Топология интегральной микросхемы является объектом каких прав. Охрана топологий интегральных микросхем

Под топологией интегральных микросхем (далее топологией) понимается зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними. Упомянутым материальным носителем является часть полупроводниковой пластины, в объеме и на поверхности которой сформированы элементы полупроводниковой микросхемы, межэлементные соединения и контактные площадки – кристалл интегральной микросхемы.

В соответствии с Вашингтонским договором об интеллектуальной собственности в отношении интегральных микросхем 1989 года, правовая охрана распространяется только на оригинальные микросхемы.

Оригинальной является топология, созданная в результате творческой деятельности ее автора. При этом топология признается оригинальной до тех пор, пока не доказано обратное. Топологии, состоящей из известных элементов, правовая охрана предоставляется в тех случаях, когда совокупность этих элементов оригинальна, то есть является результатом творческих усилий ее создателя.

Оригинальность – единственный значимый признак для предоставления объекту правовой охраны. Ни время создания, ни факт регистрации не влияют на возникновение правой охраны топологии.

Топология регистрируется по желанию автора или иного правообладателя. Регистрируя новую топологию в патентном ведомстве РФ, правообладатель не только публично заявляет о своих правах, но и официально депонирует информацию о тех признаках, которые отличают его топологию от уже известных. В случае копирования или иного неправомерного использования топологии факт ее регистрации в значительной степени может облегчить процесс доказывания нарушения прав.

Обладателями прав на топологии интегральных микросхем выступают авторы или соавторы, их наследники, а также любые физические или юридические лица, которые приобрели права по договору или в силу закона.

Юридические лица ни при каких условиях прав авторства на топологию не приобретают и могут выступать лишь обладателем прав на ее использование. В таком качестве юридические лица выступают, когда топология создана в порядке выполнения служебного задания или если автор создал ее по договору с заказчиком, который не является его работодателем.

Передача имущественных прав на топологии интегральных микросхем. Авторам и иным правообладателям топологий законом предоставляется возможность полной или частичной передачи прав на ее использование другим лицам. Передача имущественных прав оформляется гражданско-правовым договором, который так же, как и сама топология, может быть зарегистрирован в Роспатенте. Кроме того, законом установлены случаи свободного использования топологий, которые являются изъятыми из сферы исключительного права их обладателя. Перечень свободного использования топологий, указанный в законе, носит исчерпывающих характер.


Виды нарушений исключительных имущественных прав на топологии:

копирование топологий в целом или в части путем ее включения в интегральную микросхему или иным образом, за исключением копирования только той ее части, которая не является оригинальной;

применение, ввоз, предложение к продаже и иное введение в хозяйственный оборот топологии или интегральной схемы с этой топологией.

Защита нарушенных имущественных прав на топологии интегральных микросхем.

Нарушение прав авторов или правообладателей топологий может служить основанием для требования о применении к правонарушителям предусмотренных законом санкций. Нарушение личных неимущественных прав чаще всего выражается в их отрицании или присвоении другими лицами. Основными способами защиты личных неимущественных прав могут быть требования авторов о признании нарушенного или оспариваемого права, о восстановлении положения, существовавшего до нарушения и о прекращении действий, нарушающих право или создающих угрозу его нарушения.

Защита нарушенных имущественных прав осуществляется путем пресечения действий, нарушающих права или создающих угрозу их нарушения, а также путем требования о возмещении убытков. Например, правообладатель топологии может требовать наложения запрета на несанкционированное применение или продажу интегральных микросхем. Что касается причиненных убытков, то они подлежат возмещению в полном объеме, включая не только реальный ущерб, понесенный правообладателем, но и упущенную им выгоду. Законом устанавливается, что в размер убытков включается сумма доходов, неправомерно полученных нарушителем.

Помимо возмещения причиненных убытков по усмотрению суда или арбитражного суда с правонарушителя может быть взыскан штраф в размере 10% от суммы, присужденной судом в пользу истца. Указанный штраф налагается на нарушителя в случае неоднократного или грубого нарушения прав потерпевшего и взыскивается в доход государственного бюджета Российской Федерации.

Регистрация топологий осуществляется в патентном ведомстве – Российском агентстве по патентам и товарным знакам (Роспатент).

Сегодня поговорим о третьем нетрадиционном объекте интеллектуальной собственности - топологии интегральных микросхем. На первый взгляд может показаться, что объект очень сложный, и разобраться в нем может только человек, обладающий глубокими познаниями в области науки и техники, однако в действительности это не так. Постараемся понятно объяснить, в чем сущность этого объекта, и почему он не отнесен к патентному праву.

Понятие и общая характеристика, примеры

Рассматриваемый объект будет относиться к сфере микроэлектроники. В статье 1448 Гражданского кодекса РФ дается определение как интегральной микросхемы, так и ее топологии. Перефразируем, чтобы было понятно.

Интегральная микросхема - это определенное электронное изделие, все элементы в котором соединены и выполняют общую функцию.

Топология интегральных микросхем - это расположение различных элементов на этой микросхеме и связи между ними. Закон говорит о «пространственно-герметическом» расположении этих элементов. Элементы здесь - это блоки, триггеры, формирователи, адресные стеки и все остальное, что мы видим на поверхности любой микросхемы.

Таким образом, закон охраняет не саму микросхему как электронное устройство, а ее топологию - т. е. расположение элементов на поверхности. Скорее всего, это и обусловило природу топологии интегральной микросхемы как нетрадиционного объекта, а не объекта патентного права: система расположения составных частей микросхемы не оказывает существенного влияния на научно-технический прогресс, как это происходит, к примеру, с изобретениями и полезными моделями.

В силу той же статьи 1448 ГК РФ не требуется, чтобы сами элементы были новыми, достаточно, чтобы сами связи между ними являлись оригинальными.

Проанализируем пример из реестра ФИПС - топологию интегральной микросхемы №2017630100, которая называется «Радиочастотная микросхема для водительского удостоверения и свидетельства о регистрации транспортного средства». В описании (реферате) к этому объекту обозначены особенности самой микросхемы, заложенные в ней алгоритмы и технологии - видно, что именно это и было целью творческой деятельности автора. Однако законом охраняться все равно будет пространственное расположение на этой микросхеме ее элементов, а не заложенные в ней технические идеи.

Личные неимущественные права

У топологии есть автор - лицо, которое создало объект своим интеллектуальным трудом. У автора возникает на топологию только право авторства - юридическая возможность считаться автором и одновременно гарантия взыскивать компенсацию морального вреда с лиц, которые могут попытаться присвоить авторство себе. Других личных неимущественных прав в законе не предусмотрено.

Исключительное право

Как обычно, первоначально оно возникает у автора, но на практике правообладателем чаще всего бывает организация. В целом исключительное право на топологии не обладает какими-то отличительными чертами. Закон упоминает следующие действия в рамках использования этого объекта:

  1. Воспроизведение топологии, например, на самой микросхеме. При этом закон разрешает воспроизводить лишь ту часть топологии, которая оригинальная.
  2. Ввоз на территорию России, а также вывоз с нее;
  3. Введение в гражданский оборот как самой топологии, так и микросхемы или другого изделия, где она воспроизведена. Чаще всего основанием будет какая-то сделка, например, купля-продажа.

Закон также упоминает ситуацию, когда другой гражданин придумал топологию, уже созданную кем-то ранее. В таком случае за этим автором будет признаваться исключительное право независимо от лиц, ранее создавших такую же топологию.

Кроме того, в законе закреплены случаи, когда допускается использовать объект без согласия правообладателя. В частности, это:

  1. Использование в личных целях, а также в рамках исследования, анализа.
  2. Распространение микросхем, на которых воспроизведена топология, если они были законно введены в гражданский оборот. Например, если состоялась покупка этой микросхемы.

Срок действия исключительного права на топологию - 10 лет без возможности его продления. При этом закон предусматривает два возможных момента, с которых может начать течь этот срок: в первом случае таковым является момент первого использования этого объекта; во втором случае - это государственная регистрация, произведенная по желанию правообладателя. Решающим будет дата: у какого события она более ранняя - с этого момента и будет течь срок действия исключительного права.

Еще раз вернемся к ситуации, когда два разных человека создали идентичные топологии. Срок в этом случае будет течь с момента использования первой из них, и второму автору придется уже «подстраиваться» под этот срок.

Государственная регистрация

Еще раз обратим внимание, что она не является обязательной. Если обратиться к статистике, то за 2016 год было зарегистрировано всего 174 топологии интегральных микросхем (из 186 заявок). Это немного, сравнивая, например, с количеством зарегистрированных селекционных достижений (их за тот же период было зарегистрировано более 500). Кратко пробежимся по особенностям регистрации.

Зарегистрировать топологию можно в течение срока ее охраны, но если объект уже используется, то подать заявку на регистрацию можно в течение двух лет. Регистрирующим органом является Роспатент, а именно - его подведомственное учреждение, ФИПС.

Заявка подается только на одну топологию. В ней обязательно должно быть:

  1. Заявление;
  2. Материалы, которые идентифицируют топологию (схемы, чертежи), а также реферат, который отражается в свидетельстве на регистрацию. Пример реферата для любой топологии легко найти, если ознакомиться с реестром (о том, как работать с реестром ФИПС - см. эту статью).

Более подробно процедуру можно посмотреть в Приказе Минэкономразвития России от 30.09.2015 N 700.

Таким образом, топология интегральной микросхемы - это важнейший объект интеллектуальной собственности в сфере микроэлектроники. Когда создается топология, автор ищет определенное решение именно касательно работы микросхемы, однако охраняться законом будет не содержание этого решения, а только форма - расположение элементов микросхемы.

Осуществление этих предложений в те годы не могло состояться из-за недостаточного развития технологий.

В конце 1958 года и в первой половине 1959 года в полупроводниковой промышленности состоялся прорыв. Три человека, представлявшие три частные американские корпорации, решили три фундаментальные проблемы, препятствовавшие созданию интегральных схем. Джек Килби из Texas Instruments запатентовал принцип объединения, создал первые, несовершенные, прототипы ИС и довёл их до серийного производства. Курт Леговец из Sprague Electric Company изобрёл способ электрической изоляции компонентов, сформированных на одном кристалле полупроводника (изоляцию p-n-переходом (англ. P–n junction isolation )). Роберт Нойс из Fairchild Semiconductor изобрёл способ электрического соединения компонентов ИС (металлизацию алюминием) и предложил усовершенствованный вариант изоляции компонентов на базе новейшей планарной технологии Жана Эрни (англ. Jean Hoerni ). 27 сентября 1960 года группа Джея Ласта (англ. Jay Last ) создала на Fairchild Semiconductor первую работоспособную полупроводниковую ИС по идеям Нойса и Эрни. Texas Instruments , владевшая патентом на изобретение Килби, развязала против конкурентов патентную войну, завершившуюся в 1966 году мировым соглашением о перекрёстном лицензировании технологий.

Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961-1962 гг. парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго , впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 г. Sylvania выпустила в продажу первое семейство разработанной Лонго транзисторно-транзисторной логики (ТТЛ) - исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964-1965 годах разработчик операционных усилителей Fairchild Боб Видлар .

Первая отечественная микросхема была создана в 1961 году в ТРТИ (Таганрогском Радиотехническом Институте) под руководством Л. Н. Колесова . Это событие привлекло внимание научной общественности страны, и ТРТИ был утверждён головным в системе минвуза по проблеме создания микроэлектронной аппаратуры высокой надёжности и автоматизации её производства. Сам же Л. Н. Колесов был назначен Председателем координационного совета по этой проблеме.

Первая в СССР гибридная толстоплёночная интегральная микросхема (серия 201 «Тропа») была разработана в 1963-65 годах в НИИ точной технологии («Ангстрем »), серийное производство с 1965 года. В разработке принимали участие специалисты НИЭМ (ныне НИИ «Аргон») .

Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии , разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ («Микрон »). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов - эквивалент схемотехнической сложности триггера , аналога американских ИС серии SN -51 фирмы Texas Instruments ). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились в НИИ-35 (директор Трутко) и Фрязинским полупроводниковым заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты . Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год) .

Параллельно работа по разработке интегральной схемы проводилась в центральном конструкторском бюро при Воронежском заводе полупроводниковых приборов (ныне - ). В 1965 году во время визита на ВЗПП министра электронной промышленности А. И. Шокина заводу было поручено провести научно-исследовательскую работу по созданию кремниевой монолитной схемы - НИР «Титан» (приказ министерства от 16.08.1965 г. № 92), которая была досрочно выполнена уже к концу года. Тема была успешно сдана Госкомиссии, и серия 104 микросхем диодно-транзисторной логики стала первым фиксированным достижением в области твердотельной микроэлектроники, что было отражено в приказе МЭП от 30.12.1965 г. № 403.

Уровни проектирования

В настоящее время (2014 г.) большая часть интегральных схем проектируется при помощи специализированных САПР , которые позволяют автоматизировать и значительно ускорить производственные процессы , например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) - до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) - до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь уже устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Технология изготовления

Гибридная микросборка STK403-090, извлечённая из корпуса

  • Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния , германия , арсенида галлия).
  • Плёночная интегральная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок :
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.
  • Гибридная микросхема (часто называемая микросборкой ), содержит несколько бескорпусных диодов, бескорпусных транзисторов и(или) других электронных активных компонентов. Также микросборка может включать в себя бескорпусные интегральные микросхемы. Пассивные компоненты микросборки (резисторы , конденсаторы , катушки индуктивности) обычно изготавливаются методами тонкоплёночной или толстоплёночной технологий на общей, обычно керамической подложке гибридной микросхемы. Вся подложка с компонентами помещается в единый герметизированный корпус.
  • Смешанная микросхема - кроме полупроводникового кристалла содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

  • Аналого-цифровые.

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

  • Микросхемы на униполярных (полевых) транзисторах - самые экономичные (по потреблению тока):
    • МОП -логика (металл-оксид-полупроводник логика) - микросхемы формируются из полевых транзисторов n -МОП или p -МОП типа;
    • КМОП -логика (комплементарная МОП-логика) - каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n -МОП и p -МОП).
  • Микросхемы на биполярных транзисторах :
    • РТЛ - резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ДТЛ - диодно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ТТЛ - транзисторно-транзисторная логика - микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;
    • ТТЛШ - транзисторно-транзисторная логика с диодами Шоттки - усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки ;
    • ЭСЛ - эмиттерно-связанная логика - на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, - что существенно повышает быстродействие;
    • ИИЛ - интегрально-инжекционная логика.
  • Микросхемы, использующие как полевые, так и биполярные транзисторы:

Используя один и тот же тип транзисторов, микросхемы могут создаваться по разным методологиям, например, статической или динамической .

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость для статического электричества - достаточно коснуться рукой вывода микросхемы, и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света и даже ближнего ультрафиолетового излучения при засветке отказались.

Следующие процессоры изготавливали с использованием УФ-излучения (эксимерный лазер ArF, длина волны 193 нм). В среднем внедрение лидерами индустрии новых техпроцессов по плану ITRS происходило каждые 2 года, при этом обеспечивалось удвоение количества транзисторов на единицу площади: 45 нм (2007), 32 нм (2009), 22 нм (2011) , производство 14 нм начато в 2014 году , освоение 10 нм процессов ожидается около 2018 года.

В 2015 году появились оценки, что внедрение новых техпроцессов будет замедляться .

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры .

Назначение

Интегральная микросхема может обладать законченной, сколь угодно сложной, функциональностью - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Ана́логовая интегра́льная (микро )схе́ма (АИС , АИМС ) - интегральная схема, входные и выходные сигналы которой изменяются по закону непрерывной функции (то есть являются аналоговыми сигналами).

Лабораторный образец аналоговой ИС был создан фирмой Texas Instruments в США в 1958 году . Это был генератор сдвига фаз . В 1962 году появилась первая серия аналоговых микросхем - SN52. В ней имелись маломощный усилитель низкой частоты , операционный усилитель и видеоусилитель .

В СССР большой ассортимент аналоговых интегральных микросхем был получен к концу 1970-х годов. Их применение позволило увеличить надёжность устройств, упростить наладку оборудования, часто даже исключить необходимость технического обслуживания в процессе эксплуатации .

Ниже представлен неполный список устройств, функции которых могут выполнять аналоговые ИМС. Зачастую одна микросхема заменяет сразу несколько таковых (например, К174ХА42 вмещает в себя все узлы супергетеродинного ЧМ радиоприёмника ).

  • Фильтры (в том числе на пьезоэффекте).
  • Аналоговые умножители .
  • Аналоговые аттенюаторы и регулируемые усилители .
  • Стабилизаторы источников питания: стабилизаторы напряжения и тока .
  • Микросхемы управления импульсных блоков питания.
  • Преобразователи сигналов.
  • Различные датчики .

Аналоговые микросхемы применяются в аппаратуре звукоусиления и звуковоспроизведения, в видеомагнитофонах , телевизорах , технике связи, измерительных приборах, аналоговых вычислительных машинах , и т. д.

В аналоговых компьютерах

  • Операционные усилители (LM101, μA741).
В блоках питания

Микросхема стабилизатора напряжения КР1170ЕН8

  • Линейные стабилизаторы напряжения (КР1170ЕН12, LM317).
  • Импульсные стабилизаторы напряжения (LM2596, LM2663).
В видеокамерах и фотоаппаратах
  • ПЗС-матрицы (ICX404AL).
  • ПЗС-линейки (MLX90255BA).
В аппаратуре звукоусиления и звуковоспроизведения
  • Усилители мощности звуковой частоты (LA4420, К174УН5, К174УН7).
  • Сдвоенные УМЗЧ для стереофонической аппаратуры (TDA2004, К174УН15, К174УН18).
  • Различные регуляторы (К174УН10 - двухканальный УМЗЧ с электронной регулировкой частотной характеристики, К174УН12 - двухканальный регулятор громкости и баланса).
В измерительных приборах В радиопередающих и радиоприёмных устройствах
  • Детекторы АМ сигнала (К175ДА1).
  • Детекторы ЧМ сигнала (К174УР7).
  • Смесители (К174ПС1).
  • Усилители высокой частоты (К157ХА1).
  • Усилители промежуточной частоты (К157ХА2, К171УР1).
  • Однокристальные радиоприёмники (К174ХА10).
В телевизорах
  • В радиоканале (К174УР8 - усилитель с АРУ , детектор ПЧ изображения и звука, К174УР2 - усилитель напряжения ПЧ изображения, синхронный детектор, предварительный усилитель видеосигнала, система ключевой автоматической регулировки усиления).
  • В канале цветности (К174АФ5 - формирователь цветовых R-, G-, B-сигналов, К174ХА8 - электронный коммутатор, усилитель-ограничитель и демодулятор сигналов цветовой информации).
  • В узлах развёртки (К174ГЛ1 - генератор кадровой развёртки).
  • В цепях коммутации, синхронизации, коррекции и управления (К174АФ1 - амплитудный селектор синхросигнала, генератор импульсов строчной частоты, узел автоматической подстройки частоты и фазы сигнала, формирователь задающих импульсов строчной развёртки, К174УП1 - усилитель яркостного сигнала, электронный регулятор размаха выходного сигнала и уровня «чёрного»).

Производство

Переход к субмикронным размерам интегральных элементов усложняет проектирование АИМС. Например, МОП -транзисторы с малой длиной затвора имеют ряд особенностей, ограничивающих их применение в аналоговых блоках: высокий уровень низкочастотного фликкерного шума ; сильный разброс порогового напряжения и крутизны, приводящий к появлению большого напряжения смещения дифференциальных и операционных усилителей; малая величина выходного малосигнального сопротивления и усиления каскадов с активной нагрузкой ; невысокое пробивное напряжение p-n-переходов и промежутка сток -исток , вызывающее снижение напряжения питания и уменьшение динамического диапазона .

В настоящее время аналоговые микросхемы производятся многими фирмами: Analog Devices , Analog Microelectronics, Maxim Integrated Products, National Semiconductor, Texas Instruments и др.

Цифровые схемы

Цифровая интегральная микросхема (цифровая микросхема) - это интегральная микросхема, предназначенная для преобразования и обработки сигналов , изменяющихся по закону дискретной функции.

В основе цифровых интегральных микросхем лежат транзисторные ключи, способные находиться в двух устойчивых состояниях: открытом и закрытом. Использование транзисторных ключей даёт возможность создавать различные логические, триггерные и другие интегральные микросхемы. Цифровые интегральные микросхемы применяют в устройствах обработки дискретной информации электронно-вычислительных машин (ЭВМ), системах автоматики и т. п.

  • Буферные преобразователи
  • (Микро)процессоры (в том числе ЦП для компьютеров)
  • Микросхемы и модули памяти
  • ПЛИС (программируемые логические интегральные схемы)

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения , во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов , позволяющих исправлять ошибки.
  • Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Аналого-цифровые схемы

Аналого-цифровая интегральная схема (аналого-цифровая микросхема) - интегральная схема, предназначенная для преобразования сигналов, изменяющихся по закону дискретной функции , в сигналы, изменяющиеся по закону непрерывной функции , и наоборот.

Зачастую одна микросхема выполняет функции сразу нескольких устройств (например, АЦП последовательного приближения содержат в себе ЦАП, поэтому могут выполнять двусторонние преобразования). Список устройств (неполный), функции которых могут выполнять аналого-цифровые ИМС:

  • цифро-аналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП);
  • аналоговые мультиплексоры (в то время как цифровые (де)мультиплексоры являются исключительно цифровыми ИМС, аналоговые мультиплексоры содержат элементы цифровой логики (обычно дешифратор) и могут содержать аналоговые схемы);
  • приёмопередатчики (например, сетевой приёмопередатчик интерфейса Ethernet );
  • модуляторы и демодуляторы ;
    • радиомодемы;
    • декодеры телетекста, УКВ-радио-текста ;
    • приёмопередатчики Fast Ethernet и оптических линий;
    • Dial-Up модемы;
    • приёмники цифрового ТВ;
    • датчик оптической компьютерной мыши;
  • микросхемы питания электронных устройств - стабилизаторы, преобразователи напряжения, силовые ключи и др.;
  • цифровые аттенюаторы ;
  • схемы фазовой автоподстройки частоты (ФАПЧ);
  • генераторы и восстановители частоты тактовой синхронизации;
  • базовые матричные кристаллы (БМК): содержит как аналоговые, так и цифровые схемы.

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия - это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса

Корпуса интегральных микросхем, предназначенные для поверхностного монтажа

Микросборка с бескорпусной микросхемой, разваренной на печатной плате

Специфические названия

Мировой рынок

В 2017 году мировой рынок интегральных схем оценивался в 700 млрд. долл.

Введение

Сложную современную технику трудно представить без интегральных микросхем. Интегральные микросхемы применяются как в промышленной, так и в бытовой технике, и сама широта их использования требует введения особых правил, которые, с одной стороны, обеспечили бы защиту интересов разработчика и производителя подобных микросхем, а с другой - не создали бы существенных сложностей для изготовителей электронных устройств, включающих такие топологии, и неудобств пользователям соответствующей техники.

Первый закон, посвященный охране топологий интегральных микросхем, был принят в 1984 г. в США, и с тех пор законы в этой области появились в большинстве развитых стран мира. В 1992 г. был принят специальный закон и в Российской Федерации Закон РФ от 23.09.1992 № 3526-1 (ред. от 02.02.2006) "О правовой охране топологий интегральных микросхем" // http://www.consultant.ru/. Утратил силу.. Данный Закон утратил силу в связи с принятием части 4 Гражданского кодекса Российской Федерации Гражданский кодекс Российской Федерации (часть четвертая) от 18.12.2006 № 230-ФЗ (ред. от 08.12.2011) // http://www.consultant.ru/ (далее - ГК РФ) (причем положения названного Закона вошли с некоторыми изменениями в часть 4 ГК РФ).

Специфика правового регулирования в этой области определена особенностями самого объекта. Интегральные микросхемы могут включать в себя многие тысячи и даже миллионы элементов, разработка таких микросхем зачастую весьма дорога, а срок коммерческого использования невелик. При этом стоимость тиражирования микросхемы (при больших объемах) может быть многократно ниже стоимости ее разработки. В таких условиях защита интересов производителей интегральных микросхем оказывается весьма важной, но непростой задачей.

Целью настоящей работы является исследование вопросов права на топологию интегральной микросхемы.

Задачи работы: анализ понятия права на топологию интегральной микросхемы; исследование срока действия исключительного права на топологию; изучение государственной регистрации топологии интегральной микросхемы.

Топология интегральной микросхемы: понятие и права на нее

Согласно п. 1 ст. 1448 ГК РФ, топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними. При этом интегральной микросхемой является микроэлектронное изделие окончательной или промежуточной формы, которое предназначено для выполнения функций электронной схемы, элементы и связи которого нераздельно сформированы в объеме и (или) на поверхности материала, на основе которого изготовлено такое изделие.

В декабре 1986 г. страны - члены ЕЭС приняли Директиву Совета о правовой охране топологий (topographies) полупроводниковых изделий, призванную унифицировать основные положения национальных законодательств стран - членов ЕЭС по правовой охране данных объектов. Топология полупроводникового изделия в соответствии с указанной Директивой представляет собой серию взаимосвязанных изображений, каким-либо образом зафиксированных или закодированных, отражающих трехмерную структуру слоев, из которых состоит полупроводниковое изделие; причем в этой серии каждое изображение отражает рисунок или часть рисунка поверхности полупроводникового изделия на любой стадии его изготовления. В Директиве отмечается, что топологии полупроводникового изделия предоставляется правовая охрана при условии, если она является результатом умственной (интеллектуальной) деятельности ее разработчика и не стала общеизвестной в полупроводниковой промышленности. Если топология состоит из элементов, общеизвестных в полупроводниковой промышленности, ей предоставляется правовая охрана лишь в том случае, когда совокупность таких элементов в целом не является общеизвестной Беликова К. Гармонизация положений об охране прав на топологии интегральных микросхем в Европейском Союзе // Интеллектуальная собственность. Авторское право и смежные права. 2011. № 2. С. 33..

Согласно п. 1 ст. 1449 ГК РФ, за автором топологии признаются право авторства, содержание и природа которого раскрываются в ст. 1453 ГК РФ, и исключительное право, содержание которого раскрыто в ст. 1454 ГК РФ. Кроме того, за автором признается право на вознаграждение в случаях создания служебной топологии (п. 4 ст. 1461 ГК РФ), создания топологии при выполнении работ по договору (п. 3 ст. 1462 ГК РФ), создания топологии по заказу (п. 4 ст. 1463 ГК РФ), по государственному или муниципальному контракту (ст. 1464 и п. 5 ст. 1298 ГК РФ).

В ст. 1450 ГК РФ отмечается, что автором может быть только физическое лицо, которое вложило творческий труд в создание топологии, т.е. в пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними. Лица, которые оказывали организационное или материальное содействие, контролировали выполнение работы, не могут быть в соответствии с п. 1 ст. 1228 ГК РФ признаны авторами топологии интегральной микросхемы. Закреплена презумпция: автором является лицо, указанное в заявке на выдачу свидетельства о государственной регистрации топологии интегральной микросхемы. Эта презумпция может быть опровергнута.

Топологии интегральной микросхемы, как и другие результаты интеллектуальной деятельности, могут быть созданы совместным творческим трудом двух и более лиц (ст. 1451 ГК РФ). При этом именно творческий труд должен быть вложен каждым соавтором, ведь если какое-либо лицо оказывало только организационное, техническое или материальное содействие, то оно не может быть признано соавтором Гаврилов Э.П. Понятие топологии интегральной микросхемы // Патенты и лицензии. 2008. № 5. С. 2..

Право авторства, т.е. право признаваться автором топологии, неотчуждаемо и непередаваемо, в том числе при передаче другому лицу или переходе к нему исключительного права на топологию и при предоставлении другому лицу права ее использования. Отказ от этого права ничтожен (ст. 1453 ГК РФ).

Обладатель исключительного права может использовать топологию, при этом под использованием понимаются только такие действия, которые связаны с извлечением прибыли; это значит, что если то или иное действие не направлено на извлечение прибыли, то его нельзя рассматривать как способ использования топологии интегральной микросхемы Корнеев В.А. Программы для ЭВМ, базы данных и топологии интегральных микросхем: основания возникновения авторского права // Законодательство. 2006. № 11. С. 72.. Таким образом, если какое-либо лицо воспроизводит топологию не с целью извлечения прибыли, то не имеет место использование топологии, а следовательно, не нужно получать согласие у правообладателя.

В п. 2 ст. 1454 ГК РФ содержится лишь примерный перечень способов использования топологии. Нужно обратить внимание, что поскольку топология охраняется, в силу того что она оригинальна, то для предоставления охраны части топологии она также должна обладать свойством оригинальности, если же она таким свойством не обладает, то она не охраняется. В связи с изложенным законодатель предусматривает в подп. 1 п. 2 ст. 1454 ГК РФ, что воспроизведение части топологии, которая не является оригинальной, не рассматривается как способ использования интегральной микросхемы Корнеев В.А. Программы для ЭВМ, базы данных и топологии интегральных микросхем как объекты авторского права // Вестник Московского университета. Серия 11: Право. 2006. № 6. С. 102..

В подп. 2 п. 2 ст. 1454 ГК РФ говорится, что к способу использования интегральной микросхемы относятся ввоз, продажа и иное введение в гражданский оборот не только топологии, но и интегральной микросхемы, в которую включена топология, и изделие, в которую включена такая интегральная микросхема. Таким образом, перед продажей изделия с включенной в нее интегральной микросхемой, топология которой охраняется, продавец должен получить разрешение на использование топологии указанным способом. Если не будет заключен лицензионный договор пользователя с правообладателем, то будет нарушено исключительное право на топологию, за исключением случаев, предусмотренных в ст. 1456 ГК РФ.

Особенностью правовой охраны топологии интегральной микросхемы является то, что на одну и ту же топологию может существовать несколько самостоятельных исключительных прав. Данное обстоятельство обусловлено характером творческого труда при создании топологии. Тождественная топология может быть создана при параллельном творчестве в отличие от творческого труда при создании объекта авторского права Еременко В.И. Понятие топологии интегральной микросхемы и исключительное право на топологию // Изобретательство. 2010. № 8. С. 8..

Правообладатель для оповещения о своем исключительном праве на топологию вправе использовать знак охраны, который помещается на топологии, а также на изделиях, содержащих такую топологию, и состоит из выделенной прописной буквы "Т" ("Т", [Т], "Т" в окружности, Т* или "Т" в квадрате), даты начала срока действия исключительного права на топологию и информации, позволяющей идентифицировать правообладателя (ст. 1455 ГК РФ).

Выделяют понятие "служебная топология". В п. 1 ст. 1461 ГК РФ содержится определение "служебная топология". Законодатель относит к служебным топологии, созданные в силу выполнения трудовых обязанностей и в силу конкретного задания работодателя. Законодатель попытался расширить объем понятия "служебная топология", отнеся к служебным топологиям не только те, которые созданы в силу трудовых обязанностей, но и те, которые созданы за пределами трудовой обязанности лицом, состоящим в трудовых отношениях с лицом, который дал ему задание на создание топологии. Вместе с тем представляется, что если речь идет о выполнении задания по созданию топологии за рамками трудового договора, то топология не должна относиться к служебной, так как в этом случае лицо, дающее задание другому лицу, не может рассматриваться в качестве работодателя последнего. Поэтому, думается, к служебной топологии должна относиться только такая топология, которая выполнена в рамках трудовых обязанностей Корнеев В.А. Субъекты авторского права на программы для ЭВМ, базы данных, топологии интегральных микросхем // Законодательство. 2007. № 1. С. 52..

В п. 2 ст. 1461 ГК РФ предусматривается, что право авторства на служебную топологию принадлежит работнику.

Автор топологии имеет право на вознаграждение, если исключительное право принадлежит работодателю и если работодатель передал это право третьему лицу. Выплачивать вознаграждение в любом случае должен работодатель. Размер вознаграждения, условия и порядок его выплаты согласно п. 4 ст. 1461 ГК РФ должны быть определены договором, заключенным между работодателем и работником. В сущности, между ними заключается не договор, а соглашение, так как последнее не порождает обязательство, а лишь конкретизирует его условия. Если не достигнуто согласие, размер, порядок и условия выплаты вознаграждения устанавливаются судом.

В п. 5 ст. 1461 ГК РФ в целях защиты интересов работодателя предусматривается, что, если топология была создана работником с использованием денежных, технических или иных материальных средств работодателя, но не в связи с выполнением своих трудовых обязанностей или конкретного задания работодателя, она не является служебной. Однако предусматривается, что работодатель может потребовать предоставления безвозмездной простой лицензии на использование созданной топологии для собственных нужд на весь срок действия исключительного права на топологию или возмещения расходов, понесенных им в связи с созданием такой топологии. Однако исключительное право на топологию остается у автора Право интеллектуальной собственности: учебник [для вузов] / под ред. И.А. Близнеца; Рос. госуд. ин-т интеллект. соб-ти; [И.А. Близнец, Э.П. Гаврилов, О.В. Добрынин [и др.]. М.: Проспект, 2011. С. 594..

Для тех случаев, когда топология создается по договору (ст. 1462 ГК РФ), ГК РФ закрепляет следующую принципиальную конструкцию: исключительное право на топологию принадлежит одной стороне, а другая сторона получает ограниченное право на использование топологии на условиях простой (неисключительной) лицензии, причем такое распределение прав может быть изменено в договоре. Конкретная же реализация этого принципа будет зависеть от того, являлось ли создание данной топологии предметом рассматриваемого договора или нет. Если предметом договора было создание определенной топологии (ст. 1463 ГК РФ), то исключительное право на нее принадлежит заказчику (либо указанному им третьему лицу). Если топология была создана при выполнении работ по государственному или муниципального контракту, то в силу ст. 1464 ГК РФ права на такую топологию будут распределяться по тем же правилам, что установлены для произведений литературы, науки или искусства (ст. 1298 ГК РФ).

Затем пластину переворачивают, шлифуют и полируют со стороны монокристаллического кремния почти до пленкиSiO2 . Оставшийся перед пленкойSiO2 слой монокристаллического кремния снимают в полирующем травителе. В результате получается подложка с изолированными областями(карманами) монокристаллического кремния. В каждом из карманов обычными приемами планарной технологии формируют необходимые структуры активных и пассивных элементов ИМС. Таким образом, изоляция элементов ИМС осуществляется тонкой пленкой SiO2 . Слой поликристаллического кремния, в котором утоплены области монокристаллического кремния, играет роль несущей подложки.

Изоляция элементов ИМС воздушными промежутками.

Принципиальное отличие изоляции воздушными промежутками от изоляции тонкой пленкой диэлектрика заключается в наличии непроводящей подложки. Этим отличием обусловлены качественно новые характеристики ИМС.

К методам изоляции элементов ИМС воздушными промежутками относятся: декаль-метод, метод балочных выводов, метод «кремний на сапфире» (КНС) и др.

Комбинированный способ изоляции.

Стремление к использованию преимуществ, которыми обладают методы изоляции с помощью обратно смещенногоp -n - перехода и диэлектрической изоляции в единой структуре, привело к созданию комбинированного способа изоляции. При комбинированном способе изоляция элементов с боковых сторон осуществляется диэлектриком, а со стороны дна– обратно смещенным p -n -переходом. Способы комбинированной изоляции, (изопланар, эпипланар, полипланар и др.) наиболее перспективны для получения высокой плотности размещения элементов и улучшения электрических параметров ИМС.

5.8 Разработка топологии полупроводниковых ИМС

Основой для разработки топологии полупроводниковой ИМС являются электрическая схема, требования к электрическим параметрам и к параметрам активных и пассивных элемен-

тов, конструктивно-технологические требования и ограничения. Разработка чертежа топологии включает в себя такие этапы:

выбор конструкции и расчет активных и пассивных элементов ИМС; размещение элементов на поверхности и в объеме подложки и создание рисунка разводки(коммутации) между элементами; разработку предварительного варианта топологии; оценку качества топологии и ее оптимизацию; разработку окончательного варианта топологии. Целью работы конструктора при разработке топологии является минимизация площади кристалла ИМС, минимизация суммарной длины разводки и числа пересечений в ней.

Конструктивно-технологические ограничения при разработке топологии ИМС на биполярных транзисторах. Важней-

шей технологической характеристикой, определяющей горизон-

может быть уверенно сформирован при заданном уровне технологии, например, минимальная ширина окна в окисле кремния, минимальная ширина проводника, минимальный зазор между проводниками, минимальное расстояние между краями эмиттерной и базовой областей и т.д. Пусть минимальный размер, который может обеспечить технология, равен d . Тогда зазор между областью, занимаемой транзистором, и другими элементами ИМС больше минимального размераd на величину боковой диффузии под окисел, которая при разделительной диффузии примерно равна толщине эпитаксиального слоя d э .

Правила проектирования топологии полупроводниковой ИМС. Разработка топологии ИМС – творческий процесс, и его результаты существенно зависят от индивидуальных способностей разработчика, его навыков и знаний. Сущность работы по

созданию топологии ИМС сводится к нахождению такого оптимального варианта взаимного расположения элементов схемы, при котором обеспечиваются высокие показатели эффективности производства и качества ИМС: низкий уровень бракованных изделий, низкая стоимость, материалоемкость, высокая надежность, соответствие получаемых электрических параметров заданным. К разработке топологии приступают после того, как количество, типы и геометрическая форма элементов ИМС определены.

Правила проектирования изолированных областей. Количество и размеры изолированных областей оказывают существенное влияние на характеристики ИМС, поэтому:

2) к изолирующим p -n -переходам всегда должно быть приложено напряжение обратного смещения, что практически осуществляется подсоединением подложкир- типа, или области разделительной диффузии р- типа, к точке схемы с наиболее отрицательным потенциалом. При этом суммарное обратное напряжение, приложенное к изолирующемур -n- переходу, не должно превышать напряжения пробоя;

3) диффузионные резисторы, формируемые на основе базового слоя, можно располагать в одной изолированной области, которая подключается к точке схемы с наибольшим положительным потенциалом. Обычно такой точкой является контактная площадка ИМС, на которую подается напряжение смещения от коллекторного источника питания;

4) резисторы на основе эмиттерного и коллекторного слоев следует располагать в отдельных изолированных областях;

5) транзисторы типа n -р -n , коллекторы которых подсоединены непосредственно к источнику питания, целесообразно размещать в одной изолированной области вместе с резисторами;

6) транзисторы типа n -р -n , которые включены по схеме с

общим коллектором, можно располагать в одной изолированной области;

7) все другие транзисторы, кроме упомянутых в п. 5 и 6, необходимо располагать в отдельных изолированных областях, т.е. все коллекторные области, имеющие различные потенциалы, должны быть изолированы;

9) количество изолированных областей для диодов может сильно изменяться в зависимости от типа диодов и способов их включения. Если в качестве диодов используются переходы ба- за-коллектор, то для каждого диода требуется отдельная изолированная область, так как каждый катод(коллекторная область n -типа) должен иметь отдельный вывод. Если в качестве диодов используются переходы эмиттер – база, то все диоды можно поместить в одной изолированной области. При этом все катоды диодов (эмиттерные области) сформированы отдельно в общем аноде. Аноды диодов с помощью соединительной металлизации закорачивают на изолированную (коллекторную) область;

10) для диффузионных конденсаторов требуются отдельные изолированные области. Исключение составляют случаи, когда один из выводов конденсатора является общим с другой изолированной областью;

11) для диффузионных перемычек всегда требуются - от дельные изолированные области.

Правила размещения элементов ИМС на площади кристалла. После определения количества изолированных областей приступают к их размещению в нужном порядке, размещению элементов, соединению элементов между собой и с контактными площадками, руководствуясь следующими правилами:

1) при размещении элементов ИМС и выполнении зазоров между ними необходимо строго выполнять ограничения, соответствующие типовому технологическому процессу;

2) резисторы, у которых нужно точно выдерживать отношение номиналов, должны иметь одинаковую ширину и конфигурацию и располагаться рядом друг с другом. Это относится и к другим элементам ИМС, у которых требуется обеспечить точное соотношение их характеристик;

3) резисторы с большой мощностью не следует располагать вблизи активных элементов;

4) диффузионные резисторы можно пересекать проводящей дорожкой поверх слоя окисла кремния, покрывающего резистор;

5) форма и место расположения конденсаторов не являются критичными;

7) для улучшения развязки между изолированными областями контакт к подложке следует располагать рядом с мощным транзистором или как можно ближе ко входу или выходу схемы;

8) число внешних выводов в схеме, а также порядок расположения и обозначения контактных площадок выводов ИМС на кристалле должны соответствовать выводам корпуса;

9) коммутация в ИМС должна иметь минимальное количество пересечений и минимальную длину проводящих дорожек. Если полностью избежать пересечений не удается, их можно осуществить, используя обкладки конденсаторов, формируя дополнительные контакты к коллекторным областям транзисторов, применяя диффузионные перемычки,инаконец, создавая дополнительный слой изоляции между пересекающимися проводниками;

10) первую контактную площадку располагают в нижнем левом углу кристалла и отличают от остальных по ее положению относительно фигур совмещения или заранее оговоренных элементов топологии.

Нумерацию остальных контактных площадок проводят против часовой стрелки. Контактные площадки располагают в зависимости от типа выбранного корпуса по периметру кристалла или по двум противоположным его сторонам;

11) фигуры совмещения располагают одной-двумя группа-

ми на любом свободном месте кристалла; 12) при разработке аналоговых ИМС элементы входных

дифференциальных каскадов должны иметь одинаковую топологию и быть одинаково ориентированными в плоскости кристалла; для уменьшения тепловой связи входные и выходные каскады должны быть максимально удалены; для уменьшения высокочастотной связи через подложку контакт к ней следует осуществлять в двух точках – вблизи входных и выходных каскадов.

Рекомендации по разработке эскиза топологии. Для обеспечения разработки эскиза топологии рекомендуется с самого начала вычертить принципиальную электрическую схему так, чтобы ее выводы были расположены в необходимой последовательности. Каждая линия, пересекающая резистор на принципиальной электрической схеме, будет соответствовать металлизированной дорожке, пересекающей диффузионный резистор по окислу на топологической схеме.

На этапе эскизного проектирования топологии необходимо предусмотреть решение следующих задач: расположить как можно большее число резисторов в одной изолированной области; подать наибольший потенциал на изолированную область, где размещены резисторы; подать наиболее отрицательный потенциал на подложку вблизи мощного транзистора выходного каскада; рассредоточить элементы, на которых рассеиваются большие мощности; расположить элементы с наименьшими размерами и с наименьшими запасами на совмещение в центре эскиза топологии; сократить число изолированных областей и уменьшить периметр каждой изолированной области.

В случае, если принципиальная электрическая схема содержит обособленные группы или периодически повторяющиеся группы элементов, объединенных в одно целое с точки зрения выполняемых ими функций, разработку рекомендуется начинать с составления эскизов топологии для отдельных групп элементов, затем объединить эти эскизы в один, соответствующий всей схеме.

На основе эскиза разрабатывают предварительный вариант топологии, который вычерчивают на миллиметровой бумаге в выбранном масштабе, обычно 100:1 или 200:1 (выбирают мас-

штабы, кратные 100). Топологию проектируют в прямоугольной системе координат. Каждый элемент топологии представляет собой замкнутую фигуру со сторонами, состоящими из отрезков прямых линий, параллельных осям координат. Придание элементам форм в виде отрезков прямых линий, непараллельных осям координат, допустимо только в тех случаях, когда это приводит к значительному упрощению формы элемента. Например, если форма элемента состоит из ломаных прямых, составленных в виде «ступенек» с мелким шагом, рекомендуется заменить их одной прямой линией. Координаты всех точек, расположенных в вершинах углов ломаных линий, должны быть кратны шагу координатной сетки.

В процессе вычерчивания топологии для получения оптимальной компоновки возможно изменение геометрии пассивных элементов, например пропорциональное увеличение длины и ширины резисторов или их многократный изгиб, позволяющие провести над резистором полоски металлической разводки или получить более плотную упаковку элементов. При изменении формы пассивных элементов в процессе их размещения проводят корректировочные расчеты.

При проектировании слоя металлизации размеры контактных площадок и проводников следует брать минимально допустимыми, а расстояния между ними – максимально возможными.

После выбора расположения элементов и контактных площадок, создания рисунка разводки необходимо разместить на топологии фигуры совмещения, тестовые элементы (транзисторы, резисторы и т.д. – приборы, предназначенные для замера электрических параметров отдельных элементов схемы), реперные знаки. Фигуры совмещения могут иметь любую форму (чаще всего квадрат или крест), причем надо учесть, что на каждом фотошаблоне, кроме первого и последнего, имеются две фигуры, расположенные рядом друг с другом. Меньшая фигура предназначена для совмещения с предыдущей технологической операцией, а большая – с последующей. На первом фотошаблоне расположена только большая фигура, а на последнем – только меньшая.

При разработке топологии важно получить минимальную площадь кристалла ИМС. Это позволяет увеличить производительность, снизить материалоемкость и повысить выход годных

ИМС, поскольку на одной полупроводниковой пластине можно разместить большее число кристаллов и уменьшить вероятность попадания дефектов, приходящихся на кристалл. При размерах стороны кристалла до 1 мм ее величину выбирают кратной 0,05 мм, а при размерах стороны кристалла 1…2 мм – кратной 0,1 мм.

Для любой принципиальной электрической схемы можно получить много приемлемых предварительных вариантов топологии, удовлетворяющих электрическим, технологическим и конструктивным требованиям. Любой предварительный вариант подлежит дальнейшей доработке.

Если после уплотненного размещения всех элементов на кристалле выбранного размера осталась незанятая площадь, рекомендуется перейти на меньший размер кристалла. Если этот переход невозможен, то незанятую площадь кристалла можно использовать для внесения в топологию изменений, направленных на снижение требований к технологии изготовления полупроводниковой ИМС. Например, можно увеличить размеры контактных площадок и расстояния между контактными площадками, ширину проводников и расстояние между ними, по возможности выпрямить элементы разводки, резисторы, границы изолированных областей. Пример общего вида топологии приведен на рис. 5.25.

Проверка правильности разработки топологии ИМС. По-

следний из составленных и удовлетворяющий всем требованиям вариант топологии подвергают проверке в такой последовательности. Проверяют соответствие технологическим ограничениям: минимальных расстояний между элементами, принадлежащими одному и разным слоям ИМС; минимальных размеров элементов, принятых в данной технологии, и других технологических ограничений; наличия фигур совмещения для всех слоев ИМС; размеров контактных площадок для присоединения гибких выводов; расчетных размеров элементов их размерам на чертеже топологии; мощности рассеяния резисторов, максимально допустимой удельной мощности рассеяния, а также обеспечение возможности контроля характеристик элементов ИМС.

Таблица 1

Элементы структуры

Используемый материал

Поверхност-

ное сопротив

Наименование

Наименование

Подложка

Эпитаксиальный

Трехбромный бор

Разделительная

Базовая область

Трехбромный бор

Эмиттерная

Треххлористый

фосфор ОС 449-4

Металлизация

Алюминий А99

Скрытый слой

Трехокись сурьмы

Изолирующая

SiO2

Пассивирующая

SiO2

пленка не показ.

1.Все размеры на чертеже даны в мкм

2. Характеристики и данные по изготовлению отдельных слоев приведены в таблице 1

3. Нумерация контактных площадок и обозначения элементов показаны условно

4. Элементы в слоях выполнять по таблицам координат, приведенным на соответствующих листах чертежа

Кристалл

6 КЭФ 4,5 / 3, 5 КЭС 15 60 200КДБ 10(100)

Рис. 5.25 – Общий вид топологии ИМС на биполярных транзисторах

Поделиться: