протона равна 1,67 · 10 -24 г, т. е. она примерно в 1840 раз больше "массы покоя" электрона.

В отличие от электрона и протона, нейтрон не обладает электрическим зарядом, т. е. он является электронейтральной «элементарной» частицей вещества. Масса нейтрона практически равна массе протона.

Электроны, протоны и нейтроны, находясь в составе атомов, взаимодействуют друг с другом. В частности, электроны и протоны взаимно притягиваются друг к другу как частицы, обладающие разноименными электрическими зарядами. Одновременно с этим электрон от электрона и протон от протона отталкиваются как частицы, обладающие одноименными электрическими зарядами.

Взаимодействие всех этих электрически заряженных частиц происходит через их электрические поля. Эти поля представляют собой особый вид материи, состоящей из совокупности элементарных материальных частиц, называемых фотонами. Каждый фотон обладает строго определенным присущим ему количеством энергии (квантом энергии).

Взаимодействие электрически заряженных материальных вещественных частиц осуществляется путем обмена их друг с другом фотонами. Сила взаимодействия электрически заряженных частиц обычно называется электрической силой .

Нейтроны и протоны, находящиеся в ядрах атомов, также взаимодействуют друг с другом. Однако это взаимодействие их осуществляется уже не через электрическое поле, так как нейтрон - электронейтральная частица вещества, а через так называемое ядерное поле .

Это поле также представляет собой особый вид материи, состоящей из совокупности элементарных материальных частиц, называемых мезонами . Взаимодействие нейтронов и протонов осуществляется путем обмена их друг с другом мезонами. Сила взаимодействия нейтронов и протонов друг с другом называется ядерной силой .

Установлено, что ядерные силы действуют в ядрах атомов в пределах исключительно малых расстояний - примерно 10 - 13 см.

Ядерные силы значительно превосходят по своей величине электрические силы взаимного отталкивания протонов в ядре атома. Это приводит к тому, что они в состоянии не только преодолеть внутри ядер атомов силы взаимного отталкивания протонов, но и создать из совокупности протонов и нейтронов весьма прочные системы ядер.

Устойчивость ядра каждого атома зависит от соотношения двух противоречивых сил - ядерных (взаимное притяжение протонов и нейтронов) и электрических (взаимное отталкивание протонов).

Мощные ядерные силы, действующие в ядрах атомов, способствуют превращению нейтронов и протонов друг в друга. Эти взаимопревращения нейтронов и протонов осуществляются в результате выделения или поглощения ими более легких элементарных частиц, например мезонов.

Рассмотренные нами частицы названы элементарными потому, что они не состоят из совокупности других, более простых частиц материи. Но в то же время не надо забывать, что они способны превращаться друг в друга, возникать за счет друг друга. Таким образом, эти частицы являются некоторыми сложными образованиями, т. е. их элементарность условна.

Химическое строение атомов

Простейшим по своему устройству атомом является атом водорода. Он состоит из совокупности только двух элементарных частиц - протона и электрона. Протон в системе атома водорода играет роль центрального ядра, вокруг которого по некоторой орбите вращается электрон. На рис. 1 схематически показана модель атома водорода.

Рис. 1. Схема строения атома водорода

Эта модель - только грубое приближение к действительности. Дело в том, что электрон как "частица-волна" не обладает резко отграниченным от внешней среды объемом. А это значит, что следует говорить не о некоторой точной линейной орбите электрона, а о своеобразном электронном облачке. При этом электрон чаще всего занимает некоторую среднюю линию облачке, являющуюся одной из возможных орбит его в атоме.

Надо сказать, что и сама орбита электрона не является строга неизменной и неподвижной в атоме - она тоже в силу изменения массы электрона совершает некоторое вращательное движение. Следовательно, движение электрона в атоме носит относительно сложный характер. Так как ядро атома водорода (протон) и вращающийся вокруг него электрон обладают разноименными электрическими зарядами, то они взаимно притягиваются.

Одновременно с этим стой энергии электрон, вращаясь вокруг ядра атома, развивает центробежную силу, стремящуюся удалить его от ядра. Следовательно, электрическая сила взаимного притяжения ядра атома и электрона и центробежная сила, действующая на электрон, - силы противоречивые.

При равновесии их электрон занимает относительно устойчивое положение на некоторой орбите в атоме. Так как масса электрона очень мала, то для уравновешивания силы притяжения к ядру атома он должен вращаться с громадной скоростью, равной примерно 6· 10 15 оборотам в секунду. Это значит, что электрон в системе атома водорода, как и всяком ином атоме, движется по своей орбите с линейной скоростью, превышающей тысячу километров в секунду.

В нормальных условиях электрон вращается в атоме рода по наиболее близко расположенной к ядру орбите. При этом он обладает минимальным возможным количеством энергии. Если же по тем или иным причинам, например под воздействием каких-либо иных материальных частиц, вторгнувшихся систему атома, электрон перейдет на более удаленную от атома орбиту, то он уже будет обладать несколько большим количеством энергии.

Однако на этой новой орбите электрон но пребывает ничтожно малое время, после чего он снова вращается на ближайшую к ядру атома орбиту. При этом ходе он отдает излишек своей энергии в виде кванта эле магнитного излучения - лучистой энергии (рис. 2).

Рис. 2. Электрон при переходе с далекой орбиты на более близкую к ядру атома излучает квант лучистой энергии

Чем больше получает извне энергии электрон, тем на удаленную от ядра атома орбиту он переходит и тем большее количество электромагнитной энергии он излучает, когда вращается на ближайшую к ядру орбиту.

Измеряя количество энергии, излучаемой электроном при переходе с различных орбит на ближайшую к ядру атома, удалось установить, что электрон в системе атома водорода, как и в системе любого иного атома, может переходить не на любую произвольную орбиту, на строго определенную в соответствии с той энергией, которую он получает под действием внешней силы. Орбиты, которые может занимать электрон в атоме, называются дозволенными орбитами.

Так как положительный заряд ядра атома водорода (заряд протона) и отрицательный заряд электрона численно равны, то суммарный их заряд равен нулю. Это значит, что атом водорода, находясь в нормальном состоянии, является электронейтральной частицей.

Это справедливо для атомов всех химических элементов: атом любого химического элемента, находящийся в нормальном со стоянии, является электронейтральной частицей из-за численного равенства его положи тельных и отрицательных зарядов.

Поскольку в состав ядра атома водорода входит только одна "элементарная" частица - протон, то так называемое массовое число этого ядра равно единице. Массовым числом ядра атома любого химического элемента называется общее число протонов и нейтронов входящих в состав этого ядра.

Природный водород в основном состоит из совокупности атомов с массовым числом, равным единице. Однако в составе его имеется и другой сорт атомов водорода, с массовым числом равным двум. Ядра атомов этого тяжелого водорода называемые дейтонами, состоят из двух частиц - протона и нейтрона. Этот изотоп водорода называется дейтерием.

В природном водороде дейтерия содержится весьма незначительное количество. На каждые шесть тысяч атомов легкого водорода (массовое число равно единице) приходится только один атом дейтерия (тяжелого водорода). Существует еще один изотоп водорода - сверхтяжелый водород получивший название тритий. В ядрах атома этого изотопе водорода имеются три частицы: протон и два нейтрона, связанных друг с другом ядерными силами. Массовое число ядра атома трития равно трем, т. е. атом трития в три раза тяжелей атома легкого водорода.

Хотя атомы изотопов водорода и имеют различные массы но все же они обладают одинаковыми химическими свойствами, Например, легкий водород, вступая в химическое взаимодействие с кислородом, образует с ним сложное вещество - воду. Аналогично этому изотоп водорода - дейтерий, соединяясь с кислородом, образует воду, которая в отличие от обычной воды называется тяжелой водой. Тяжелая вода находит большое применение в процессе производства ядерной (атомной) энергии.

Следовательно, химические свойства атомов зависят не от массы их ядер, а только от строения электронной оболочки атома. Поскольку в атомах легкого водорода, дейтерия и трития имеется одинаковое количество электронов (по одному на каждый атом), эти изотопы имеют одинаковые химические свойства.

Химический элемент водород не случайно занимает первый номер в периодической системе элементов. Дело в том, что между номером любого элемента в периодической системе элементов и величиной заряда ядра атома этого элемента существует некоторая связь. Ее можно сформулировать так: порядковый номер всякого химического элемента в периодической системе элементов численно равен положительному заряду ядра этого элемента, а следовательно, и числу вращающихся вокруг него электронов.

Так как водород занимает первый номер в периодической системе элементов, то это значит, что положительный заряд ядра его атома равен единице и что вокруг ядра вращается один электрон.

Химический элемент гелий занимает второй номер в периодической системе элементов. Это значит, что он имеет положительный электрический заряд ядра, равный двум единицам, т. е. в составе его ядра должно быть два протона, а в электронной оболочке атома - два электрода.

Природный гелий состоит из двух изотопов - тяжелого и легкого гелия. Массовое число тяжелого гелия равно четырем. Это значит, что в состав ядра атома тяжелого гелия, помимо вышеупомянутых двух протонов, должны входить еще два нейтрона. Что же касается легкого гелия, то его массовое число равно трем, т. е. в состав его ядра, помимо двух протонов, должен входить еще один нейтрон.

Установлено, что в природном гелии число атомов легкого гелия составляет примерно одну миллионную долю атомов тяжелого гения. На рис. 3 показана схематически модель атома гелия.

Рис. 3. Схема строения атома гелия

Дальнейшее усложнение строения атомов химических элементов идет за счет увеличения количества протонов и нейтронов в ядрах этих атомов и одновременно за счет увеличения количества электронов, вращающихся вокруг ядер (рис. 4). Пользуясь периодической системой элементов, легко определить число электронов, протонов и нейтронов входящих в состав различных атомов.

Рис. 4. Схемы строения ядер атомов: 1 - гелий, 2 - углерод, 3 - кислород

Порядковый номер химического элемента равен числу протонов, находящихся в ядре атома, а одновременно с этим числу электронов, вращающихся вокруг ядра. Что же касается атомного веса, то он приближенно равен массовому числу атома, т. е. числу вместе взятых протонов и нейтронов в ядре. Следовательно, вычитая из атомного веса элемента число, равное порядковому номеру элемента, можно определить, какое количество нейтронов содержится в данном ядре.

Установлено, что ядра легких химических элементов, имеющих в своем составе поровну протонов и нейтронов, отличаются весьма большой прочностью, так как ядерные силы в них относительно велики. Например, ядро атома тяжелого гелия отличается исключительно большой прочностью, так как оно составлено из двух протонов и двух нейтронов, связанных друг с другом мощными ядерными силами.

Ядра атомов более тяжелых химических элементов содержат в своем составе уже неодинаковое количество протонов и нейтронов, поэтому их связь в ядре слабее, чем в ядрах легких химических элементов. Ядра этих элементов могут быть относительно легко расщеплены при бомбардировке их атомными «снарядами» (нейтронами, ядрами атома гелия и т. д.).

Что же касается наиболее тяжелых химических элементов, в частности радиоактивных, то их ядра отличаются настолько малой прочностью, что они самопроизвольно распадаются на составные части. К примеру, атомы радиоактивного элемента радия, состоящего из совокупности 88 протонов и 138 нейтронов, самопроизвольно распадаются, превращаясь в атомы радиоактивного элемента радона. Атомы же последнего в свою очередь распадаются на составные части, переходя в атомы других элементов.

Ознакомившись вкратце с составными частями ядер атомов химических элементов, рассмотрим строение электронных оболочек атомов. Как известно, электроны могут вращаться вокруг ядер атомов только по строго определенным орбитам. При этом они так сгруппированы в электронной оболочке каждого атома, что можно различить отдельные слои электронов.

В каждом слое может находиться количество электронов, не превышающее строго определенного числа. Так, например, в первом, ближайшем к ядру атома электронном слое может находиться максимум два электрона, во втором - не более восьми электронов и т. д.

Те атомы, у которых внешние электронные слои целиком заполнены, имеют наиболее устойчивую электронную оболочку. Это значит, что данный атом прочно держит все свои электроны и не нуждается в получении извне добавочного количества их. Например, атом гелия имеет два электрона, целиком заполняющих первый электронный слой, а атом неона имеет десять электронов, из которых первые два целиком заполняют первый электронный слой, а остальные - второй (рис. 5).

Рис. 5. Схема строения атома неона

Следовательно, атомы гелия и неона имеют вполне устойчивые электронные оболочки, не стремятся их как-нибудь видоизменить количественно. Такие элементы химически инертны, т. е. не вступают в химическое взаимодействие с другими элементами.

Однако большинство химических элементов имеет такие атомы, в которых внешние электронные слои не целиком заполнены электронами. Например, атом калия имеет девятнадцать электронов, из которых восемнадцать целиком заполняют первые три слоя, а девятнадцатый электрон один находится в следующем, незаполненном электронном слое. Слабое заполнение электронами четвертого электронного слоя приводит к тому, что ядро атома весьма слабо удерживает самый внешний - девятнадцатый электрон, а поэтому последний может быть легко вырван из атома. .

Или, например, атом кислорода имеет восемь электронов, из которых два целиком заполняют первый слой, а остальные шесть размещены во втором слое. Таким образом, для полного завершения построения второго электронного слоя в атоме кислорода ему не хватает только двух электронов. Поэтому атом кислорода не только прочно удерживает свои шесть электронов во втором слое, но и обладает возможностью притянуть к себе два недостающих ему электрона для заполнения своего второго электронного слоя. Этого он достигает путем химического соединения с атомами таких элементов, у которых внешние электроны слабо связаны со своими ядрами.

Химические элементы, атомы которых не имеют целиком заполненных электронами внешних электронных слоев, как правило, химически активны, т. е. охотно вступают в химическое взаимодействие.

Итак, электроны в атомах химических элементов располагаются в строго определенном порядке и всякое изменение их пространственного расположения или количества в электронной оболочке атома приводит к изменению физико-химических свойств последнего.

Равенство числа электронов и протонов в системе атома является причиной того, что суммарный электрический заряд его равен нулю. Если равенство числа электронов и протонов в системе атома нарушается, то атом становится электрически заряженной системой.

Атом, в системе которого нарушено равновесие разноименных электрических зарядов вследствие того, что он потерял часть своих электронов или, наоборот, приобрел лишнее количество их, называется ионом.

Наоборот, если атом приобретает некоторое лишнее количество электронов, то он становится отрицательным ионом. Например, атом хлора, получивший один лишний электрон, превращается в однозарядный отрицательный ион хлора Сl - . Атом кислорода, получивший лишних два электрона, превращается в двухзарядный отрицательный ион кислорода О и т. д.

Атом, превратившийся в ион, становится по отношению к внешней среде электрически заряженной системой. А это значит, что атом стал обладать электрическим полем, вместе с которым он составляет единую материальную систему и через это поле осуществляет электрическое взаимодействие с другими электрически заряженными частицами вещества - ионами, электронами, положительно заряженными ядрами атомов и т. д.

Способность разноименных ионов взаимно притягиваться друг к другу является причиной того, что они химически соединяются, образуя более сложные частицы вещества - молекулы.

В заключение следует отметить, что размеры атома очень велики по сравнению с размерами тех вещественных частиц, из которых они состоят. Ядро самого сложного атома вместе со всеми электронами занимает миллиардную долю объема атома. Простой подсчет показывает, что если бы удалось один кубический метр платины сжать так крепко, чтобы исчезли внутриатомные и междуатомные пространства, то получился бы объем, равный примерно одному кубическому миллиметру.

Прежде всего, необходимо понять, что существует четыре отдельных вида выделяемой энергии:

1) химическая энергия, которая питает наши автомобили, а также большую часть устройств современной цивилизации;

2) энергия ядерного расщепления, используемая для выработки около 15 % потребляемого нами электричества;

3) энергия горячего ядерного синтеза, которая питает солнце и большинство звезд;

4) энергия холодного ядерного синтеза, которая наблюдается некоторыми экспериментаторами при лабораторных исследованиях и существование которой отвергается большинством ученых.

Количество выделенной ядерной энергии (теплота/фунт топлива) всех трех типов в 10 миллионов раз превышает тот же показатель при выделении химической энергии. Чем отличаются эти виды энергии? Для того, чтобы разобраться в этом вопросе, необходимы некоторые знания в области химии и физики.

Воспользовавшись предложениями данного интернет магазина, продающего товары для дома, Вы без труда сможете купить любые товары по приемлемым ценам.

Природа дала нам два вида стабильно заряженных частиц: протоны и электроны. Протон - это тяжелая, как правило, очень маленькая, положительно заряженная частица. Электрон обычно легкий, большой, с размытыми границами и имеет отрицательный заряд. Положительный и отрицательный заряды притягиваются друг к другу, как, например, северный полюс магнита притягивает южный. Если магнит северным полюсом поднести к южному полюсу другого магнита, они столкнутся. При столкновении выделится небольшое количество энергии в виде тепла, но оно слишком мало, чтобы его легко было измерить. Чтобы разъединить магниты, придется совершить работу, то есть затратить энергию. Это примерно то же самое, что поднять камень обратно на холм.

Когда камень скатывается вниз с холма, выделяется небольшое количество тепла, процесс же подъема камня обратно потребует расхода энергии.

Точно так же положительный заряд протона сталкивается с отрицательным зарядом электрона, они «склеиваются», выделяя энергию. В результате образуется атом водорода, обозначаемый как Н. Атом водорода - это не что иное, как размытый электрон, обволакивающий маленький протон. Если выбить электрон из атома водорода, то получится положительно заряженный ион Н+, который является не более чем первоначальным протоном. «Ион»- это название, применимое к атому или молекуле, которые потеряли или приобрели один или более электронов, и вследствие этого перестали быть нейтральными.

Как известно, в природе существует более чем один вид атомов. У нас есть атомы кислорода, атомы азота, атомы железа, атомы гелия и другие. Чем все они отличаются? Все они имеют ядра разного типа, и все ядра содержат разное количество протонов, а значит, имеют разный положительный заряд. В ядре гелия содержится 2 протона, значит, оно имеет заряд плюс 2, и для того чтобы нейтрализовать заряд, требуется 2 электрона. Когда к нему «приклеивается» 2 электрона, образуется атом гелия. Ядро кислорода содержит 8 протонов, и имеет заряд 8. Когда к нему «приклеивается» 8 электронов, образуется атом кислорода. Атом азота имеет 7 электронов, атом железа - около 26. Тем не менее, строение всех атомов примерно совпадает: маленькое, положительно заряженное ядро, находящееся в облаке размытых электронов. Разница в размере между ядром и электронами огромна.

Диаметр Солнца всего в 100 раз больше диаметра Земли. Диаметр облака электронов в атоме в 100 000 раз превышает диаметр ядра. Для того чтобы получить разницу в объемах, необходимо возвести эти числа в куб.

Теперь мы готовы понять, что такое химическая энергия. Атомы, будучи электрически нейтральными, в действительности могут соединяться друг с другом, высвобождая больше энергии. Другими словами, они могут соединяться в более устойчивые конфигурации. Электроны уже в атоме пытаются распределяться так, чтобы как можно теснее приблизиться к ядру, но вследствие своей размытой природы им требуется определенное пространство. Однако, соединяясь с электронами другого атома, они обычно образуют более тесную конфигурацию, что позволяет им приблизиться к ядрам. К примеру, 2 атома водорода могут соединиться в более компактную конфигурацию, если каждый атом водорода отдаст свой электрон облаку из 2 электронов, которое делится между двумя протонами.

Таким образом, они формируют группу, состоящую из двух электронов в едином облаке и двух протонов, отделенных друг от друга пространством, но, тем не менее, находящихся внутри облака электронов. В результате происходит химическая реакция, протекающая с выделением тепла: Н+Н=>Н Г (Знак « = >» значит «переходит в» или «становится»). Конфигурация Н 2 - это молекула водорода; когда вы покупаете баллон с водородом, то получаете не что иное как молекулы Н. Более того, соединившись, два электрона Н 2 и 8 электронов атома О могут образовать еще более компактную конфигурацию - молекулу воды Н О плюс тепло. В действительности молекула воды - это единое облако электронов, внутри которого находятся три точечных ядра. Такая молекула является минимальной энергетической конфигурацией.

Таким образом, сжигая нефть или уголь, мы перераспределяем электроны. Это приводит к образованию более устойчивых конфигураций точечных ядер внутри облаков электронов и сопровождается выделением тепла. В этом и заключается природа химической энергии.

В предыдущем рассуждении мы упустили из виду один момент. Почему в природе ядра изначально содержат два или более протонов? Каждый протон имеет положительный заряд, а когда расстояние между положительными зарядами настолько мало, что соизмеримо с пространством, окружающим ядро, они сильно отталкиваются друг от друга. Отталкивание одноименных зарядов подобно отталкиванию, возникающему между северными полюсами двух магнитов, когда их пытаются неправильно соединить. Должно быть нечто, преодолевающее это отталкивание, иначе существовали бы только атомы водорода. К счастью, мы видим, что это не так.

Существует сила другого типа, которая воздействует на протон. Это ядерная сила. Благодаря тому, что она очень велика, частицы крепко удерживаются практически друг на друге. Кроме того, существует второй тип тяжелых частиц, которые отличаются от протона только тем, что не имеют ни положительного, ни отрицательного заряда. Они не отталкиваются положительным зарядом протона. Эти частицы называются «нейтронами», так как являются электрически нейтральными. Особенностью является то, что неизменное состояние частиц возможно только внутри ядра. Когда частица оказывается вне ядра, в течение около 10 минут она превращается в протон, электрон и очень легкий анти­нейтрино. Однако внутри ядра она может оставаться неизменной сколь угодно долго. Как бы то ни было, нейтрон и протон очень сильно притягиваются друг к другу. Приблизившись на достаточное расстояние, они соединяются, образуя очень прочную пару, так называемый дейтрон, который обозначается D+. Одиночный дейтрон, соединяясь с одиночным электроном, образует атом тяжелого водорода, или дейтерия, обозначаемого D.

Вторая ядерная реакция происходит, когда взаимодействуют два дейтрона. Когда заставляют взаимодействовать два дейтрона, они соединяются, образуя частицу, имеющую двойной заряд. Группировка из двух протонов и двух нейтронов даже более устойчива, чем группировка протон- нейтрон в дейтроне. Новая частица, нейтрализованная 2 электронами, становится ядром атома гелия, который обозначается Не. В природе существуют и большие группировки, которые являются ядрами углерода, азота, кислорода, железа и других атомов. Существование всех этих группировок возможно благодаря ядерной силе, которая возникает между частицами, когда они взаимодействуют друг с другом или делят между собой общий объем пространства, равный размеру ядра.

Теперь мы можем понять природу обычной ядерной энергии, которая в действительности является энергией ядерного расщепления. На протяжении ранней истории вселенной формировались массивные звезды. Во время взрыва таких массивных звезд образовывались ядра множества типов и снова разрывались в космическом пространстве. Планеты и звезды, включая Солнце, образовывались из этой массы.

Возможно, в процессе взрыва появились все возможные устойчивые конфигурации протонов и нейтронов, а также такие практически устойчивые группировки, как ядро урана. В действительности существует три разновидности ядер атомов урана: уран-234, уран-235 и уран-238. Эти «изотопы» различаются количеством нейтронов, однако, все они содержат по 92 протона. Ядра атомов урана любого типа могут превратиться в менее энергетические конфигурации путем выброса ядер гелия, однако, этот процесс происходит настолько редко, что земной уран сохраняет свои свойства на протяжении около 4 миллиардов лет.

Тем не менее, существует и другой способ нарушить конфигурацию ядра урана. В общих чертах, группировки протонов и нейтронов являются наиболее устойчивыми, если содержат около 60 пар протон-нейтрон. Количество таких пар, содержащихся в ядре урана, в три раза превышает эту цифру. Вследствие этого, оно стремится разделиться на две части, выделив при этом большое количество тепла. Тем не менее, природа не позволяет ему разделиться. Для того чтобы это сделать, ему сначала требуется перейти в более высокоэнергетическую конфигурацию. Однако, один из видов урана - уран-235, обозначаемый 235 U, - получает необходимую энергию, захватив нейтрон. Получив таким образом необходимую энергию, ядро распадается, выделяя огромное количество энергии и выпуская при этом дополнительные нейтроны. Эти дополнительные нейтроны в свою очередь могут расщеплять ядра урана-235, что приводит к цепной реакции.

Именно этот процесс и происходит на ядерных электростанциях, где тепло, являющееся конечным продуктом ядерного распада, используется для кипячения воды, образования пара и вращения электрического генератора. (Недостатком этого метода является выделение радиоактивных отходов, которые необходимо надежно устранять).

Теперь мы готовы к тому, чтобы понять сущность горячего ядерного синтеза. Как было сказано в уроке 5, группировки протонов и нейтронов наиболее устойчивы, когда количество протонов и нейтронов приблизительно соответствует их количеству в ядре атома железа. Подобно урану, который в нормальном состоянии содержит слишком много нейтронов-протонов, легкие элементы, такие как водород, гелий, углерод, азот и кислород, содержат слишком мало таких пар.

Если создать необходимые условия для того, чтобы эти ядра могли взаимодействовать, они соединятся в более устойчивые группировки с выделением теплоты. Так происходит процесс синтеза. В природе он встречается в таких звездах, как Солнце. В природе сжатый водород сильно нагревается, и, спустя некоторое время, происходит реакция синтеза. Если бы изначально процесс происходил с дейтронами, которые уже содержат удвоенные протон и нейтрон, реакции в звездах протекала бы относительно легко. Скорость, с которой атом каждого конкретного типа двигается внутри облака подобных атомов, напрямую зависит от температуры. Чем больше температура, тем выше скорость, и тем ближе атомы друг к другу, совершая одномоментное столкновение.

В звездах температура достаточно велика для того, чтобы электроны покинули ядра. Таким образом, можно говорить, что в реальности мы имеем дело со смешанным облаком электронов и ядер. При очень высокой температуре ядра в момент столкновения настолько приближаются друг к другу, что включается ядерная сила, притягивающая их друг к другу. Вследствие этого ядра могут «склеиться» и превратиться в более низкоэнергетическую группировку протонов и нейтронов, выпустив тепло. Горячий ядерный синтез является попыткой провести этот процесс в лабораторных условиях с использованием дейтерия и тройного водорода (ядро которого содержит 1 протон и 2 нейтрона) в виде газа. Для горячего синтеза требуется поддерживать температуру газа в сотни миллионов градусов, что при помощи магнитного поля может быть достигнуто, но только на 1-2 секунды. Есть надежда, что появится возможность сохранять температуру газа в течение более продолжительного периода времени. Пока температура достаточно высока, ядерная реакция протекает в момент столкновения ядер.

Основная форма, в которой выделяется энергия - это выпуск высокоэнергетических нейтронов и протонов. Протоны очень быстро преобразуются в тепло. Энергия нейтронов тоже может превратиться в тепло, однако, после этого оборудование становится радиоактивным. Дезактивировать оборудование представляется очень сложным, поэтому горячий синтез не годится в качестве метода для коммерческого производства энергии. В любом случае энергия горячего синтеза - это мечта, существующая уже, по крайней мере, 50 лет. Тем не менее, большинство ученых рассматривают горячий синтез как единственный способ получения энергии синтеза. В процессе горячего синтеза образуется меньше радиации, чем при расщеплении, он является экологически чистым и практически неограниченным источником топлива на Земле (относительно современного потребления энергии, было бы достаточно на многие миллионы лет).

Наконец, мы подошли к объяснению холодного синтеза. Холодный синтез может стать простым и нерадиоактивным способом выделения энергии синтеза. В процессе холодного синтеза протоны и нейтроны одного ядра взаимодействуют с протонами и нейтронами другого совершенно иначе.

При этом ядерная сила способствует тому, что они образуют более устойчивую конфигурацию. Для любой ядерной реакции необходимо, чтобы реагирующие ядра имели общий объем пространства. Это требование называется совмещением частиц. При горячем синтезе совмещение частиц происходит на короткое время, когда преодолевается сила отталкивания двух положительных зарядов, и ядра сталкиваются. Во время холодного синтеза условие совмещения частиц достигается путем принуждения ядер дейтерия вести себя как размытые частицы, подобные электронам, а не как крошечные точечные частицы. Когда легкий или тяжелый водород добавлен в тяжелый металл, каждый «атом» водорода занимает такую позицию, где он со всех сторон окружен атомами тяжелого металла.

Такая форма водорода называется промежуточной. Электроны атомов водорода вместе с промежуточным водородом становятся частью массы электронов в металле. Каждое ядро водорода колеблется, подобно маятнику, проходя сквозь отрицательно заряженное облако электронов металла. Такая вибрация возникает даже при очень низкой температуре, в соответствии с постулатами квантовой механики. Подобное движение называется движением нулевой точки. При этом ядра становятся размытыми объектами, как электроны в атоме. Однако, подобной нечеткости недостаточно для того, чтобы позволить одному ядру водорода взаимодействовать с другим.

Необходимо еще одно условие, чтобы у двух или более ядер водорода оказалось одно и то же общее пространство. Электрический ток, переносимый электронами в металле, ведет себя как вибрирующая вещественная волна, а не как точечные частицы. Если бы электроны не вели себя в твердых телах подобно волнам, сегодня не существовало бы ни транзисторов, ни современных компьютеров. Электрон в виде волны называется электроном блоховской функции. Секрет холодного синтеза в необходимости получения дейтрона блоховской функции. Для того, чтобы два или более дейтронов имели общий объем пространства, внутри или на поверхности твердого вещества требуется получить волновые дейтроны. Как только создаются дейтроны блоховской функции, начинает действовать ядерная сила, и протоны и нейтроны, входящие в состав дейтрона, переорганизуются в более устойчивую конфигурацию гелия блоховской функции, что сопровождается выделением тепла.

Для изучения холодного синтеза экспериментатору нужно заставить дейтроны перейти в волновое состояние и поддерживать их в таком состоянии. Эксперименты по холодному синтезу, демонстрирующие выделение избыточного тепла, доказывают, что это возможно. Однако, до сих пор никто не знает как можно провести подобный процесс наиболее надежным способом. Использование холодного синтеза обещает получение энергетического ресурса, которого хватит на миллионы лет, при этом не будет ни проблем глобального потепления, ни радиоактивности - вот почему следует приложить серьезные усилия для изучения этого явления.

Поделиться: