Нужен тепловой акустический статистические расчеты. Расчёт корпуса и фильтров акустической системы

Акустический дизайн (расчет) - вид проектных работ, выполняемый методом компьютерного моделирования. Результатом являются рекомендации по отделке объекта специальными материалами для приведения акустических параметров к оптимальным, в соответствии с назначением объекта. Эти рекомендации включают в себя типы и площади необходимых отделочных материалов, дверей, штор, а также способы их крепления и расположения в пространстве помещения. Проектирование на раннем этапе строительства объекта позволяет с высокой точностью добиться желаемого результата и в конечном итоге экономит средства заказчика.

В случае расчетов для театров, концертных залов, кинотеатров, студий звукозаписи рекомендации могут касаться архитектурных изменений (форма стен, потолка). Также в зрительных залах учитывается влияние материалов кресел для зрителей.

Для расчета необходимых материалов применяется расширенная эмуляция акустической среды на основе математической трехмерной модели объекта. Для выполнения моделирования необходимо предоставить данные:

  1. Предназначение помещений (типы проводимых работ или мероприятий, желательно с указанием музыкальных жанров для концертных залов и студий).
  2. Все характерные планы, разрезы, материалы стен и полов с учетом финишных покрытий (ковролин по дереву, линолеум по бетону, обои на штукатурке и т.д.), а также инженерные конструкции (короба вентиляции над подвесным потолком, ниши батарей отопления и т.д.), так же необходимо точное положение окон и состав пакетов.
  3. Если есть предварительный дизайн помещения, то необходимо согласование применяемых в отделке звукопоглощающих материалов.
  4. Если объект сложной формы или чрезвычайно критичен к требуемой акустической обстановке (студии звукозаписи, комнаты прослушивания и т.п.), то проводятся замеры параметров текущей среды на объекте до того как приступить к расчетам.

В итоге заказчик получает описание модели объекта с расчетами его основных акустических характеристик:

  • C50 - Индекс речевой ясности;
  • C80 - Индекс музыкальной ясности;
  • STI - Коэффициент речевой разборчивости (индекса передачи речи);
  • EDT - Время затухания ранних отражений;
  • RT - Время реверберации;
  • D50 - Индекс четкости звука;
  • G - Сила звука;
  • моделирование отражений;
  • и прочие

В случае концертного зала, кинотеатра и подобных помещений, в которых установлена профессиональная система звукоусиления, расчет делается с учетом воздействия этой системы и рассчитывается оптимальное положение и углы поворота громкоговорителей по отношению к слушателям. Так же акустический расчет включает в себя спецификацию рекомендуемых к применению звукопоглощающих материалов с рекомендациями по их размещению и способу крепления для каждой поверхности отдельно (стены, пол, потолок).

При необходимости, после монтажа проводится измерение параметров среды и особенностей распространения и поглощения звука, с целью подтверждения правильности монтажа и расположения запроектированных материалов, а также подтверждения результатов математического моделирования.

Некомфортная акустическая обстановка быстро вызывает утомление, раздражение и невосприимчивость информации.

Акустический дизайн применим ко всем помещениям, в которых важно качество звука, комфортное и верное восприятие звуковой информации - от домашних кинотеатров и ресторанов, до клубов и конференц-залов. И обязательно применяется при проектировании концертных площадок, филармоний, театров, кинотеатров, стадионов, храмов.

В общем, для всех заведений, для которых важно, чтобы их посетители чувствовали себя комфортно, а музыка и речь звучащая внутри не вызывала желания побыстрее уйти. Для домашних кинотеатров акустический дизайн дает возможность получить звучание системы ничуть не хуже большого кинотеатра.

Неграмотное размещение акустических материалов из-за отсутствия проекта или их отсутствие вообще, как правило, приводит к тому, что акустическая обстановка в помещении не позволит адекватно воспринимать звуковую информацию. Чаще всего отсутствие такого проектирования приводит к увеличению общей стоимости работ. Так как выясняется, что эксплуатировать объект с таким распространением звуковых волн невозможно, и все равно приходится выполнять необходимые расчеты и дорабатывать интерьер для приведения объекта к приемлемым параметрам. Только уже в экстренном порядке, потому что срок сдачи близко или прошел.

Для того что бы заказать услугу или получить подробную консультацию, обращайтесь к нам по телефонам.

Кочнов Олег Владимирович
руководитель учебно-производственного отдела компании ESCORT GROUP

Интенсивные экономические преобразования, происходящие в нашей стране, усовершенствованная и упрочненная нормативная база способствуют возрождению промышленности, росту числа производственных предприятий. Во исполнение федерального закона от 22.07.2008 - ФЗ № 123-ФЗ «Технический регламент о требованиях пожарной безопасности», имеющиеся на промышленных предприятиях производственные помещения с работающими в них людьми должны быть защищены системами противопожарной безопасности. Наиважнейшей частью, обеспечивающей комплексную безопасность зданий и сооружений, являются организационные мероприятия, элементом которых является электроакустический расчет. Цель данной статьи - познакомить читателя с методикой электроакустического расчета (ЭАР), дать его как нормативное, так и фактическое обоснование - очертить специфику расчета в условиях высоких шумов, характерных для промышленных предприятий, продемонстрировать примеры расчета.

При возникновении пожара (или иных чрезвычайных ситуаций), возникающих внутри производственных помещений (или на территории защищаемого предприятия), задействуется (автоматически включается) система оповещения, осуществляющая трансляцию специально разработанных текстов, необходимых для эффективной эвакуации людей в безопасное место.

На промышленных предприятиях используются следующие типы систем оповещения:

■ системы оповещения и управления эвакуацией (СОУЭ), проектируемые на основании ;

■ объектовые (ОСО) и локальные (ЛСО) системы оповещения при чрезвычайных ситуациях, а также системы громкоговорящей связи, проектируемые на основании . Нормативным основанием для проектирования централизованных, локальных и объектовых систем оповещения является федеральный закон № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» от 21.12.1994.

На особо крупных объектах, таких как атомные или гидроэлектростанции, используются командно-поисковые системы (комплексы).

Достоверность передачи аварийного сообщения определяется характеристиками, функциональностью и надежностью технических средств систем оповещения, а вот достоверность восприятия может быть подтверждена только расчетами.

Электроакустический расчет позволяет с достаточно высокой точностью определить уровень звукового давления в так называемой расчетной точке (РТ) - точке (месте) возможного нахождения людей. Такие точки выбираются в местах наиболее критичных с точки зрения как удаления, так и присутствующего в них шума. Зная расстояние между расчетной точкой и звуковым источником, легко определить степень уменьшения звукового давления на расстоянии, однако этого совсем не достаточно. Согласно требованиям нормативной документации необходимо обеспечить условия, при которых полученный уровень попадет в определенные границы.

В специфике промышленных предприятий наиболее важной задачей является определение точного значения уровня шума на рабочих местах. Следует заметить, что измерительные приборы в такого рода задачах могут использоваться лишь как вспомогательные средства в силу постоянно меняющихся условий. Таким образом, условия четкого восприятия могут быть достигнуты решением двух задач - эффективной расстановкой громкоговорителей и защитными акустическими мероприятиями.

Любая из этих систем в качестве конечного исполнительного элемента использует громкоговоритель - устройство, осуществляющее преобразование электрического сигнала на входе в акустический (слышимый) сигнал на выходе. В зависимости от требований к характеру передаваемой (транслируемой) информации, к громкоговорителю предъявляются различные требования. Так, по требованиям, изложенным в , если численность людей, работающих на производственном объекте: в цеху, на складском помещении, в лаборатории и т. д., превышает 100 человек, то для защиты такого объекта применяется СОУЭ 3 типа - речевая система оповещения, осуществляющая трансляцию специально разработанных текстов. В этом случае громкоговоритель должен эффективно работать в диапазоне от 200 Гц до 5 кГц. Под понятием эффективности следует понимать как величину звукового давления (громкости), так и КПД громкоговорителя. Для повышения степени информативности СОУЭ включают и световой способ оповещения.

ОСНОВЫ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Понятие «акустический расчет» (АР) само по себе является достаточно емким. В контексте обеспечения безопасности людей, находящихся внутри производственных помещений, выполняется так называемый электроакустический расчет (ЭАР), в процессе которого:

■ анализируется защищаемое помещение;

■ выбираются расчетные точки (РТ);

■ рассчитывается звуковое давление в РТ;

■ определяются уровни шума (УШ) в РТ, характерные для данного помещения;

■ выявляются дополнительные источники шума;

■ проверяются граничные условия расчета;

■ выбираются параметры громкоговорителей и определяются схемы их расстановки;

■ в случае невыполнения граничных условий разрабатываются организационные мероприятия, повышающие достоверность передачи информации.

Требования, предъявляемые к ЭАР, можно найти в , а методику - в Приложении А, к , однако, следует заметить, что имеющаяся в данном приложении методика для какого-либо серьезного расчета совершенно непригодна.

Название расчета - электроакустический - обусловлено учетом электрических параметров звукового тракта, являющихся входными для акустического расчета. Следует заметить, что требования к расчету, изложенные в , не вполне достаточны, однако, являются необходимыми, поэтому основное внимание в данной статье будет уделено выполнению именно этих требований. Что касается специфики данного расчета, в частности, высоких шумов, будем опираться на СНиП по Шуму , в котором достаточно подробно излагаются как расчетные, так и организационные мероприятия по расчету, учету и борьбе с высокими шумами.

Рассмотрим основные понятия, необходимые для выполнения ЭАР.

ОСНОВНЫЕ ПАРАМЕТРЫ ГРОМКОГОВОРИТЕЛЯ

Согласно нормативной документации, громкоговорители должны воспроизводить звуковой или речевой сигнал в диапазоне: 200 Гц - 5 кГц.

Звуковое давление громкоговорителя измеряется в децибелах (дБ) и определяется как его чувствительностью Р 0 , дБ, так и электрической мощностью, Р вт, Вт, подведенной к его входу:

Р дб = Р о + 10log (Р вт / Р пор), (1)

Р о - чувствительность громкоговорителя, дБ; Р вт - мощность громкоговорителя, Вт; Р пор - пороговая мощность, = 1Вт.

Чувствительность громкоговорителя, дБ - уровень звукового давления, измеренного на рабочей оси громкоговорителя на расстоянии 1 м от рабочего центра на частоте 1 кГц при мощности 1 Вт. Мощность громкоговорителя берется из паспорта, предоставляемого производителем или поставщиком, при этом следует обращать внимание на следующие обстоятельства:

1) Если в паспорте нет никаких специальных ссылок или указаний, то (в большинстве случаев) указывается т. н. RMS мощность, измеренная на 1кГц.

2) На т. н. «градации включения».

Здесь требуется комментарий. Дело в том, что громкоговорители, используемые в системах оповещения, являются трансформаторными. Первичная обмотка трансформатора имеет, как правило, несколько отводов, имеющих различный импеданс и позволяющих работать на различных мощностях, поэтому в формуле (1) необходимо указывать конкретную мощность включения.

Исполнение. Немаловажным параметром громкоговорителей, характерным для производственных помещений, является параметр, называемый «исполнение». Для различных условий эксплуатации (температура, влага, пыль, агрессивные среды) могут использоваться громкоговорители с различными классами исполнения (защиты). При низких температурах используются морозостойкие громкоговорители. При повышенной концентрации влаги и пыли - громкоговорители с различными степенями защиты, определяемые индексом IP:

■ IP-41 - закрытые помещения;

■ IP-54 - уличное исполнение;

■ IP-67 - высокая степень защиты от пыли и влаги. Дополнительные параметры громкоговорителя будут рассмотрены ниже.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Исходными данными для ЭАР (на производственных предприятиях) являются:

■ план и разрез помещения с расположением технологического и инженерного оборудования с целью выбора расчетных точек;

■ определение уровня шума в расчетных точках;

■ сведения о характеристиках ограждающих конструкций помещения (коэффициенты поглощения);

■ технические характеристики и геометрические размеры источников шума.

Для расчета уровня звукового давления в расчетной точке необходимо рассмотреть два важных понятия:

■ само понятие «расчетная точка» (РТ);

■ понятие «уровень шума» (УШ) в РТ.

РАСЧЕТНАЯ ТОЧКА

Расчетная точка - место возможного (вероятного) нахождения людей наиболее критичное с точки зрения положения и удаления от звукового источника (громкоговорителя). РТ выбирается на расчетной плоскости - (мнимой) плоскости, проведенной параллельно полу на высоте 1,5 м, (1,2 м для сидячих мест) в месте с наихудшими условиями -точке наиболее удаленной от громкоговорителя или в точке с наибольшим УШ.

Согласно НД , РТ выбираются:

■ в зоне прямого звука;

■ в зоне отраженного звука;

■ в середине толпы (месте максимальной концентрации людей).

Данный выбор (способ) не подходит для ЭАР, кроме последнего пункта, и вот почему. Под зоной прямого звука в контексте имеется в виду расстояние, не превышающее двойного размера источника звука. В под источниками звука (шума) подразумеваются машины, турбины, агрегаты и т. д. При использовании в качестве звукового источника даже самого большого громкоговорителя это расстояние не превысит 1 м, что не актуально.

В зоне отраженного звука. Здесь имеется в виду точка, расположенная, во-первых, вблизи отражающей поверхности и, во-вторых, максимально удаленная от источника звука. Выбор РТ вблизи отражающей поверхности объясняется спецификой акустического расчета как расчета именно для шумовых источников, для которых учитывается как энергия прямого звука, так и диффузионная энергия. При удалении от источника шума на расстояние, вдвое превышающее его размеры, начинает резко превалировать влияние диффузионной составляющей, см. далее формулу (7). Электроакустический же расчет, по своей специфике, близок к акустическому расчету, выполняемому для кинотеатров, концертных залов, в которых характерной информацией является музыка или речь. Такие расчеты для обеспечения надлежащей разборчивости выполняются с использованием так называемой геометрически-лучевой теории, позволяющей учитывать отражения и определять уровни прямого звука, приходящего (поступающего) в РТ. Согласно данной теории, известной еще древним грекам, звуковая энергия отождествляется с тонким лучом (света). При попадании на предметы часть звуковой энергии поглощается, а часть отражается под тем же самым углом.

В акустике под прямым звуком подразумевается как прямой звук - звук, распространяющийся напрямую от источника до РТ, так и первичные отражения - звук, поступающий в РТ, отразившись от поверхностей (площадок) не более 1 раза.

УРОВНИ ШУМА

Для выполнения ЭАР необходимо знать точное значение УШ. С определением УШ сопряжен ряд сложностей. Какую именно величину УШ необходимо использовать, на какой частоте его измерять и т. д.

Определить величину УШ можно несколькими способами:

■ непосредственным измерением;

■ из нормативных таблиц ;

■ дополнительными расчетами.

Относительно УШ имеется достаточно серьезная документация в виде , однако, например, проектировщики СОУЭ в своих расчетах на данный (подробный) СНиП не опираются. Отсутствие четких методик ЭАР не дает возможности подметить однозначную взаимосвязь между двумя величинами - необходимым уровнем звукового давления в РТ и УШ, определяемым в этой же точке. Это первое. Второе - в для определения УШ используется достаточно специфичный, непривычный для среднестатистического проектировщика СОУЭ расчетный аппарат, связанный с октавными уровнями, расчетом диффузионной энергии. Такие расчеты, как правило, выполняют специалисты по акустике, в то время как непосредственного требования выполнить ЭАР нет и он выполняется либо по требованию (по техническому заданию) заказчика, либо по желанию проектировщика. Непосредственное измерение УШ сопряжено с рядом сложностей. Во-первых, для такого измерения необходим профессиональный, а главное, поверенный измеритель УШ (шумомер). Во-вторых, измерение необходимо производить не только на различных частотах, но и в различные промежутки (отрезки) времени. Согласно , для производственных предприятий необходимо использовать период рабочей смены. При невозможности выполнить подобные измерения необходимо пользоваться уже имеющимися данными, взятыми из конструкторской документации или из ТЗ заказчика, а в случае их отсутствия необходимо обратиться к Шум-таблицам, например, СП 51.13330.2011. Защита от шума .

СПЕЦИФИКА ОПРЕДЕЛЕНИЯ ОКТАВНЫХ УРОВНЕЙ ШУМА

В указаны уровни для 9-октавных полос от 31,5 Гц до 8 кГц. Согласно пп. 5.1 расчет выполняется для 8-октавных полос от 63 Гц до 8 кГц. Согласно же , частотный диапазон 0,2-5 кГц вмещает лишь 5 полос со среднегеометрическими частотами -0,25/0,5/1/2/4 кГц. Данное расхождение преодолевается требованием выполнять расчет в дБА - уровнях звукового давления, скорректированных по шкале А. Можно показать, что суммарный эффект восприятия, с учетом корректировки по шкале А, 8-октавных (шумовых) полос практически равносилен восприятию 5-октавных полос, что дает нам право в ЭАР в качестве величины УШ использовать эквивалентные уровни непостоянного (прерывистого и колеблющегося во времени) звукового давления /L Аэкв, дБА, приведенные в и в .

УШ, взятые из Шум-таблиц, являются лишь обобщающими, их можно назвать собственными шумами. Так, например, согласно , для помещений с постоянными рабочими местами на производственных предприятиях /L Аэкв = 80 дБА. Однако для каждого конкретного предприятия необходимы дополнительные расчеты, учитывающие дополнительные, привнесенные шумы -шумы, возникающие в результате работы каких-либо источников шума - агрегатов, станков, или шумы, проникающие через окна, двери и т. д.

ПРИМЕРЫ АКУСТИЧЕСКИХ РАСЧЕТОВ, В УСЛОВИЯХ ВЫСОКОГО ШУМА

Рассмотрим пример. На рисунке 1 изображена элементарная ситуация - производственное помещение с двумя РТ и двумя звуковыми источниками: громкоговорителем и источником шума.

На рисунке изображены две расчетные точки РТ 1 и РТ 2 . Предположим, что в РТ 1 - влияние источника шума, изображенного в верхней правой части рисунка, в силу удаления и экранирования звукопоглощающей конструкцией не значительно.

Рис. 1. Пример, демонстрирующий особенности учета уровней шумов

УРОВЕНЬ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ

Рассчитаем уровень звукового давления, дБ, в РТ, формируемого громкоговорителем :

L = P o + 10logР вт - 20log (r 1 - 1), (2)

r 1 - расстояние от источника звука (громкоговорителя) до РТ, м. При r o = 1 м, r > 2 м;

1 - коэффициент, учитывающий, что чувствительность громкоговорителя измерена на расстоянии 1 м.

КРИТЕРИИ РАСЧЕТА

Критерием правильности расчета будет выполнение следующих требований :

Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее, чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении.

Данное требование содержит 3 условия:

1. Требование к минимальному уровню. Уровень звукового давления громкоговорителя должно быть не ниже 85 дБ:

Р дб > 85 дБ (3)

В случае невыполнения данного условия необходимо выбрать громкоговоритель с большим звуковым давлением.

2. Требование к максимальному уровню. Уровень звукового давления в РТ должно быть не выше 120 дБ:

(Р дб - 20log (r мин - 1))

r мин - расстояние от громкоговорителя до ближайшего слушателя.

В случае невыполнения данного условия можно уменьшить звуковое давление громкоговорителя или использовать распределенную схему расстановки громкоговорителей.

3. Условие правильности ЭАР:

L > УШ + 15, (5)

УШ - уровень шума в помещении, дБ;

15 - запас звукового давления, согласно , дБ.

В случае невыполнения данного условия можно:

■ выбрать громкоговоритель с большей чувствительностью Р o , дБ;

■ выбрать громкоговоритель с большей мощностью Р вт, Вт;

■ увеличить количество громкоговорителей;

■ изменить схему расстановки громкоговорителей.

УЧЕТ ДОПОЛНИТЕЛЬНОГО ШУМА

В РТ 2 влияние источника шума очевидно. Если уровень шума, создаваемый источником шума, УШ и, дБ в РТ, превосходит УШ, дБ в помещении УШ и УШ необходимо учитывать суммарное воздействие двух шумов УШ сум, дБ:

УШ сум = 10log (10 0,1УШ + 10 0,1УШи), (б)

и затем подставить полученный результат в формулу (5), приравняв УШ = УШ сум.

РАСЧЕТ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ, ФОРМИРУЕМОГО ИСТОЧНИКОМ ШУМА

Из рисунка 1 видно, что источник звука находится на некотором расстоянии, r 3 , м, от РТ. Для расчета УШ и, дБ, воспользуемся результатами, изложенными в :

УШ и =Р ист + 10log (ΧΦ н /Ωr 2 2 + 4Ψ/В ), (7)

P ист - октавный (на частоте 1 кГц) уровень звуковой мощности звукового источника, дБ , берется из спецификаций или технических характеристик на оборудование;

Χ - коэффициент, учитывающий влияние ближнего поля в тех случаях, когда расстояние от источника шума, до РТ, r 3 таблице 2, );

Φ н - фактор направленности источника шума (для источников с равномерным излучением Ф = 1);

Ω - пространственный угол излучения источника, рад. (принимают по таблице 3, );

r 2 - расстояние от громкоговорителя до РТ, м;

Ψ - коэффициент, учитывающий нарушение диффузности звукового поля в помещении, таблица 1;

В - акустическая постоянная помещения, м 2 .

АКУСТИЧЕСКАЯ ПОСТОЯННАЯ ПОМЕЩЕНИЯ

Расчет акустической постоянной помещения В сопряжен с определением основного фонда звукопоглощения или эквивалентной площади звукопоглощения, А, м 2 , формула (3), .

Коэффициент, учитывающий нарушение диффузности звукового поля в помещении, - Ψ зависит от отношения постоянной помещения B к площади ограждающих поверхностей S, таблица 1:

Табл. 1. Коэффициент, учитывающий нарушение диффузности звукового поля помещений (Ψ)

Для приблизительного определения В можно воспользоваться следующей формулой: В = μ * В 1000 ,

В 1000 - постоянная помещения на частоте 1 кГц; μ - частотный множитель, таблица 2.

Табл. 2. Частотный множитель μ

Объем помещения, м 3

Среднегеометрическая частота, кГц

V = 200, 1000

V >> 1000

Постоянная помещения В 1000 для частоты 1 кГц в зависимости от объема помещения V, м 3 , определяется следующим способом:

В 1000 = V/20 - для помещений без мебели с небольшим количеством людей (металлообрабатывающие цеха, машинные залы, испытательные стенды и т. д.);

В 1000 = V/10 - для помещений с жесткой мебелью или с небольшим количеством людей и мягкой мебелью (лаборатории, кабинеты и т. д.);

В 1000 = V/6 - для помещений с большим количеством людей и мягкой мебелью (рабочие помещения административных зданий, жилые комнаты и т. п.);

В 1000 = V/1,5 - для помещений со звукопоглощающей облицовкой потолка и части стен.

Поясним, почему УШ, определяет точность расчетов. Для выбора параметров громкоговорителя или схемы их расстановки используется следующий подход (метод):

1. Выбираем РТ.

2. Определяем УШ в РТ.

3. Определяем ожидаемый уровень звукового давления в РТ.

4. Определяем место установки и расстояние до предполагаемого громкоговорителя.

5. Рассчитываем минимально необходимый уровень звукового давления предполагаемого громкоговорителя.

ДОПОЛНИТЕЛЬНЫЕ ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

При высоких уровнях шумов возникает ситуация, когда использование громкоговорителя становится нерациональным. В этом случае на первый план выступают организационные мероприятия. Так, на основании :

В защищаемых помещениях, где люди находятся в шумо-защитном снаряжении, а также в защищаемых помещениях с уровнем звука шума более 95 дБА звуковые оповещатели должны комбинироваться со световыми оповещателями. Допускается использование световых мигающих оповещателей.

ЭФФЕКТИВНАЯ РАССТАНОВКА ГРОМКОГОВОРИТЕЛЕЙ

Для выполнения полноценного ЭАР одних нормативных требований крайне недостаточно, поэтому приходится вводить дополнительные характеристики. Продемонстрируем некоторые их них :

Ширина диаграммы направленности (ШДН) - угол раскрыва, определяемый из (круговой) диаграммы направленности громкоговорителя, при котором уровень звукового давления уменьшается на 6 дБ относительно рабочей (геометрической) оси громкоговорителя.

Эффективная дальность D, м, звучания громкоговорителя - расстояние от громкоговорителя до точки, звуковое давление r, дБ, в которой превышается УШ на 15 дБ.

Эффективную дальность можно определить как:

D = 10 1/20 (Рдб - УШ -15) + 1, (8) где

Р дб - звуковое давление, развиваемое громкоговорителем на определенной мощности, дБ.

1 - коэффициент, учитывающий, что чувствительность громкоговорителя определяется на 1 метре.

Оперирование приведенными характеристиками (параметрами) позволяет в зависимости от типов громкоговорителей - потолочный, настенный, рупорный - строить различные диаграммы - контуры озвучиваемых площадей. Так, например, для потолочного громкоговорителя эффективной озвучиваемой площадью (контуром) является площадь круга. Для ШДН = 90° радиус такого круга: R = H - 1,5 м, где Н -высота потолков . Для настенных или рупорных громкоговорителей актуальным параметром является эффективная дальность D , м.

ПРИМЕР АКУСТИЧЕСКОГО РАСЧЕТА ДЛЯ СКЛАДСКОГО ПОМЕЩЕНИЯ

На рисунке 2 изображена упрощенная схема складского помещения, для озвучивания которого используются три рупорных громкоговорителя.

Рупорные громкоговорители по сравнению с другими типами имеют ряд преимуществ:

■ класс защиты не ниже IP54 и могут использоваться в неотапливаемых помещениях;

■ высокое звуковое давление, позволяющее работать в условиях высоких шумов;

■ универсальное крепление, позволяющее варьировать результирующей диаграммой направленности. Расстановка громкоговорителей по одной стене (рис. 2),

имеет практическое основание, однако, его необходимо подтвердить расчетами.

ВОЗМОЖНЫЕ АЛГОРИТМЫ РАСЧЕТА

Алгоритм ЭАР (проверки) для РТ 1 может быть следующим:

1. Расчетная точка РТ 1 выбрана правильно - в месте, максимально удаленном от второго громкоговорителя ГР 2 .

2. Удостоверимся, что РТ 1 попадает в область действия диаграммы направленности (ШДН) второго громкоговорителя (ГР 2).

3. Определим УШ в РТ 1 .

4. Рассчитаем уровень звукового давления в РТ 1 , L 1 , дБ, по формуле (2).

5. Проверим выполнение граничных условий (3), (4), (5).

6. В случае выполнения условий (3), (4), (5) расчет для РТ 1 выполнен.

7. В случае невыполнения условий (3), (4), (5) выбирается другой громкоговоритель, меняется схема расстановки громкоговорителей, выполняются дополнительные организационные мероприятия.

Однако, обосновать ЭАР для РТ 1 можно более простым способом:

■ определяем эффективную дальность D , м, для второго громкоговорителя;

■ сравниваем полученное значение D , м, с расстоянием r 1 , м;

■ если D > r 1 , ЭАР для РТ 1 выполнен.

Для РТ 2 алгоритм ЭАР может быть следующим:

1. Расчетная точка РТ 2 выбрана правильно - в месте, наиболее критичном с точки зрения расположения громкоговорителей.

2. Определим УШ в РТ 2 .

3. Удостоверимся, что РТ 2 попадает в область действия диаграмм направленностей второго (ГР 2) или третьего (ГР 3) громкоговорителей.

4. Так как РТ 2 не попадает ни в одну из областей диаграмм, обратимся к геометрическо-лучевой теории.

5. Из рисунка 2 видно, что в РТ 2 попадают 2 луча звуковой энергии, формируемые ГР 2 и ГР 3 и отраженные от второго стеллажа.

Рис. 2. Пример расстановки громкоговорителей для складского помещения

б. Уровень звукового давления L 2 , дБ, в РТ 2 может быть рассчитан следующим способом:

■ рассчитаем уровень звукового давления в точке А, L А, дБ, по формуле (2);

■ рассчитаем уровень звукового давления в точке Б, L Б, дБ, по следующей формуле:

L Б = L А - 20logr 3 + 10log(1 - К погл),

К погл - коэффициент поглощения отражающей поверхности;

■ аналогичным образом рассчитаем уровень звукового давления, формируемый третьим громкоговорителем (ГР 3) в точках В, L B , дБ, и Г, L Г, дБ;

■ рассчитаем уровень звукового давления в РТ 2 , L 2 , дБ: L 2 = 10log (10 0,1LБ + 10 0,1Lг).

ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

Защита от шума строительно-акустическими методами должна обеспечиваться:

■ рациональным с акустической точки зрения решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий;

■ применением ограждающих конструкций зданий с требуемой звукоизоляцией;

■ применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей);

■ применением звукоизолирующих кабин наблюдения и дистанционного управления;

■ применением звукоизолирующих кожухов на шумных агрегатах;

■ применением акустических экранов;

■ применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках;

■ виброизоляцией технологического оборудования.

В проектах должны быть предусмотрены мероприятия по защите от шума:

■ в разделе «Технологические решения» (для производственных предприятий)при выборе технологического оборудования следует отдавать предпочтение малошумному оборудованию;

■ размещение технологического оборудования должно осуществляться с учетом снижения шума на рабочих местах, в помещениях и на территориях путем применения рациональных архитектурно-планировочных решений;

■ в разделе «Строительные решения» (для производственных предприятий) на основе акустического расчета ожидаемого шума на рабочих местах должны быть, в случае необходимости, рассчитаны и запроектированы строительно-акустические мероприятия по защите от шума;

■ шумовые характеристики технологического и инженерного оборудования должны содержаться в его технической документации и прилагаться к разделу проекта «Защита от шума»;

■ следует учитывать зависимость шумовых характеристик от режима работы, выполняемой операции, обрабатываемого материала и т. п.;

■ возможные варианты шумовых характеристик должны быть отражены в технической документации оборудования.

В КАЧЕСТВЕ ЗАКЛЮЧЕНИЯ

Мы рассмотрели только часть вопросов, касающихся акустических расчетов. Отдельного рассмотрения требуют вопросы расстановки громкоговорителей, определения времени реверберации помещения, расчета разборчивости. Приведем некоторые рекомендации, касающиеся повышения общей разборчивости речи .

1. Наибольшее влияние на разборчивость речи оказывают естественные шумы.

2. Существенное влияние на разборчивость речи оказывают реверберационные помехи, снижение которых достигается дополнительными (специальными) мероприятиями.

3. Хорошая разборчивость в реверберирующих помещениях с ограниченным звуковым трактом может быть достигнута при разнице между звуковым давлением в РТ и уровнем шума не меньше 6 дБ.

4. На разборчивость существенное влияние оказывает качество выбираемых громкоговорителей. При неравномерности АЧХ громкоговорителя, приближающейся к 10%, разборчивость ухудшается на 7%.

5. Существенное повышение речевой разборчивости может быть достигнуто увеличением доли прямого звука в суммарной звуковой энергии внутри помещения, за счет:

■ повышения локализации звуковых источников;

■ грамотной расстановки звуковых источников (громкоговорителей), учитывающей их направленности и расположение, при котором РТ-точка не сильно удалена от источника и не находится в тени.

ЛИТЕРАТУРА

1. ФЗ № 123, свод правил СП 3.13130.2009. Требования пожарной безопасности к звуковому и речевому оповещению и управлению эвакуацией людей.

2. ФЗ № 123, свод правил СП 133.13330.2012. (Приложение А. Упрощенный расчет числа громкоговорителей в системах оповещения).

3. Кочнов О. В. Электроакустический расчет, выполняемый при проектировании СОУЭ// Материалы XVнаучно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 8-9 апреля 2015.

4. СП 51.13330.2011. Защита от шума. Актуализированная редакция СНиП 23-03-2003. М., 2011.

5. СНиП 23-03-2003. Защита от шума (Sound protection) от 01-01-2004.

6. Кочнов О. В. Расчет разборчивости речи // Материалы XVIII научно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 28-29 декабря 2015.

Акустичекие расчеты

Среди проблем оздоровления окружающей среды борьба с шумами является одной из актуальнейших. В крупных городах шум является одним из основных физических факторов, формирующих условия среды обитания.

Рост промышленного и жилищного строительства, бурное развитие различных видов транспорта, все большее применение в жилых и общественных зданиях сантехнического и инженерного оборудования, бытовой техники привели к тому, что уровни шума в селитебных зонах города стали сравнимы с уровнями шумов на производстве.

Шумовой режим крупных городов формируется главным образом автомобильным и рельсовым транспортом, составляющим 60-70% всех шумов.

Заметное влияние на уровень шума оказывает увеличение интенсивности воздушных перевозок, появление новых мощных самолетов и вертолетов, а также железнодорожный транспорт, открытые линии метро и метро мелкого заложения.

Вместе с тем, в некоторых крупных городах, где предпринимаются меры по улучшению шумовой обстановки наблюдается снижение уровней шума.

Шумы бывают акустические и неакустичекие, какова их разница?

Акустический шум определяется как совокупность различных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

Неакустические шумы - Радиоэлектронные шумы - случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

Акустический расчёт, расчет уровня шума.

В процессе строительства и эксплуатации различных объектов проблемы борьбы с шумом являются неотъемлемой частью охраны труда и защиты здоровья населения. Выступать источниками могут машины, транспортные средства, механизмы и другое оборудование. Шум, его величина воздействия и вибраций на человека зависит от уровня звукового давления, частотных характеристик.

Под нормированием шумовых характеристик понимают установление ограничений на значения этих характеристик, при которых шум, воздействующий на людей, не должен превышать допустимых уровней, регламентированных действующими санитарными нормами и правилами.

Целями акустического расчета являются:

Выявление источников шума;

Определение их шумовых характеристик;

Определение степени влияния источников шума на нормируемые объекты;

Расчет и построение индивидуальных зон акустического дискомфорта источников шума;

Разработка специальных шумозащитных мероприятий, обеспечивающих требуемый акустический комфорт.

Установка систем вентиляции и кондиционирования уже считается естественной потребностью в любом здании (будь оно жилое или административное), акустический расчет должен выполняться и для помещений подобного типа. Так, в случае не проведения расчета уровня шума, может оказаться, что в помещении очень низкий уровень звукопоглощения, а это очень усложняет процесс общения людей в нем.

Поэтому прежде чем устанавливать в помещении системы вентиляции, провести акустический расчет нужно обязательно. Если окажется, что для помещения характерны плохие акустические свойства, необходимо предложить провести ряд мероприятий, по улучшению акустической обстановки в помещении. Поэтому акустические расчеты выполняются и на установку бытовых кондиционеров.

Акустический расчет чаще всего проводится для объектов, которые имеют сложную акустику или отличаются повышенным требованиям к качеству звука.

Звуковые ощущения возникают в органах слуха при воздействии на них звуковых волн в диапазоне от 16 Гц до 22 тыс. Гц. Звук распространяется в воздухе со скоростью 344 м/с, за 3 сек. 1 км.

Величина порога слышимости зависит от частоты ощущаемых звуков и равна 10-12 Вт/м 2 на частотах близких 1000 Гц. Верхней границей является порог болевого ощущения, который в меньшей степени зависит от частоты и лежит в пределах 130 - 140 дБ (на частоте 1000 Гц по интенсивности 10 Вт/м 2, по звуковому давления).

Соотношение уровня интенсивности и частоты определяет ощущение громкости звука, т.е. звуки, имеющие различную частоту и интенсивность, могут оцениваться человеком как равногромкие.

При восприятии звуковых сигналов на определенном акустическом фоне может наблюдаться эффект маскировки сигнала.

Эффект маскировки может отрицательно сказываться в акустических индикаторах и может быть использован для улучшения акустической обстановки, т.е. в случае маскировки высокочастотного тона низкочастотным, который менее вреден для человека.

Порядок выполнения акустического расчета.

Для выполнения акустического расчета потребуются следующие данные:

Размеры помещения, для которого будет проводиться расчет уровня шума;

Основные характеристики помещения и его свойства;

Спектр шума от источника;

Характеристика преграды;

Данные о расстоянии от центра источника шума до точки акустического расчета.

При расчете, для начала определяются источники шума и их характерные свойства. Далее на исследуемом объекте выбираются точки, в которых будут проводиться расчеты. В выбранных точках объекта проводится расчет предварительного уровня звукового давления. Основываясь на полученных результатах, выполняется расчет по снижению шума до требуемых норм. Получив все необходимые данные, выполняется проект по разработке мероприятий, благодаря которым будет снижен уровень шума.

Правильно выполненный акустический расчет является залогом отличной акустики и комфорта в помещении любого размера и конструкции.

На основе выполненного акустического расчета можно предлагать следующие мероприятия для снижения уровня шума:

* установка звукоизолирующих конструкций;

* использование уплотнений в окнах, дверях, воротах;

* использование конструкций и экранов, которые поглощают звук;

*осуществление планировки и застройки селитебной территории в соответствии со СНиП;

* применение глушителей шума в вентиляционных системах и системах кондиционирования.

Проведение акустического расчета.

Работы по расчету уровней шума, оценки акустического (шумового) воздействия, а также проектирование специализированных шумозащитных мероприятий, должны осуществляться специализированной организацией, имеющей соответствующую область.

шум акустический расчет измерение

В самом простом определении основная задача акустического расчета - это оценка уровня шума, создаваемого источником шума в заданной расчетной точке с установленным качеством акустического воздействия.

Процесс проведения акустического расчета состоит из следующих основных этапов:

1. Сбор необходимых исходных данных:

Характер источников шума, режим их работы;

Акустические характеристики источников шума (в диапазоне среднегеометрических частот 63-8000 Гц);

Геометрические параметры помещения, в котором расположены источники шума;

Анализ ослабленных элементов огорождающих конструкции, через которые шум будет проникать в окружающую среду;

Геометрические и звукоизоляционные параметры ослабленных элементов огорождающих конструкций;

Анализ близлежащих объектов с установленным качеством акустического воздействия, определений допустимых уровней звука для каждого объекта;

Анализ расстояний от внешних источников шума до нормируемых объектов;

Анализ возможных экранирующих элементов на пути распространения звуковой волны (застройка, зеленые насаждения и т.д.);

Анализ ослабленных элементов огорождающих конструкций (оконные проемы, двери и т.д.), через которые шум будет проникать в нормируемые помещения, выявление их звукоизоляционной способности.

2. Акустический расчет производится на основании действующих методических указаний и рекомендаций. В основном это «Методики расчета, нормативы».

В каждой расчетной точке необходимо производить суммирование всех имеющихся источников шума.

Результатом акустического расчета являются некие значения (дБ) в октавных полосах со среднегеометрическими частотами 63-8000 Гц и эквивалентное значение уровня звука (дБА) в расчетной точке.

3. Анализ результатов расчета.

Анализ полученных результатов осуществляется сравнением значений, полученных в расчетной точке с установленными Санитарными нормами.

При необходимости, следующим этапом проведения акустического расчета может быть проектирование необходимых шумозащитных мероприятий, которые позволят снизить акустическое воздействие в расчетных точках до допустимого уровня.

Проведение инструментальных измерений.

Помимо акустических расчетов, можно провести расчет инструментальных измерений уровней шума любой сложности, в том числе:

Измерение шумового воздействия существующих систем вентиляции и кондиционирования для офисных зданий, частных квартир и т.д.;

Осуществление измерений уровней шума для аттестации рабочих мест;

Проведение работ по инструментальному измерению уровней шума в рамках проекта;

Проведение работ по инструментальному измерению уровней шума в рамках технических отчетов при утверждении границ СЗЗ;

Осуществление любых инструментальных измерений шумового воздействия.

Проведение инструментальных замеров уровней шума производится специализированной мобильной лабораторией с применением современного оборудования.

Сроки выполнения акустического расчета. Сроки выполнения работы зависят от объема расчетов и измерений. Если необходимо произвести акустический расчет для проектов жилых застроек или административных объектов, то они выполняются в среднем 1 - 3 недели. Акустический расчет для крупных или уникальных объектов (театры, органные залы) занимает больше времени, основываясь на предоставленных исходных материалах. Кроме того, на срок работы во многом влияют количество исследуемых источников шума, а также внешние факторы.

Проектируемое здание нужно оборудовать устройствами оповещения людей о пожаре по 2 типу.

Для оповещения людей о пожаре будут использоваться оповещатели типа «Маяк-12-3М» (ООО «Электротехника и Автоматика», Россия, г. Омск) и световые оповещатели «ТС-2 СВТ1048.11.110» (табло «Выход») подключенные к прибору С2000-4 (ЗАО НВП «Болид»).

Для сети оповещения при пожаре применяется огнестойкий кабель КПСЭнг(А)-FRLS-1х2х0,5.

Для эл. питания оборудования по напряжению U=12 В применяется источник резервированного эл. питания «РИП-12» исп.01 с аккумуляторной батареей емк. 7 А ч. Аккумуляторные батареи источника эл. питания обеспечивают работу оборудования в течение не менее 24 часов в дежурном режиме и 1 час в режиме «Пожар» при отключении основного источника эл.питания.

Основные требования к СОУЭ изложены в НПБ 104-03 «Системы оповещения и управления эвакуацией людей при пожарах в зданиях и сооружениях»:

3. Принятые расчетные допущения

Исходя из геометрических размеров помещений, все помещения делятся только на три типа:

  • «Коридор» -длина превышает ширину в 2 и более раз;
  • «Зал» — площадь более 40 кв.м. (в данном расчете не применяется).

В помещении типа «Комната» размещаем один оповещатель.

4. Таблица значений ослабления звукового сигнала

В воздушной среде звуковые волны затухают вследствие вязкости воздуха и молекулярного затухания. Звуковое давление ослабевает пропорционально логарифму расстояния (R) от оповещателя: F (R) = 20 lg (1/R). На рис.1 показан график ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R).


Рис. 1 — График ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R)

Для упрощения расчетов ниже приведена таблица реальных значений уровней звукового давления от оповещателя «Маяк-12-3М» на различных расстояниях.

Таблица — Звуковое давление, создаваемое одиночным оповещателем, при его включении на 12В на различном расстоянии от оповещателя.

5. Выбор количества оповещателей в конкретном типе помещений

На поэтажных планах обозначены геометрические размеры и площадь каждого помещения.

В соответствии с принятым ранее допущением, делим их на два типа:

  • «Комната» — площадь до 40 кв.м;
  • «Коридор» — длина превышает ширину в 2 и более раз.
  • В помещении типа «Комната» допускается размещение одного оповещателя.

    В помещении типа «Коридор» – будут размещаться несколько оповещателей, равномерно расположенные по помещению.

    Как результат – определение количества оповещателей в конкретном помещении.

    Выбор «расчётной точки» — точки на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума.

    Как результат – определение длины прямой, соединяющей точку крепления оповещателя с «расчётной точкой».

    Расчетная точка — точка на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума, согласно НПБ 104-03 п.3.15.

    На основании СНИП 23-03-2003 пункта 6 «Нормы допустимого шума» и приведённой там же «Таблицы 1» выводим значения допустимого уровня шума для общежития рабочих специалистов равно 60 дБ.

    При расчетах следует учитывать ослабление сигнала при прохождении через двери:

    • противопожарные -30 дБ(А);
    • стандартные -20 дБ(А)

    Условные обозначения

    Примем следующие условные обозначения:

    • Н под. – высота подвеса оповещателя от пола;
    • 1,5м — уровень 1,5 метра от пола, на этом уровне находится плоскость озвучивания;
    • h1 — превышение над уровнем 1,5 м до точки подвеса;
    • Ш — ширина помещения;
    • Д — длина помещения;
    • R — расстояние от оповещателя до «расчётной точки»;
    • L — проекция R (расстояние от оповещателя до уровня 1,5 м на противоположной стене);
    • S — площадь озвучивания.

    5.1 Расчет для помещения типа «Комната»

    Определим «расчётную точку» — точку, максимально удалённую от оповещателя.

    Для подвеса выбираются «меньшие» стены, противостоящие по длине помещения, в соответствии с НПБ 104-03 в п. 3.17.

    Рис. 2 — Вертикальная проекция крепления настенного оповещателя по НПБ

    Оповещатель располагаем по середине «Комнаты» — по центру короткой стороны, как изображено на рис.3

    Рис. 3 — Расположение оповещателя по середине «Комнаты»

    Для того, чтобы вычислить размер R, необходимо применить теорему Пифагора:

    • Д – длина комнаты, в соответствии с планом равна 6,055 м;
    • Ш – ширина комнаты, в соответствии с планом равна 2,435 м;
    • Если оповещатель будет размещаться выше 2,3 м, то вместо 0,8 м, нужно взять размер h1 превышающий высоту подвеса над уровнем 1,5 м.

    5.1.1 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-15,8)=89,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равнo 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -15,8 дБ в соответствии с рис.1 когда R=6,22 м.

    5.1.2 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    5.1.3 Проверка правильности расчета:

    Р =89,2 > Р р.т.=75 (условие выполняется)

    СОУЭ в защищаемом помещении.

    5.2 Расчет для помещения типа «Коридор»

    Оповещатели размещаются на одной стене коридора с интервалом в 4-ре ширины. Первый размещаются на расстоянии ширины от входа. Общее количество оповещателей исчисляется по формуле:

    N = 1 + (Д – 2*Ш) / 3*Ш= 1+(26,78-2*2,435)/3*2,435=4 (шт.)

    • Д – длина коридора, в соответствии с планом равна 26,78 м;
    • Ш – ширина коридора, в соответствии с планом равна 2,435 м.

    Количество округляется до целого значения в большую сторону. Размещение оповещателей представлено на рис. 4.

    Рис.4 — Размещение оповещателей в помещении типа «Коридор» при ширине менее 3-х метров и расстояние «до расчётной точки»

    5.2.1 Определяем расчётные точки:

    «Расчётная точка», находится на противоположной стене на удалении в две ширины от оси оповещателя».

    5.2.2 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-14,8)=90,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равно 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -14,8 дБ в соответствии с рис.1 когда R=5,5 м.

    5.2.3 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    Р р.т. = N + ЗД =60+15=75 (дБ)

    • N – допустимый уровень звука постоянного шума, для общежитий равна 75 дБ;
    • ЗД – запас звукового давления, равный 15 дБ.

    5.2.4 Проверка правильности расчета:

    Р=90,2 > Р р.т=75 (условие выполняется)

    Таким образом, в результате расчетов, выбранный тип оповещателя «Маяк-12-3М» обеспечивает и превышает значение звукового давления, тем самым обеспечивая четкую слышимость звуковых сигналов СОУЭ в защищаемом помещении.

    В соответствии с расчетом, выполним расстановку звуковых оповещателей см. рис.5.

    Рис.5 — План размещения оповещателей на отм. 0.000

Описание:

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования)

В. П. Гусев , доктор техн. наук, зав. лабораторией защиты от шума вентиляционного и инженерно-технологического оборудования (НИИСФ)

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет - обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Приведенные ниже материалы не претендуют на полноту изложения методики акустического расчета вентиляционных систем (установок). Они содержат сведения, которые уточняют, дополняют или по-новому раскрывают различные аспекты этой методики на примере акустического расчета вентилятора как основного источника шума вентиляционной системы. Материалы будут использованы при подготовке свода правил по расчету и проектированию шумоглушения вентиляционных установок к новому СНиП .

Исходными данными для акустического расчета являются шумовые характеристики оборудования - уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов иногда используют корректированные уровни звуковой мощности источников шума в дБА .

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi - фактор направленности источника шума (безразмерный);

S - площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B - акустическая постоянная помещения, м 2 .

Расчетная точка находится в помещении, смежном с помещением, где установлен вентилятор

Октавные уровни воздушного шума, проникающего через ограждение в изолируемое помещение, смежное с помещением, где установлен вентилятор, определяются звукоизолирующей способностью ограждений шумного помещения и акустическими качествами защищаемого помещения, что выражается формулой :

(3)

где L ш - октавный уровень звукового давления в помещении с источником шума, дБ;

R - изоляция от воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м 2 ;

B u - акустическая постоянная изолируемого помещения, м 2 ;

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении.

Расчетная точка находится в помещении, обслуживаемом системой

Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение. Октавные уровни звукового давления в помещении зависят от величины снижения шума в воздушном канале и акустических качеств этого помещения:

(4)

где L Pi - уровень звуковой мощности в i-й октаве, излучаемой вентилятором в воздушный канал;

D L сетиi - затухание в воздушном канале (в сети) между источником шума и помещением;

D L помi - то же, что в формуле (1) - формула (2).

Затухание в сети (в воздушном канале) D L Р сети - сумма затуханий в ее элементах, последовательно расположенных по ходу звуковых волн. Энергетическая теория распространения звука по трубам предполагает, что эти элементы не влияют друг на друга. В действительности последовательность фасонных элементов и прямых участков образуют единую волновую систему, при которой на чистых синусоидальных тонах принцип независимости затухания в общем случае не может оправдываться. Вместе с тем, в октавных (широких) полосах частот стоячие волны, создаваемые отдельными синусоидальными составляющими, компенсируют друг друга, и поэтому энергетический подход, не учитывающий волновой картины в воздуховодах и рассматривающий поток звуковой энергии, можно считать оправданным.

Затухание на прямых участках воздуховодов из листового материала обусловлено потерями на деформацию стенок и излучение звука наружу. О снижении уровня звуковой мощности D L Р на 1 м длины прямых участков металлических воздуховодов в зависимости от частоты можно судить по данным рис. 1.

Как видно, в воздуховодах прямоугольного сечения затухание (снижение УЗМ) с ростом частоты звука уменьшается, а круглого сечения возрастает. При наличии теплоизоляции на металлических воздуховодах приведенные на рис. 1 значения следует увеличивать примерно в два раза.

Понятие затухание (снижение) уровня потока звуковой энергии нельзя отождествлять с понятием изменения уровня звукового давления в воздушном канале. При движении звуковой волны по каналу общее количество энергии, которую она несет, уменьшается, но это не обязательно связано с уменьшением уровня звукового давления. В сужающемся канале, несмотря на затухание общего потока энергии, уровень звукового давления может увеличиваться вследствие увеличения плотности звуковой энергии. В расширяющемся канале, наоборот, плотность энергии (и уровень звукового давления) может уменьшаться быстрее, чем общая звуковая мощность. Затухание звука на участке с переменным сечением равно :

(5)

где L 1 и L 2 - средние уровни звукового давления в начальном и конечном по ходу звуковых волн сечениях участка канала;

F 1 и F 2 - площади поперечных сечений соответственно в начале и конце участка канала.

Затухание на поворотах (в коленах, отводах) с гладкими стенками, поперечное сечение которых меньше длины волны, определяется реактивным сопротивлением типа дополнительной массы и возникновением мод более высокого порядка. Кинетическая энергия потока на повороте без изменения сечения канала увеличивается из-за возникающей неравномерности поля скоростей. Прямоугольный поворот действует подобно фильтру низких частот. Величину снижения шума на повороте в диапазоне плоских волн дает точное теоретическое решение :

(6)

где K - модуль коэффициента прохождения звука.

При a ≥ l /2 величина K равна нулю и падающая плоская звуковая волна теоретически полностью отражается поворотом канала. Максимальное снижение шума наблюдается, когда глубина поворота равна примерно половине длины волны. О величине теоретического модуля коэффициента прохождения звука через прямоугольные повороты можно судить по рис. 2.

В реальных конструкциях по данным работ максимальное затухание равно 8-10 дБ, когда в ширине канала укладывается половина длины волны. С повышением частоты затухание уменьшается до 3-6 дБ в области длин волн, близких по величине к удвоенной ширине канала. Затем оно снова плавно возрастает на высоких частотах, достигая 8-13 дБ. На рис. 3 показаны кривые затухания шума на поворотах каналов для плоских волн (кривая 1) и для случайного, диффузного падения звука (кривая 2). Эти кривые получены на основе теоретических и экспериментальных данных. Наличие максимума снижения шума при a = l /2 можно использовать для снижения шума с низкочастотными дискретными составляющими, настраивая размеры каналов на поворотах на интересующую частоту.

Снижение шума на поворотах, угол которых меньше 90°, приближенно пропорционально величине угла поворота. Например, уменьшение уровня шума на повороте с углом 45° равно половине его уменьшения на повороте с углом 90°. На поворотах с углом меньше 45° уменьшение шума не учитывается. Для плавных поворотов и прямых колен воздуховодов с направляющими лопатками снижение шума (уровня звуковой мощности) можно определить, пользуясь кривыми рис. 4.

В разветвлениях каналов, поперечные размеры которых меньше половины длины звуковой волны, физические причины затухания аналогичны причинам затухания в коленах и отводах. Это затухание определяется следующим образом (рис. 5).

На основании уравнения неразрывности среды:

Из условия непрерывности давления (r п + r 0 = r пр) и уравнения (7) прошедшая звуковая мощность может быть представлена выражением

а снижение уровня звуковой мощности при площади сечения ответвления

(11)

(12)

(13)

При внезапном изменении сечения канала с поперечными размерами меньше длин полуволн (рис. 6 а), снижение уровня звуковой мощности может быть определено так же, как при разветвлениях.

Расчетная формула для такого изменения сечения канала имеет вид

(14)

где m - отношение большей площади сечения канала к меньшей.

Снижение уровней звуковой мощности, когда размеры каналов больше длины полуволн неплоских волн при внезапном сужении канала, равно

Если канал расширяется или плавно сужается (рис. 6 б и 6 г), то снижение уровня звуковой мощности равно нулю, т. к. отражение волн с длиной, меньшей размеров канала, не происходит.

В простых элементах вентиляционных систем принимают следующие величины снижения на всех частотах: калориферы и воздухоохладители 1,5 дБ, центральные кондиционеры 10 дБ, сетчатые фильтры 0 дБ, место примыкания вентилятора к сети воздуховодов 2 дБ .

Отражение звука от конца воздуховода происходит в том случае, если поперечный размер воздуховода меньше длины звуковой волны (рис. 7).

Если распространяется плоская волна, то в большом воздуховоде отражение отсутствует, и можно считать, что потерь на отражение нет. Однако если проем соединяет помещение больших размеров и открытое пространство, то в проем попадают только диффузные звуковые волны, направленные к проему, энергия которых равна четвертой части энергии диффузного поля. Поэтому в данном случае происходит ослабление уровня интенсивности звука на 6 дБ.

Характеристики направленности излучения звука воздухораспределительными решетками указаны на рис. 8.

При расположении источника шума в пространстве (например, на колонне в большом помещении) S = 4p r 2 (излучение в полную сферу); в средней части стены, перекрытия S = 2p r 2 (излучение в полусферу); в двугранном углу (излучение в 1/4 сферы) S = p r 2 ; в трехгранном углу S = p r 2 /2.

Ослабление уровня шума в помещении определяется формулой (2). Расчетная точка выбирается в месте постоянного пребывания людей, ближайшем к источнику шума, на расстоянии 1,5 м от пола. Если шум в расчетной точке создается несколькими решетками, то акустический расчет производится с учетом их суммарного воздействия.

Когда источником шума является участок транзитного воздуховода, проходящего через помещение, исходными данными для расчета по формуле (1) служат октавные уровни звуковой мощности излучаемого им шума, определяемые по приближенной формуле:

(16)

где L pi - уровень звуковой мощности источника в i-й октавной полосе частот, дБ;

D L’ Рсетиi - затухание в сети между источником и рассматриваемом транзитным участком, дБ;

R Ti - звукоизоляция конструкции транзитного участка воздуховода, дБ;

S T - площадь поверхности транзитного участка, выходящая в помещение, м 2 ;

F T - площадь поперечного сечения участка воздуховода, м 2 .

Формула (16) не учитывает повышения плотности звуковой энергии в воздуховоде за счет отражений; условия падения и прохождения звука через конструкцию воздуховода существенно отличаются от прохождения диффузного звука через ограждения помещения.

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

(17)

где L Pоктi - октавный уровень звуковой мощности источника шума, дБ;

D L Pсетиi - суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

D L нi - показатель направленности излучения звука, дБ;

r - расстояние от источника шума до расчетной точки, м;

W - пространственный угол излучения звука;

b a - затухание звука в атмосфере, дБ/км.

Если имеется ряд из нескольких вентиляторов, решеток или другой протяженный источник шума ограниченных размеров, то третий член в формуле (17) принимается равным 15 lgr .

Расчет структурного шума

Структурный шум в помещениях, смежных с вентиляционными камерами, возникает в результате передачи динамических сил от вентилятора на перекрытие. Октавный уровень звукового давления в смежном изолируемом помещении определяют по формуле

Для вентиляторов, расположенных в техническом помещении вне пределов перекрытия над изолируемым помещением:

(20)

где L Pi - октавный уровень звуковой мощности воздушного шума, излучаемого вентилятором в вентиляционную камеру, дБ;

Z c - суммарное волновое сопротивление элементов виброизоляторов, на которых установлена холодильная машина, Н с/м;

Z пер - входной импеданс перекрытия - несущей плиты, в отсутствие пола на упругом основании, плиты пола - при его наличии, Н с/м;

S - условная площадь перекрытия технического помещения над изолируемым помещением, м 2 ;

S = S 1 при S 1 > S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 - площадь технического помещения над изолируемым помещением, м 2 ;

S u - площадь изолируемого помещения, м 2 ;

S в - общая площадь технического помещения, м 2 ;

R - собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n - общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора - количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, - количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, - количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет - не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.

Поделиться: