Теория сравнений по модулю примеры. Сравнение по модулю

Сравнение с одним неизвестным x имеет вид

Где . Еслиa n не делится на m , то и называется степенью сравнения.

Решением сравнения называется всякое целое число x 0 , для которого

Если х 0 удовлетворяет сравнению, то, согласно свойству 9 сравнений, этому сравнению будут удовлетворять все целые числа, сравнимые с x 0 по модулю m . Поэтому все решения сравнения, принадлежащие одному классу вычетов по модулю т , будем рассматривать как одно решение. Таким образом, сравнение имеет столько решений, сколько элементов полной системы вычетов ему удовлетворяет.

Сравнения, множества решений которых совпадают, называются равносильными.

2.2.1 Сравнения первой степени

Сравнение первой степени с одним неизвестным х имеет вид

(2.2)

Теорема2.4. Для того чтобы сравнение имело хотя бы одно решение, необходимо и достаточно, чтобы число b делилось на НОД(a , m ).

Доказательство. Сначала докажем необходимость. Пусть d = НОД(a , m ) и х 0 - решение сравнения. Тогда, то есть разностьах 0 b делится на т. Значит, существует такое целое число q , что ах 0 b = qm . Отсюда b = ах 0 qm . А поскольку d , как общий делитель, делит числа а и т, то уменьшаемое и вычитаемое делятся на d , а значит и b делится на d .

Теперь докажем достаточность. Пусть d - наибольший общий делитель чисел а и т, и b делится на d . Тогда по определению делимости существуют такие целые числа a 1 , b 1 1 , что.

Расширенным алгоритмом Евклида найдем линейное представление числа 1 = НОД(a 1 , m 1 ):

для некоторых x 0 , y 0 . Домножим обе части последнего равенства на b 1 d :

или, что то же самое,

,

то есть , и- решение сравнения. □

Пример2.10. Сравнение 9х = 6 (mod 12) имеет решение, так как НОД(9, 12) = 3 и 6 делится на 3. □

Пример2.11. Сравнение = 9 (mod 12) не имеет решений, так как НОД(6, 12) = 6, а 9 не делится на 6. □

Теорема 2.5. Пусть сравнение (2.2) разрешимо и d = НОД(a , m ). Тогда множество решений сравнения (2.2) состоит из d классов вычетов по модулю т, а именно, если х 0 - одно из решений, то все другие решения - это

Доказательство. Пусть х 0 - решение сравнения (2.2), то есть и, . Значит, существует такое q , что ах 0 b = qm . Подставляя теперь в последнее равенство вместо х 0 произвольное решение вида, где, получаем выражение

, делящееся на m . □

Пример 2.12. Сравнение 9х =6 (mod 12) имеет ровно три решения, так как НОД(9, 12)=3. Эти решения: х 0 = 2, х 0 + 4 = 6, х 0 + 2∙4=10.□

Пример2.13. Сравнение 11х =2 (mod 15) имеет единственное решение х 0 = 7,таккакНОД(11,15)=1.□

Покажем, как решать сравнение первой степени. Не умаляя общности, будем считать, что НОД(a , т) = 1. Тогда решение сравнения (2.2) можно искать, например, по алгоритму Евклида. Действительно, используя расширенный алгоритм Евклида, представим число 1 в виде линейной комбинации чисел a и т :

Умножим обе части этого равенства на b , получим: b = abq + mrb , откуда abq - b = - mrb , то есть a ∙ (bq ) = b (mod m ) и bq - решение срав­нения (2.2).

Еще один путь решения - использовать теорему Эйлера. Опять считаем, что НОД(а, т) = 1. Применяем теорему Эйлера: . Умножим обе части сравнения наb : . Переписывая последнее выражение в виде , получаем, что- решение сравнения (2.2).

Пусть теперь НОД(a , m ) = d >1. Тогда a = a t d , m = m t d , где НОД(а 1 , m 1) = 1. Кроме того, необходимо b = b 1 d , для того чтобы сравнение было разрешимо. Если х 0 - решение сравнения а 1 x = b 1 (mod m 1), причем единственное, поскольку НОД(а 1 , m 1) = 1, то х 0 будет решением и сравнения а 1 xd = db 1 (mod m 1), то есть исходного сравнения (2.2). Остальные d - 1 решений находим по теореме 2.5.

Для двух целых числа х и у введем отношение сравнимости по четности, если их разность - четное число. Легко проверить, что при этом выполняются все три ранее введенные условия эквивалентности. Введенное таким образом отношение эквивалентности разбивает все множество целых чисел на два непересекающихся подмножества: подмножество четных чисел и подмножество нечетных чисел.

Обобщая этот случай, будем говорить, что два целых числа, отличающиеся на кратное какого-нибудь фиксированного натурального числа, эквивалентны. На этом основано понятие сравнимости по модулю, введенное Гауссом.

Число а , сравнимо с b по модулю m , если их разность делится на фиксированное натуральное число m , то есть а - b делится на m . Символически это записывается в виде:

а ≡ b(mod m) ,

а читается так: а сравнимо с b по модулю m .

Введенное таким образом отношение, благодаря глубокой аналогии между сравнениями и равенствами, упрощает вычисления, в которых числа, отличающиеся на кратное m , фактически не различаются (так как сравнение есть равенство с точностью до некоторого кратного m).

Например, числа 7 и 19 сравнимы по модулю 4, но не сравнимы по модулю 5, т.к. 19-7=12 делится на 4 и не делится на 5.

Можно сказать также, что число х по модулю m равно остатку от деления нацело числа х на m , так как

x=km+r, r = 0, 1, 2, ... , m-1 .

Легко проверить, что сравнимость чисел по данному модулю обладает всеми свойствами эквивалентности. Поэтому множество целых чисел разбивается на классы чисел, сравнимых между собой по модулю m . Число таких классов равно m , и все числа одного класса при делении на m дают один и тот же остаток. Например, если m = 3, то получается три класса: класс чисел, кратных 3 (дающих при делении на 3 остаток 0), класс чисел, дающих при делении на 3 остаток 1, класс чисел, дающих при делении на 3 остаток 2.

Примеры использования сравнений доставляются хорошо известными признаками делимости. Обычное представление числа n цифрами в десятичной системе счисления имеет вид:

n = c10 2 + b10 1 + a10 0 ,

где а, b, с, - цифры числа, записанные справа налево, так что а - число единиц, b - числе десятков и т.д. Так как 10 k 1(mod9) при любом к≥0, то из написанного следует, что

n ≡ c + b + a (mod9),

откуда вытекает признак делимости на 9: n делится на 9 тогда и только тогда, когда сумма его цифр делится на 9. Это рассуждение проходит также и при замене 9 на 3.

Получим признак делимости на 11. Имеют место сравнения:

10≡- 1(mod11), 10 2 1(mod11) 10 3 ≡- 1(mod11), и так далее. Поэтому n ≡ c - b + a - …. (mod11).

Следовательно, n делится на 11 тогда и только тогда, когда знакопеременная сумма его цифр а - b + с -... делится на 11.

Например, знакопеременная сумма цифр числа 9581 есть 1 - 8 + 5 - 9 = -11, она делится на 11, значит и число 9581 делится на 11.

Если имеют места сравнения: , то их можно почленно складывать, вычитать и перемножать так же, как и равенства:

Сравнение всегда можно умножить на целое число:

если , то

Однако сокращение сравнения на какой-либо множитель не всегда возможно, Например, , но нельзя произвести сокращение на общий для чисел 42 и 12 множитель 6; такое сокращение приводит к неверному результату, поскольку .

Из определения сравнимости по модулю следует, что сокращение на множитель допустимо, если этот множитель взаимно прост с модулем.

Выше было уже отмечено, что любое целое число сравнимо по mod m с одним из следующих чисел: 0, 1, 2,... , m-1.

Помимо этого ряда, имеются и другие ряды чисел, обладающие тем же свойством; так, например, любое число сравнимо по mod 5 с одним из следующих чисел: 0, 1, 2, 3, 4, но так же сравнимо с одним из следующих чисел: 0, -4, -3, -2, -1, или 0, 1, -1, 2, -2. Любой такой ряд чисел называется полной системой вычетов по модулю 5.

Таким образом, полной системой вычетов по modm называется любой ряд из m чисел, никакие два из которых несравнимы друг с другом. Обычно используется полная система вычетов, состоящая из чисел: 0, 1, 2, ..., m -1. Вычетом числа n по модулю m является остаток от деления n на m , что следует из представления n = km + r , 0<r <m - 1.

Определения

Два целых числа a и b сравнимы по модулю натурального числа n (или равноостаточны при делении на n), если при делении на n они дают одинаковые остатки.

Эквивалентные формулировки: a и b сравнимы по модулю n , если их разность a - b делится на n , или если a может быть представлено в виде a = b + k n , где k - некоторое целое число. Например: 32 и −10 сравнимы по модулю 7, так как

Утверждение « a и b сравнимы по модулю n » записывается в виде:

Свойства равенства по модулю

Отношение сравнения по модулю обладает свойствами

Любые два целых числа a и b сравнимы по модулю 1.

Для того, чтобы числа a и b были сравнимы по модулю n , необходимо и достаточно, чтобы их разность делилась на n .

Если числа и попарно сравнимы по модулю n , то их суммы и , а также произведения и тоже сравнимы по модулю n .

Если числа a и b сравнимы по модулю n , то их степени a k и b k тоже сравнимы по модулю n при любом натуральном k .

Если числа a и b сравнимы по модулю n , и n делится на m , то a и b сравнимы по модулю m .

Для того, чтобы числа a и b были сравнимы по модулю n , представленному в виде его канонического разложения на простые сомножители p i

необходимо и достаточно, чтобы

Отношение сравнения является отношением эквивалентности и обладает многими свойствами обычных равенств. Например, их можно складывать и перемножать: если

Сравнения, однако, нельзя, вообще говоря, делить друг на друга или на другие числа. Пример: , однако, сократив на 2, мы получаем ошибочное сравнение: . Правила сокращения для сравнений следующие.

Нельзя также выполнять операции со сравнениями, если их модули не совпадают.

Другие свойства:

Связанные определения

Классы вычетов

Множество всех чисел, сравнимых с a по модулю n называется классом вычетов a по модулю n , и обычно обозначается [a ] n или . Таким образом, сравнение равносильно равенству классов вычетов [a ] n = [b ] n .

Поскольку сравнение по модулю n является отношением эквивалентности на множестве целых чисел , то классы вычетов по модулю n представляют собой классы эквивалентности; их количество равно n . Множество всех классов вычетов по модулю n обозначается или .

Операции сложения и умножения на индуцируют соответствующие операции на множестве :

[a ] n + [b ] n = [a + b ] n

Относительно этих операций множество является конечным кольцом , а если n простое - конечным полем .

Системы вычетов

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n несравнимых между собой по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

0,1,...,n − 1

или абсолютно наименьшие вычеты, состоящие из чисел

,

в случае нечётного n и чисел

в случае чётного n .

Решение сравнений

Сравнения первой степени

В теории чисел , криптографии и других областях науки часто возникает задача отыскания решений сравнения первой степени вида:

Решение такого сравнения начинается с вычисления НОД (a, m)=d . При этом возможны 2 случая:

  • Если b не кратно d , то у сравнения нет решений.
  • Если b кратно d , то у сравнения существует единственное решение по модулю m / d , или, что то же самое, d решений по модулю m . В этом случае в результате сокращения исходного сравнения на d получается сравнение:

где a 1 = a / d , b 1 = b / d и m 1 = m / d являются целыми числами, причем a 1 и m 1 взаимно просты. Поэтому число a 1 можно обратить по модулю m 1 , то есть найти такое число c , что (другими словами, ). Теперь решение находится умножением полученного сравнения на c :

Практическое вычисление значения c можно осуществить разными способами: с помощью теоремы Эйлера , алгоритма Евклида , теории цепных дробей (см. алгоритм) и др. В частности, теорема Эйлера позволяет записать значение c в виде:

Пример

Для сравнения имеем d = 2 , поэтому по модулю 22 сравнение имеет два решения. Заменим 26 на 4, сравнимое с ним по модулю 22, и затем сократим все 3 числа на 2:

Поскольку 2 взаимно просто с модулем 11, можно сократить левую и правую части на 2. В итоге получаем одно решение по модулю 11: , эквивалентное двум решениям по модулю 22: .

Сравнения второй степени

Решение сравнений второй степени сводится к выяснению, является ли данное число квадратичным вычетом (с помощью квадратичного закона взаимности) и последующему вычислению квадратного корня по данному модулю.

История

Китайская теорема об остатках , известная уже много столетий, утверждает (на современном математическом языке), что кольцо вычетов по модулю произведения нескольких взаимно простых чисел является прямым произведением соответственных множителям колец вычетов.

В значительной степени теория делимости и вычетов была создана Эйлером . Сравнения по модулю впервые использовались Гауссом в его книге «Арифметические исследования», 1801 год . Он же предложил утвердившуюся в математике символику для сравнений.

Определение 1. Если два числа 1) a и b при делении на p дают один и тот же остаток r , то такие числа называются равноостаточными или сравнимыми по модулю p .

Утверждение 1. Пусть p какое нибудь положительное число. Тогда всякое число a всегда и притом единственным способом может быть представлено в виде

Но эти числа можно получить задав r равным 0, 1, 2,..., p −1. Следовательно sp+r=a получит всевозможные целые значения.

Покажем, что это представление единственно. Предположим, что p можно представить двумя способами a=sp+r и a=s 1 p +r 1 . Тогда

(2)

Так как r 1 принимает один из чисел 0,1, ..., p −1, то абсолютное значение r 1 −r меньше p . Но из (2) следует, что r 1 −r кратно p . Следовательно r 1 =r и s 1 =s .

Число r называется вычетом числа a по модулю p (другими словами, число r называется остатком от деления числа a на p ).

Утверждение 2. Если два числа a и b сравнимы по модулю p , то a−b делится на p .

Действительно. Если два числа a и b сравнимы по модулю p , то они при делении на p имеют один и тот же остаток p . Тогда

делится на p , т.к. правая часть уравнения (3) делится на p .

Утверждение 3. Если разность двух чисел делится на p , то эти числа сравнимы по модулю p .

Доказательство. Обозначим через r и r 1 остатки от деления a и b на p . Тогда

Примеры 25≡39 (mod 7), −18≡14 (mod 4).

Из первого примера следует, что 25 при делении на 7 дает тот же остаток, что и 39. Действительно 25=3·7+4 (остаток 4). 39=3·7+4 (остаток 4). При рассмотрении второго примера нужно учитывать, что остаток должен быть неотрицательным числом, меньшим, чем модуль (т.е. 4). Тогда можно записать: −18=−5·4+2 (остаток 2), 14=3·4+2 (остаток 2). Следовательно −18 при делении на 4 дает остаток 2, и 14 при делении на 4 дает остаток 2.

Свойства сравнений по модулю

Свойство 1. Для любого a и p всегда

не всегда следует сравнение

где λ это наибольший общий делитель чисел m и p .

Доказательство. Пусть λ наибольший общий делитель чисел m и p . Тогда

Так как m(a−b) делится на k , то

Следовательно

и m является один из делителей числа p , то

где h=pqs.

Заметим, что можно допустить сравнения по отрицательным модулям, т.е. сравнение a≡b mod (p ) означает и в этом случае, что разность a−b делится на p . Все свойства сравнений остаются в силе и для отрицательных модулей.

Поделиться: