Упростить дробь с буквами и степенями дробными. Сокращение алгебраических дробей: правило, примеры

Когда ученик переходит в старшую школу, математика разделяется на 2 предмета: алгебру и геометрию. Понятий становится все больше, задания все сложнее. У некоторых возникают трудности с восприятием дробей. Пропустили первый урок по этой теме, и вуаля. дроби? Вопрос, который будет мучить на протяжении всей школьной жизни.

Понятие алгебраической дроби

Начнем с определения. Под алгебраической дробью понимается выражения P/Q, где P является числителем, а Q - знаменателем. Под буквенной записью может скрываться число, числовое выражение, численно-буквенное выражение.

Прежде чем задаваться вопросом, как решать алгебраические дроби, для начала нужно понимать, что подобное выражение - часть целого.

Как правило, целое - это 1. Число в знаменателе показывает, на сколько частей разделили единицу. Числитель необходим для того, чтобы узнать, сколько элементов взято. Дробная черта соответствует знаку деления. Допускается запись дробного выражения в качестве математической операции «Деление». В таком случае числитель - делимое, знаменатель - делитель.

Основное правило обыкновенных дробей

Когда учащиеся проходят данную тему в школе, им дают примеры на закрепление. Чтобы правильно их решать и находить различные пути из сложных ситуаций, нужно применять основное свойство дробей.

Оно звучит так: Если умножить и числитель, и знаменатель на одно и то же число или выражение (отличные от нуля), то значение обыкновенной дроби не изменится. Частным случаем от данного правила является разделение обеих частей выражения на одно и то же число или многочлен. Подобные преобразования называются тождественными равенствами.

Ниже будет рассмотрено, как решать сложение и вычитание алгебраических дробей, производить умножение, деление и сокращение дробей.

Математические операции с дробями

Рассмотрим, как решать, основное свойство алгебраической дроби, как применять его на практике. Если нужно перемножить две дроби, сложить их, разделить одну на другую или произвести вычитание, нужно всегда придерживаться правил.

Так, для операции сложения и вычитания следует найти дополнительный множитель, чтобы привести выражения к общему знаменателю. Если изначально дроби даны с одинаковыми выражениями Q, то нужно опустить этот пункт. Когда общий знаменатель найден, как решать алгебраические дроби? Нужно сложить или вычесть числители. Но! Нужно помнить, что при наличии знака «-» перед дробью все знаки в числителе меняются на противоположные. Иногда не следует производить каких-либо подстановок и математических операций. Достаточно поменять знак перед дробью.

Часто используется такое понятие, как сокращение дробей . Это означает следующее: если числитель и знаменатель разделить на отличное от единицы выражение (одинаковое для обеих частей), то получается новая дробь. Делимое и делитель меньше прежних, но в силу основного правила дробей остаются равными изначальному примеру.

Целью этой операции является получение нового несократимого выражения. Решить данную задачу можно, если сократить числитель и знаменатель на наибольший общий делитель. Алгоритм операции состоит из двух пунктов:

  1. Нахождение НОД для обеих частей дроби.
  2. Деление числителя и знаменателя на найденное выражение и получение несократимой дроби, равной предшествующей.

Ниже показана таблица, в которой расписаны формулы. Для удобства ее можно распечатать и носить с собой в тетради. Однако, чтобы в будущем при решении контрольной или экзамена не возникло трудностей в вопросе, как решать алгебраические дроби, указанные формулы нужно выучить наизусть.

Несколько примеров с решениями

С теоретической точки зрения рассмотрен вопрос, как решать алгебраические дроби. Примеры, приведенные в статье, помогут лучше усвоить материал.

1. Преобразовать дроби и привести их к общему знаменателю.

2. Преобразовать дроби и привести их к общему знаменателю.

После изучения теоретической части и расссмотрения практической вопросов больше возникнуть не должно.

Цели:

1. Обучающая - закрепить полученные знания и навыки сокращения алгебраических дробей при решении более сложных упражнений, применяя разложение на множители многочлена разными способами, отработать умения сокращать алгебраические дроби. Повторить формулы сокращённого умножения: (a+ b)2= a2+2 ab+ b2,
(a- b) 2 = a 2 -2 ab+ b 2 , a 2 - b 2 =(a+ b)(a- b), способ группировки, вынесение общего множителя за скобки.

2. Развивающая – развитие логического мышления для сознательного восприятия учебного материала, внимание, активность учащихся на уроке.

3. Воспитывающая - воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности.

Задачи:

1. Закрепить изученный материал, меняя виды работы, по данной теме «Алгебраическая дробь. Сокращение дробей».

2. Развивать навыки и умения, в сокращении алгебраических дробей применяя разные способы разложения на множители числителя и знаменателя, развивать логическое мышление, правильную и грамотную математическую речь, развитие самостоятельности и уверенности в своих знаниях и умениях при выполнении разных видов работ.

3. Воспитывать интерес к математике путём введения разных видов закрепления материала: устной работой, работой с учебником, работой у доски, математическим диктантом, тестом, самостоятельной работой, игрой «Математический турнир»; стимулированием и поощрением деятельности учащихся.

План:
I. Организационный момент.
II. Устная работа.
III. Математический диктант.
IV.
1.Работа по учебнику и у доски.
2. Работа в группах по карточкам - игра «Математический турнир».
3. Самостоятельная работа по уровням (А, В, С).
V. Итог.
1. Тест (взаимопроверка).
VI. Домашнее задание.

Ход урока:

I. Организационный момент.

Эмоциональный настрой и готовность учителя и учащихся на урок. Учащиеся ставят цели и задачи – данного урока, по наводящим вопросам учителя, определяют тему урока.

II. Устная работа.

1. Сократить дроби:

2. Найдите значение алгебраической дроби:
при с = 8, с = -13, с = 11.
Ответ: 6; -1; 3.

3. Ответьте на вопросы:

1) Какой полезно соблюдать порядок при разложении многочленов на множители?
(При разложении многочленов на множители полезно соблюдать следующий порядок: а) вынести общий множитель за скобку, если он есть; б) попробовать разложить многочлен на множители по формулам сокращённого умножения; в) попытаться применить способ группировки, если предыдущие способы не привели к цели).

2) Чему равен квадрат суммы?
(Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа).

3) Чему равен квадрат разности?
(Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа).

4) Чему равна разность квадратов двух чисел?
(Разность квадратов двух чисел равна произведению разности этих чисел и их суммы).

5) Что необходимо выполнить при использовании способа группировки? (Чтобы разложить многочлен на множители способом группировки, нужно: а) объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена; б) вынести этот общий множитель за скобки).
6) Для вынесения общего множителя за скобки нужно……?
(Найти этот общий множитель; 2. вынести его за скобки).

7) Какие вы знаете способы разложения многочлена на множители?
(Вынесение общего множителя за скобки, способ группировки, формулы сокращённого умножения).

8) Что нужно для сокращения дроби?
(Для сокращения дроби нужно числитель и знаменатель разделить на их общий множитель).

III. Математический диктант.

  1. Подчеркните алгебраические дроби:

I вариант:

II вариант:

  1. Можно ли представить выражение

I вариант:

II вариант:

в виде многочлена? Если можно представьте?

3. Какие значения буквы являются допустимыми для выражения:
I вариант:

II вариант:
(x-5)(x+7).

4. Запишите алгебраическую дробь с числителем
I вариант:
3х2.
II вариант:
5y.
и знаменателем

I вариант:
x(x+3).
II вариант:
y 2 (y+7).
и сократите её.

IV.Закрепление темы: «Алгебраическая дробь. Сокращение дробей»:

1.Работа по учебнику и у доски.

Разложить на множители числитель и знаменатель дроби и сократить её.
№441(1;3).

1. ; 3.

№442(1;3;5).

1. 3.

№443(1;3).

1. 3.

№444(1;3).

1. 3.

№445(1;3).

1. 3.

№446(1;3).

2.Работа в группах по карточкам - игра «Математический турнир».

(Задания к игре – «Приложение 1».)
Закрепление и проверка навыков в решении примеров по данной теме проводится в виде турнира. Класс делится на группы и им предлагаются задания на карточках (карточки разных уровней).
Через определённое время, каждый ученик должен записать в тетрадь решение заданий своей команды и уметь их объяснить.
Допускаются консультации внутри команды (их проводит капитан).
Затем начинается турнир: каждая команда имеет право вызвать другие, но по одному разу. Н-р, капитан первой команды вызывает учеников из второй команды для участия в турнире; то же самое делает капитан второй команды, выходят к доске меняются карточками и решают задания и т.д.

3. Самостоятельная работа по уровням (А, Б, В)

«Дидактический материал» Л.И. Звавич и др., стр. 95, С-52.(книга имеется у всех учащихся)
А . №1: I вариант-1) а,б; 2) а,в; 5) а.
II вариант-1) в,г; 2) б,г, 5) в.
Б . №2: I вариант- а.
II вариант- б.
В . №3: I вариант- а.
II вариант- б.

V. Итог.

1. Тест (взаимопроверка).
(Задания к тесту – «Приложение 2».)
(на карточках для каждого учащегося, по вариантам)

VI. Домашнее задание.

1) «Д.М.» стр. 95 №1. (3,4,6);
2) №447 (чётные);
3) §24, повторить § 19 - §23.

Дроби и их сокращение — еще одна тема, которая начинается в 5 классе. Здесь формируется база этого действия, а потом эти умения тянутся ниточкой в высшую математику. Если ученик не усвоил, то у него могут возникнуть проблемы в алгебре. Поэтому лучше уяснить несколько правил раз и навсегда. А еще запомнить один запрет и никогда его не нарушать.

Дробь и ее сокращение

Что это такое, знает каждый ученик. Любые две цифры расположенные между горизонтальной чертой сразу воспринимаются, как дробь. Однако не все понимают, что ею может стать любое число. Если оно целое, то его всегда можно разделить на единицу, тогда получится неправильная дробь. Но об этом позже.

Начало всегда простое. Сначала нужно выяснить, как сократить правильную дробь. То есть такую, у которой числитель меньше, чем знаменатель. Для этого потребуется вспомнить основное свойство дроби. Оно утверждает, что при умножении (так же, как и делении) одновременно ее числителя и знаменателя на одинаковое число получается, равноценная исходной дробь.

Действия деления, которые выполняются в этом свойстве и приводят к сокращению. То есть максимальному ее упрощению. Дробь можно сокращать до тех пор, пока над чертой и под ней есть общие множители. Когда их уже не будет, то сокращение невозможно. И говорят, что эта дробь несократимая.

Два способа

1. Пошаговое сокращение. В нем используется метод прикидки, когда оба числа делятся на минимальный общий множитель, который заметил ученик. Если после первого сокращения видно, что это не конец, то деление продолжается. Пока дробь не станет несократимой.

2. Нахождение наибольшего общего делителя у числителя и знаменателя. Это самый рациональный способ того, как сокращать дроби. Он подразумевает разложение числителя и знаменателя на простые множители. Среди них потом нужно выбрать все одинаковые. Их произведение даст наибольший общий множитель, на который сокращается дробь.

Оба эти способа равноценны. Ученику предлагается освоить их и пользоваться тем, который больше понравился.

Что делать, если есть буквы и действия сложения и вычитания?

С первой частью вопроса все более-менее понятно. Буквы можно сокращать так же как и числа. Главное, чтобы они выступали в роли множителей. А вот со второй у многих возникают проблемы.

Важно запомнить! Сокращать можно только числа, которые являются множителями. Если они слагаемые — нельзя.

Для того чтобы понять, как сокращать дроби, имеющие вид алгебраического выражения, нужно усвоить правило. Сначала представить числитель и знаменатель в виде произведения. Потом можно сокращать, если появились общие множители. Для представления в виде множителей пригодятся такие приемы:

  • группировка;
  • вынесение за скобку;
  • применение тождеств сокращенного умножения.

Причем последний способ дает возможность сразу получить слагаемые в виде множителей. Поэтому его необходимо использовать всегда, если видна известная закономерность.

Но это еще не страшно, потом появляются задания со степенями и корнями. Вот тогда требуется набраться смелости и усвоить пару новых правил.

Выражение со степенью

Дробь. В числителе и знаменателе произведение. Есть буквы и числа. А они еще и возведены в степень, которая тоже состоит из слагаемых или множителей. Есть чего испугаться.

Для того чтобы разобраться в том, как сокращать дроби со степенями, потребуется выучить два момента:

  • если в показателе степени стоит сумма, то ее можно разложить на множители, степенями которых будут исходные слагаемые;
  • если разность, то на делимое и делитель, у первого в степени будет уменьшаемое, у второго — вычитаемое.

После выполнения этих действий становятся видны общие множители. В таких примерах нет необходимости вычислять все степени. Достаточно просто сократить степени с одинаковыми показателями и основаниями.

Для того чтобы окончательно усвоить то, как сокращать дроби со степенями, нужно много практиковаться. После нескольких однотипных примеров действия будут выполняться уже автоматически.

А если в выражении стоит корень?

Его тоже можно сократить. Только опять же, соблюдая правила. Причем верны все те, которые были описаны выше. В общем, если стоит вопрос о том, как сократить дробь с корнями, то нужно делить.

На иррациональные выражения тоже можно разделить. То есть если в числителе и знаменателе стоят одинаковые множители, заключенные под знак корня, то их можно смело сокращать. Это приведет к упрощению выражения и выполнению задания.

Если после сокращения под чертой дроби осталась иррациональность, то от нее нужно избавиться. Другими словами, умножить на нее числитель и знаменатель. Если после этой операции появились общие множители, то их снова нужно будет сократить.

Вот, пожалуй, и все о том, как сокращать дроби. Правил немного, а запрет один. Никогда не сокращать слагаемые!

Основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

Сокращать можно только множители!

Члены многочленов сокращать нельзя!

Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.

Рассмотрим примеры сокращения дробей.

В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.

Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а показатели вычитаем.

a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

b и b сокращаем на b, полученные в результате единицы не пишем.

c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,

Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо . В числителе есть общий множитель 4x. Выносим его за скобки:

И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.

Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:

Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:

В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

Многочлен в числителе состоит из 4 слагаемых. первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

В числителе вынесем за скобки общий множитель (x+2):

Сокращаем дробь на (x+2):

Калькулятора онлайн выполняет сокращение алгебраических дробей в соответствии с правилом сокращения дробей: замена исходной дроби равной дробью, но с меньшими числителем и знаменателем, т.е. одновременное деление числителя и знаменателя дроби на их общий наибольший общий делитель (НОД). Также калькулятор выводит подробное решение, которое поможет понять последовательность выполнения сокращения.

Дано:

Решение:

Выполнение сокращения дробей

проверка возможности выполнения сокращения алгебраической дроби

1) Определение наибольшего общего делителя (НОД) числителя и знаменателя дроби

определение наибольшего общего делителя (НОД) числителя и знаменателя алгебраической дроби

2) Сокращение числителя и знаменателя дроби

сокращение числителя и знаменателя алгебраической дроби

3) Выделение целой части дроби

выделение целой части алгебраической дроби

4) Перевод алгебраической дроби в десятичную дробь

перевод алгебраической дроби в десятичную дробь


Помощь на развитие проекта сайт

Уважаемый Посетитель сайта.
Если Вам не удалось найти, то что Вы искали - обязательно напишите об этом в комментариях, чего не хватает сейчас сайту. Это поможет нам понять в каком направлении необходимо дальше двигаться, а другие посетители смогут в скором времени получить необходимый материал.
Если же сайт оказался Ваме полезен - подари проекту сайт всего 2 ₽ и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!


I. Порядок действий при сокращении алгебраической дроби калькулятором онлайн:

  1. Чтобы выполнить сокращение алгебраической дроби введите в соответствующие поля значения числителя, знаменателя дроби. Если дробь смешанная, то также заполните поле, соответствующее целой части дроби. Если дробь простая, то оставьте поле целой части пустым.
  2. Чтобы задать отрицательную дробь, поставьте знак минус в целой части дроби.
  3. В зависимости от задаваемой алгебраической дроби автоматически выполняется следующая последовательность действий:
  • определение наибольшего общего делителя (НОД) числителя и знаменателя дроби ;
  • сокращение числителя и знаменателя дроби на НОД ;
  • выделение целой части дроби , если числитель итоговой дроби больше знаменателя.
  • перевод итоговой алгебраической дроби в десятичную дробь с округлением до сотых.
  • В результате сокращения может получиться неправильная дробь. В этом случае у итоговой неправильной дроби будет выделена целая часть и итоговая дробь будет переведена в правильную дробь.
  • II. Для справки:

    Дробь - число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенная дробь (простая дробь) записывается в виде двух чисел (числитель дроби и знаменатель дроби), разделенных горизонтальной чертой (дробной чертой), обозначающей знак деления. числитель дроби - число, стоящее над дробной чертой. Числитель показывает, сколько долей взяли у целого. знаменатель дроби - число, стоящее под дробной чертой. Знаменатель показывает, на сколько равных долей разделено целое. простая дробь - дробь, не имеющая целой части. Простая дробь может быть правильной или неправильной. правильная дробь - дробь, у которой числитель меньше знаменателя, поэтому правильная дробь всегда меньше единицы. Пример правильных дроби: 8/7, 11/19, 16/17. неправильная дробь - дробь, у которой числитель больше или равен знаменателю, поэтому неправильная дробь всегда больше единицы или равна ей. Пример неправильных дроби: 7/6, 8/7, 13/13. смешанная дробь - число, в состав которого входит целое число и правильная дробь, и обозначает сумму этого целого числа и правильной дроби. Любая смешанная дробь может быть преобразована в неправильную простую дробь. Пример смешанных дробей: 1¼, 2½, 4¾.

    III. Примечание:

    1. Блок исходных данных выделен желтым цветом , блок промежуточных вычислений выделен голубым цветом , блок решения выделен зеленым цветом .
    2. Для сложения, вычитания, умножения и деления обыкновенных или смешанных дробей воспользуйтесь онлайн калькулятором дробей с подробным решением.
    Поделиться: