Маломощные блоки питания начинающих радиолюбителей. Импульсный блок питания

У шины питания Vbus (+5 В) USB-порта по потребляемому от неё внешним устройством мощности параметры весьма скромные и если немного переборщить, то можно спалить материнскую плату персонального компьютера.

С помощью предлагаемой схемы блока питания для USB порта, можно подсоединить к компьютеру или ноутбуку внешнее USB-устройство, потребляющее большую мощность.

Схема достаточно проста в изготовлении в домашних условиях, минимум дефицитных деталей и настройки. Стабильна в работе.

Подборка схем и конструкций преобразователей напряжения изготовленных своими руками.

Рано или поздно перед радиолюбителем возникает проблема изготовления универсального БП, который пригодился бы на все случаи жизни. То есть имел достаточную мощность, надёжность и регулируемый в широких пределах, к тому же защищал нагрузку от чрезмерного потребления тока при испытаниях и не боялся коротких замыканий.

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками.

Основу аналоговой части составляет дифференциальный усилитель, собранный на операционном усилителе DA1. Конструкция его произвольная. Все зависит от вкуса и способностей радиолюбителя

Им можно подсоединить любую радиолюбительскую разработку с напряжением от 1 до 35 В и которой не боится больших токов нагрузки, поскольку введена токовая защита

Представляю вниманию радиолюбителей варианты схем и конструкций простых и не очень, удобных и надежных лабораторных блоков питания для домашней мастерской. В просторах интернета, можно найти много схем лабораторных БП, поэтому данные схемы никак не претендует на шедевр, а призвана лишь помочь радиолюбителям, немного оснастить свою мастерскую или рабочее место. Также рассмотрены варианты переделки компьютерных ATX блоков питания в лабораторные

По структуре предлагаемое вниманию читателей разработка не новодел: выпрямитель, - конденсаторный фильтр - полумостовой преобразователь постоянного напряжения в переменное (с понижающим трансформатором) - выпрямители - фильтры - стабилизаторы

Проще некуда, схема состоит из понижающего трансформатора, выпрямительного моста на Д242, стабилизатора напряжения и трех транзисторов КТ827

Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками - сетевыми, импульсными и аккумуляторными батареями. Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем.

Рассмотрено несколько вариантов схем защиты от переполюсовки, в.т.ч быстродействующая схема зашиты на полевом транзисторе, которая проверена в работе в конструкции автомобильного ЗУ собранного своими руками из компьютерного БП и главное она не требуют почти никакой настройки и регулировки.

Эта схема регулятора тока предельно проста и выполнена на доступной элементной базе и проста в управлении

У меня реализована такая идея. Перематываете трансформатор максимально большой мощности (из имеющихся у вас) так, чтобы сделать восемь вторичных обмоток

Эту схему блока питания вы можете использовать для запитки цифровых устройств. Схема дополнена вольтметром для контроля и регулировки параметров

Cхемы умножителей напряжения позволяют значительно снизить вес и габариты финального устройства. Для понимания работы любого умножителя напряжения, рассмотрим принципы построения таких устройств. Их можно условно поделить на симметричные и несимметричные.

С выходной мощностью до 220 Ватт, в качестве батареи взяли аккумулятор от автомобиля

Его можно использовать для запитки фотоэлектронного умножителя, но от него можно запитать счетчик Гейгера и другие высоковольтные приборы.

Роль регулирующего элемента в схеме выполняет мощный транзистор, причем конструкция на столько проста, что ее может повторить любой, даже неопытный радиолюбитель, затратив при этом минимум времени и средств

Данная радиолюбительская разработка моментально уменьшает питание до нуля на обоих плечах, и таким образом обладает триггерным эффектом

Его можно использовать для любых радиотехнических исполнений с напругой 4,5-6 В, 9 В и током потребления до 500 мА

Этот БП имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может выйти из строя

В момент включения блока питания в сеть осуществляется выпрямление переменного напряжения электросети диодным мостом, пульсацию от которого сглаживается емкостным фильтром на конденсаторах. Для снижения величины тока заряда, проходящего через эти конденсаторы, в схему добавлен резистор. Затем выпрямленное напряжение поступает на полумостовой инвертор, построенный на транзисторах.

Краткие теоретические сведения о построение и работе источников бесперебойного питания, а также рассмотрена конструкция самодельного ИБП

Электронная конструкция с некоторой периодичностью разряжает мощную конденсаторную батарею на индуктор, потом на следующий, и так по цепочке

Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора.

В российской глубинке до сих пор случается частое отключение электроэнергии, что серьезно меняет устаканившийся образ жизни в нелучшую сторону. Решить возникшую проблему очень легко.

Рано или поздно у любого радиолюбителя возникнет надобность в мощном БП как для проверки различных электронных узлов и блоков, так и для подключения мощных радиолюбительских самоделок.


Регулировать значения уровня напряжение питания можно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество такой настройки состоит в том, что выходной транзистор работает в режиме ключа и может быть только в двух состояниях - открытом или закрытом, что исключает его перегрев, а значит использование большого радиатора и как следствие снижает расходы на электроэнергию.

Аккумуляторную батарею любого мобильного компьютера, требуется периодически заряжать, а как это можно сделать находясь на отдыхе или на рыбалке. Очень даже просто, вам достаточно собрать и использовать обычный автомобильный адаптер для бортовой сети автомобиля, собрать который очень легко и просто.

Этот преобразователь с двухполярным питанием отлично подойдет для питания УНЧ средней мощности до 150 ватт, но если поменять ключи на более мощные можно получить и более высокие значения.

Для проверки и регулировки мощных блоков питания необходима низкоомная регулируемая нагрузка с допустимой мощностью рассеивания до сотни ватт. Применение переменных сопротивлений не всегда реально, в основном из-за мощности допустимой рассеивания.

Если у вас есть всего один мощный транзистор, то этого вполне достаточно, чтобы собрать простой блок питания с выходным напряжением 9В и с приемлемыми характеристиками, кроме того рассмотрим в рамках данной статьи конструкции и поинтересней.

В сельской местности для безопасного использования бытовой техники, требуется однофазный стабилизатор напряжения 220В, который при сильной просадки напряжения в сети поддерживает на выходе номинальное выходное напряжение в 220 вольт.

Блок питания автомагнитолы

Схема блока питания

Предлагается, по мнению автора, наиболее удовлетворяющий этим условиям достаточно простой для повторения БП, обеспечивающий стабилизированное напряжение 1,5-24 В при выходном токе до 3А. Кроме того, он может работать в режиме источника тока с возможностью плавной регулировки тока стабилизации в пределах 10-100 мА или с фиксированными значениями тока 0,1 А, 1 А, ЗА.

Рассмотрим схему БП (см.рис.). Основой её является традиционная схема стабилизатора напряжения, «сердцем» - микросхема КР142ЕН12, которая в настоящее время доступна широкому кругу радиолюбителей. В качестве силового трансформатора выбран довольно мощный унифицированный накальный трансформатор ТН-56, который имеет четыре вторичные обмотки с допустимым током 3,4 А и напряжением каждой 6,3 В. В зависимости от требуемого выходного напряжения переключателем SA2 подключаются две, три или четыре последовательно соединённые обмотки. Это необходимо для уменьшения мощности, рассеиваемой на регулирующем элементе, а, следовательно, повышения КПД устройства и облегчения температурного режима.

Действительно, в самом неблагоприятном режиме, при максимальной разности между входным и выходным напряжениями (конечно, если выходное напряжение соответствует диапазону,указанному переключателем SA2) и максимальном токе ЗА рассеиваемая на регулирующем элементе мощность составит: Ppacc.max = (UBx.max-2Uvd-UBbix.min)*lmax (1) Ррасс.тах = (12,6-2*0,7-1,5)*3 = 29,1 Вт, где Uвх.mах - максимальное входное действующее напряжение данного диапазона; Uвых.min - минимальное выходное напряжение данного диапазона; Uvd - падение напряжения на диоде выпрямительного моста. Легко проверить, что без разделения выходного напряжения на диапазоны рассеиваемая регулирующим элементом мощность достигает 70 Вт.

Переменное напряжение выпрямляется диодным мостом VD1-VD4 и сглаживается на конденсаторе С5. Предохранитель FU2 защищает трансформатор при выходе из строя диодов выпрямителя. Транзисторы VT1, VT2 служат для увеличения выходного тока БП и облегчения режима работы интегрального стабилизатора DA1. Резистором R1 задаётся ток через DA1, открывающий VT2:
IDA1 = UбэVT2/R1 = 0,7/51 = 0,014 А, (2)
где UбэVT2 - открывающее напряжение эмиттер-база транзистора VT2. При токе 14 мА микросхема DA1 может работать без радиатора. Для повышения стабильности выходного напряжения регулирующее напряжение снимается с линейки резисторов R2-R4, подключенной к выходу микросхемы и подаётся на «управляющий» вывод 01 DA1 через развязывающий диод VD6. Регулировка выходного напряжения осуществляется резисторами: R4 - «ГРУБО» и R3 - «ТОЧНО». Стабилизатор тока выполнен на DA1, токозадающих резисторах R5-R9 и развязывающем диоде VD7. Выбор необходимого дискретного тока стабилизации осуществляется переключателем SA3. Кроме того, на пределе «10-100 мА» возможна плавная регулировка тока резистором R9. При необходимости можно изменить ток стабилизации, изменив номиналы задающих резисторов используя формулу:
R = 1,35/Iстаб, (3)

где R - сопротивление токозадающего резистора, Ом; Iстаб - ток стабилизации, А. Мощность токозадающих резисторов определяется по формуле:
Р = l 2 R, (4)

где I - ток стабилизации диапазона; R - сопротивление резистора. Реально мощность токозадающих резисторов из соображения надёжности сознательно увеличена. Так резистор R8 типа С5-16В выбран мощностью 10 Вт. В режиме стабилизации тока (переключатель SA3 в положении «ЗА») на резисторе рассеивается мощность 3,8 Вт. И если даже поставить пятиваттный резистор, то его загрузка по мощности составит 72% от максимально допустимой. Аналогично R7 типа С5-16В имеет мощность 5 Вт, но также можно применить МЛТ-2. Резистор R6 типа МЛТ-2, но можно поставить МЛТ-1. R9 - проволочный переменный резистор типа ППЗ-43 мощностью 3 Вт. R5 типа МЛТ-1. Эти резисторы надо располагать так, чтобы они охлаждались наилучшим образом и не грели по возможности другие элементы схемы, а также друг друга. Для наглядности регулировки (устанавливаемого тока) на лимбе резистора R9 делают отметки 10, 20, 50, 75 и 100 мА, воспользовавшись внешним миллиамперметром (тестером), подключив его непосредственно к гнёздам БП.

Дополнительные удобства при работе с БП обеспечивает вольтметр pV, в качестве которого используется микроамперметр типа М95 с током полного отклонения 0,15 мА.

Сопротивление резистора R11 подбирается так, чтобы конечному значению шкалы соответствовало напряжение 30 В. Также можно использовать любую другую измерительную головку с током полного отклонения до 1,5 мА, подобрав токоограничительный резистор R11.
В качестве переключателей SA2, SA3 используются галетные - типа 11ПЗНМП. Для увеличения допустимого коммутируемого тока эквивалентные выводы трёх галет запараллелены. Фиксатор установлен в зависимости от количества положений.

Конденсатор С5 сборный и состоит из пяти параллельно включенных конденсаторов типа К50-12 ёмкостью 2000 мкФ х 50 В.
Транзистор VT1 установлен снаружи на радиаторе площадью 400 см2. Его можно заменить на КТ803А, КТ808А, VT2 может быть заменён на КТ816Г. Пару транзисторов VT1, VT2 можно заменить одним КТ827А, Б, В или Д. Диоды VD6, VD7 любые, лучше германиевые с меньшим прямым падением напряжения и обратным не менее 30 В. Диоды VD1 -VD4 типа КД206А, КД202А, Б, В или аналогичные устанавливаются на радиаторах.

При самостоятельном изготовлении трансформатора TV1 можно руководствоваться методикой, описанной в . Габаритная мощность трансформатора должна быть не менее 100 Вт, лучше 120Вт. При этом можно будет домотать ещё одну обмотку напряжением 6,3 В. В этом случае добавится ещё один диапазон 24 - 30 В, что обеспечит при токе нагрузки 3 А диапазон регулирования выходного напряжения 1,5-30 В.
Наладка блока питания проводится по известной методике и особенностей не имеет. Правильно собранный БП начинает работать сразу. При работе с БП вначале переключателем SA2 выбирают необходимый диапазон выходного напряжения, резисторами «ГРУБО» и «ТОЧНО» выставляют требуемое выходное напряжение, ориентируясь по показаниям встроенного вольтметра. Переключателем SA3 выбирают предел ограничения тока и подключают нагрузку.

Следует отметить, что при всей простоте схемы данный блок питания совмещает два устройства: стабилизатор напряжения плюс стабилизатор тока. БП не боится коротких замыканий и даже может защитить элементы подключаемого к нему электронного устройства, что очень важно при проведении различных испытаний в радиолюбительской практике.

ЛИТЕРАТУРА
1. Нефёдов А.В., Аксёнов А.И., Элементы схем бытовой радиоаппаратуры. Микросхемы: Справочник.-М: Радиосвязь, 1993.
2. Акимов Н.Н., Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справочник.-Минск.: Беларусь, 1994.
3. Полупроводниковые приёмно-усилительные устройства: Справочник радиолюбителя - Р.М.Терещук, К.М.Терещук.-Киев: Наукова думка, 1988.

А.Добуш, г. Винница
Скачать: Радиолюбительский блок питания
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

Рано или поздно перед радиолюбителем возникает проблема изготовления универсального блока питания (БП), который пригодился бы на «все случаи жизни». То есть имел достаточную мощность, надёжность и регулируемое в широких пределах выходное напряжение, к тому же защищал нагрузку от «чрезмерного потребления» тока при испытаниях и не боялся коротких замыканий.

Предлагается, по мнению автора, наиболее удовлетворяющий этим условиям достаточно простой для повторения БП, обеспечивающий стабилизированное напряжение 1 ,5-24 В при выходном токе до ЗА. Кроме того, он может работать в режиме источника тока с возможностью плавной регулировки тока стабилизации в пределах 10-100 мА или с фиксированными значениями тока 0,1 А, 1 А, 3 А.

Рассмотрим схему блока питания (см.рис.). Основой её является традиционная схема стабилизатора напряжения, «сердцем» - микросхема КР142ЕН12, которая в настоящее время доступна широкому кругу радиолюбителей. В качестве силового трансформатора выбран довольно мощный унифицированный накальный трансформатор ТН-56, который имеет четыре вторичные обмотки с допустимым током 3,4 А и напряжением каждой 6,3 В. В зависимости от требуемого выходного напряжения переключателем SA2 подключаются две, три или четыре последовательно соединённые обмотки. Это необходимо для уменьшения мощности, рассеиваемой на регулирующем элементе, а, следовательно, повышения КПД устройства и облегчения температурного режима. Действительно, в самом неблагоприятном режиме, при максимальной разности между входным и выходным напряжениями (конечно, если выходное напряжение соответствует диапазону, указанному переключателем SA2) и максимальном токе ЗА рассеиваемая на регулирующем элементе мощность составит: Ppacc.max = (Uвx.max-2Uvd-Uвых.min)*Imax (1) Ррасс.max = (12,6-2*0,7-1,5)*3 = 29,1 Вт, где Uвх.max - максимальное входное действующее напряжение данного диапазона; Uвых.min - минимальное выходное напряжение данного диапазона; Uvd - падение напряжения на диоде выпрямительного моста. Легко проверить, что без разделения выходного напряжения на диапазоны рассеиваемая регулирующим элементом мощность достигает 70 Вт.

Переменное напряжение выпрямляется диодным мостом VD1-VD4 и сглаживается на конденсаторе С5. Предохранитель FU2 защищает трансформатор при выходе из строя диодов выпрямителя. Транзисторы VT1, VT2 служат для увеличения выходного тока БП и облегчения режима работы интегрального стабилизатора DA1. Резистором R1 задаётся ток через DA1, открывающий VT2:
IDA1 = Uбэvt2/R1 = 0,7/51 = 0,014 А, (2)
где Uбэvt2 - открывающее напряжение эмиттер-база транзистора VT2. При токе 14 мА микросхема DA1 может работать без радиатора. Для повышения стабильности выходного напряжения регулирующее напряжение снимается с линейки резисторов R2-R4, подключенной к выходу микросхемы и подаётся на «управляющий» вывод 01 DA1 через развязывающий диод VD6. Регулировка выходного напряжения осуществляется резисторами: R4 - «ГРУБО» и R3 - «ТОЧНО». Стабилизатор тока выполнен на DA1, токозадающих резисторах R5-R9 и развязывающем диоде VD7. Выбор необходимого дискретного тока стабилизации осуществляется переключателем SA3. Кроме того, на пределе «10-100 мА» возможна плавная регулировка тока резистором R9. При необходимости можно изменить ток стабилизации, изменив номиналы задающих резисторов используя формулу:
R = 1,35/Iстаб, (3)
где R - сопротивление токозадающего резистора, Ом; Iстаб - ток стабилизации, А. Мощность токозадающих резисторов определяется по формуле:
Р = I*I*R, (4)
где I - ток стабилизации диапазона; R - сопротивление резистора. Реально мощность токозадающих резисторов из соображения надёжности сознательно увеличена. Так резистор R8 типа С5-16В выбран мощностью 10 Вт. В режиме стабилизации тока (переключатель SA3 в положении «ЗА») на резисторе рассеивается мощность 3,8 Вт. И если даже поставить пятиваттный резистор, то его загрузка по мощности составит 72% от максимально допустимой. Аналогично R7 типа С5-16В имеет мощность 5 Вт, но также можно применить МЛТ-2. Резистор R6 типа МЛТ-2, но можно поставить МЛТ-1. R9- проволочный переменный резистор типа ППЗ-43 мощностью 3 Вт. R5 типа МЛТ-1. Эти резисторы надо располагать так, чтобы они охлаждались наилучшим образом и не грели по возможности другие элементы схемы, а также друг друга. Для наглядности регулировки (устанавливаемого тока) на лимбе резистора R9 делают отметки 10, 20, 50, 75 и 100 мА, воспользовавшись внешним миллиамперметром (тестером), подключив его непосредственно к гнёздам БП.

Дополнительные удобства при работе с БП обеспечивает вольтметр pV, в качестве которого используется микроамперметр типа М95 с током полного отклонения 0,15 мА.
Сопротивление резистора R11 подбирается так, чтобы конечному значению шкалы соответствовало напряжение 30 В. Также можно использовать любую другую измерительную головку с током полного отклонения до 1,5 мА, подобрав токоограничительный резистор R11.
В качестве переключателей SA2, SA3 используются галетные - типа 11П3НМП. Для увеличения допустимого коммутируемого тока эквивалентные выводы трёх галет запараллелены. Фиксатор установлен в зависимости от количества положений.
Конденсатор С5 сборный и состоит из пяти параллельно включенных конденсаторов типа К50-12 ёмкостью 2000 мкФ х 50 В.

Транзистор VT1 установлен снаружи на радиаторе площадью 400 см2. Его можно заменить на КТ803А, КТ808А, VT2 может быть заменён на КТ816Г. Пару транзисторов VT1, VT2 можно заменить одним КТ827А, Б, В или Д. Диоды VD6, VD7 любые, лучше германиевые с меньшим прямым падением напряжения и обратным не менее 30 В. Диоды VD1 -VD4 типа КД206А, КД202А, Б, В или аналогичные устанавливаются на радиаторах.

При самостоятельном изготовлении трансформатора TV1 можно руководствоваться методикой, описанной в . Габаритная мощность трансформатора должна быть не менее 100 Вт, лучше 120Вт. При этом можно будет домотать ещё одну обмотку напряжением 6,3 В. В этом случае добавится ещё один диапазон 24 - 30 В, что обеспечит при токе нагрузки 3 А диапазон регулирования выходного напряжения 1,5-30 В.

Наладка блока питания проводится по известной методике и особенностей не имеет. Правильно собранный БП начинает работать сразу. При работе с БП вначале переключателем SA2 выбирают необходимый диапазон выходного напряжения, резисторами «ГРУБО» и «ТОЧНО» выставляют требуемое выходное напряжение, ориентируясь по показаниям встроенного вольтметра. Переключателем SA3 выбирают предел ограничения тока и подключают нагрузку. Следует отметить, что при всей простоте схемы данный блок питания совмещает два устройства: стабилизатор напряжения плюс стабилизатор тока. БП не боится коротких замыканий и даже может защитить элементы подключаемого к нему электронного устройства, что очень важно при проведении различных испытаний в радиолюбительской практике.

ЛИТЕРАТУРА
1. Нефёдов А.В., Аксёнов А.И., Элементы схем бытовой радиоаппаратуры, микросхемы: Справоч-ник.-М: Радиосвязь, 1993.
2. Акимов Н.Н., Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справочник.-Минск.: Беларусь, 1994.
3. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя/Р.М.Терещук, К.М.Терещук.-Киев: Наукова думка, 1988.

Радиохобби 05-1999

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор

LM317

1 КР142ЕН12 В блокнот
VT1 Биполярный транзистор

КТ819ГМ

1 В блокнот
VT2 Биполярный транзистор

КТ814Г

1 В блокнот
VD1-VD4 Диод

КД206А

4 В блокнот
VD5 Диод

КД212А

1 В блокнот
VD6, VD7 Диод

Д9Е

2 В блокнот
С1-С4, С7 Конденсатор 2.2 нФ 63 В 5 В блокнот
С5 10000 мкФ 50 В 1 В блокнот
С6 Электролитический конденсатор 220 мкФ 63 В 1 В блокнот
R1 Резистор

51 Ом

1 В блокнот
R2 Резистор

1.2 кОм

1 В блокнот
R3 Переменный резистор 3.3 кОм 1 В блокнот
R4 Переменный резистор 22 кОм 1 В блокнот
R5 Резистор

13 Ом

1 1 Вт В блокнот
R6 Резистор

4.3 Ом

1 2 Вт В блокнот
R7 Резистор

1.2 Ом

1 5 Вт В блокнот
R8 Резистор

0.43 Ом

1 10 Вт В блокнот
R9 Переменный резистор 100 Ом 1 3 Вт В блокнот
R10 Резистор

!
Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.

Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение - регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый - свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.

Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.


От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие - это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус.


Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:


Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.


Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками , а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.


Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.
Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.


Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное - это стандартная схема блока питания.
Следующий элемент схемы - это плавный пуск.


Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.
Теперь самая важная часть блока – dc-dc преобразователь.


Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.

Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.


На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.

Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.
Теперь переходим к травлению платы.






Думаю, тут нет ничего сложного.
Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания.


Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:


С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.


Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.


В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.
После намотки, проверяем параметры.


Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.
Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:


На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.




Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.

Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.

Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.

Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.


Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.

Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.
Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:


Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.


Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.


Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.
Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:


Сделать это можно довольно просто, лобзиком и дрелью.

Теперь самая трудная часть - разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.
Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.

Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.

Силовая часть собрана по мостовой схеме на мощных IGBT транзисорах B1- B4 (на схеме отсутствует ЭМИ фильтр). D1-D4 - диодный мост. R6 и RS1 - схема плавного включения, обеспечивает постепенный заряд фильтрующего конденсатора С3, исключая бросок тока. С5, R7, R8 - схема запуска ШИМ контроллера. С2, R10 - демпфирующая цепь. LR1-LR2, D5-D8, R9, WR - регулировка выходного тока.

Список радиодеталей силового блока:

Предохранители
F1- 5A

Транзисторы IGBT
B1, B2, B3, B4 - G20N60

Диоды
D1, D2, D3, D6 - 6A10 (6A 1000V)
D7, D8, D9, D10 - 4148

Конденсаторы
C1 - 2,2uF 630V
C2 - 332 630V (3300pF, 3,3nF, 0,0033 uF)
C3 - 600uF 400V, электролитический
C4 - 220uF 400V, электролитический
C5 - 22uF 400V, электролитический
C6 - 104 (100nF, 0,1uF)

Резисторы
RB1, RB2, RB3, RB4 - 3,3K
R5 - 10K
R6 -100/10W
R7 - 10K/2W
R8 - 120K/2W
R9 - 150
R10 - 51/10W
RW - 510, подстроечный

Реле
RS1- 12V 10A

LR1, LR2 - трансформатор тока
ферритовое кольцо 20*12*6 2000НМ, вторичная обмотка LR2 - 100 витков провода 0,12- 0,15 мм2, первичная обмотка LR1— перемычка, пропущенная через кольцо.

PM1 Блок ШИМ контроллера собран на микосхемах TL494 и IR2181, способен управлять мощными IGBT или MOSFET транзисторами с током до 60А. С помощью этого блока возможно построение мощного блока питания по мостовой схеме от 1 до 3 кВт.

Список радиодеталей ШИМ контроллера:

Микросхемы
TL494
IR2181 - 2шт.

Диоды
UF 407 - 2шт.
Zener 18V

Конденсаторы
224 (200n, 0,22uF) - 3шт
103 (10n, 0,01uF) - 2шт.
102 (1000pF, 1n) - 1шт.
100uF*35V - 1шт.
100uF*16V - 1шт.

Резисторы
10 - 4шт.
51 - 1шт.
1К - 4шт.
2К - 5шт.
10К - 1шт
15К - 1шт.
82К - 2шт.

Вторичные цепи с однополярным питанием и силовой трансформатор

Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 . Первичная обмотка N1 - 0,35*6=35 витков, N2,N3 - 0,55*10=6+6 витков, N4-0,55=3 витка, N5 - 0,55=2 витка.

Дроссель L1 изготовлен на сердечнике ЕЕ55 материал N87 0,55*20=9 виков

Стабилизатор V1 - 12V, питание вентилятора и реле Rs1. Стабилизатор V2 - 18V, питание Шим контроллера. WR1 - регулировка выходного напряжения.

Вторичные цепи с двухполярным питанием и силовой трансформатор

Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 (при расчете программой Lite-CalcIT, размер сердечника: E 42/21/20 N87) . Первичная обмотка N1 - 0,35*6=35 витков, N2,N3 - 0,55*4=9+9 витков, N4-0,55=3 витка, N5 - 0,55=2 витка.

Дроссель L1а L1b изготовлен на сердечнике ЕЕ55 материал N87 0,55*10=9+9 виков (противоположное направление намотки).

Стабилизатор V1 - 12V, питание вентилятора и реле Rs1. Стабилизатор V2 - 18V, питание Шим контроллера. WR1 - регулировка выходного напряжения.

Печатная плата блока управления....>>>

Поделиться: