Смотреть что такое "Гипс" в других словарях. Гипс — вяжущий порошок, незаменимый во многих отраслях строительства и медицины

Минерал, производный от кальция - его водный сульфат, который называется гипс. Он имеет много названий-синонимов: монмартит, роза пустыни, гипсовый шпат (кристаллические и листовые формы). Образец волокнистой структуры - это селенит, зернистой - алебастр. Речь пойдёт о разновидностях и свойствах этого камня, его распространённости по стране и применении в строительстве, медицине и других направлениях хозяйства.

Историческая справка

В результате произошедшего 20―30 млн лет назад испарения морей образовался гипс - минерал, который стали использовать древние цивилизации. Камень и сегодня имеет большой спрос, несмотря на появление множества современных материалов.

Произошло это почти 10 тысяч лет назад. Свидетельствами того, что в древнем Египте, Ассирии, Греции и Римском государстве использовали гипс, являются:

В Англии и Франции, начиная с XVI века, гипсом стали покрывать деревянные строения, защищая их от пожаров. Год 1700 считают началом использования минерала в качестве удобрения. Для создания архитектурных форм в России XVII-XVIII вв. широко использовали гипсовый декор, а в 1855 г. русский хирург Н. И.

Пирогов во время Крымской войны изобрёл и начал применять для лечения раненых гипсовую повязку, фиксирующую конечности. Это позволило уберечь многих солдат от потери руки или ноги.

Описание минерала

Возникающий из осадочных горных пород минерал из класса сульфатов получил название гипса. Его химическая формула выглядит так: CaSO4·2H2O. По внешнему виду отмечается неметаллический блеск: шелковистый, перламутровый, стеклянный или матовый. Камень бесцветный или окрашен белым, розовым, серым, желтоватым, синим и красным оттенками. Описание других показателей:

  • плотность 2,2―2,4 т/м3;
  • твёрдость по шкале Мооса 2,0 ;
  • спайность - совершенная, легко отделяются тонкие пластинки от кристаллов слоистой структуры;
  • черта, проведённая по камню - белая.

Вот из чего состоит гипс: окись кальция СаО - 33%, вода Н2О - 21%, трехокись серы SO 3 - 46%. Примеси обычно отсутствуют.

Если рассматривать камень как горную породу, то в составе присутствуют кальцит, доломит, гидроокислы железа, ангидрит, сера и собственно сам гипс. Происхождение осадочное, по условиям создания различают первичные формы, которые образовались путём химического осаждения в солёных водоёмах, или вторичные производные - они возникли в результате гидратации ангидрита. Может скапливаться в зонах самородной серы и сульфидов: от ветровой эрозии образуются гипсовые шляпы, загрязнённые примесями.

Качество сырья для производства гипса зависит от содержания двухводной сернокислой соли кальция CaSO4·2H2O - оно варьирует в диапазоне 70―90%. Конечной формой для применения является минеральный порошок, его получают размолом обожжённого во вращающихся печах гипсового камня.

Свойства и применение

В природе физические особенности строения заключаются в многообразии форм: плотные и зернистые, землистые, листоватые и волокнистые, конкреции и пылевидные массы. В пустотах обнаруживаются в виде друз кристаллов. Растворимость гипса в воде повышается с температурой до 37―38ºС, затем уменьшается, и по достижении 107ºС минерал переходит в состояние полугидрата CaSO4·½H2O. При добавлении малого количества серной кислоты в воду растворимость улучшается. На НС l реагирует слабо.

В готовых строительных смесях свойства гипса передаются самому порошку. Изделия обретают качества основного вещества с характеристиками:

  • плотность насыпная 850―1150 кг/м3, меньшие значения для более тонкого помола;
  • огнестойкость высокая: у алебастра температура плавления 1450ºС;
  • схватываемость - начало через 4―7 минут, окончание - спустя полчаса, для замедления отвердевания добавляют животный клей, растворимый в воде;
  • прочность на сжатие рядовых образцов 4―6 МПа, высокопрочных 15―40.

Плохая теплопроводность - на уровне кирпича (около 0,14 Вт/(м·град)) позволяет использовать изделия на гипсовой основе в пожароопасных конструкциях. Первые образцы применения камня в этом качестве найдены в Сирии - им больше 9 тысяч лет.

Природные виды

Геологи установили несколько десятков разновидностей гипса, но основных выделяют три. К ним относятся:

Про другие разновидности знают немногие: гипсовый шпат (крупнокристаллический и листовой), кишечный или змеиный камень серого цвета с белыми, червеобразно изогнутыми прожилками. Другая малоизвестная форма - землистый гипс.

Разновидности для практического применения

Использование водного сульфата кальция совместно с другими вяжущими веществами позволяет получить существенную экономию на более дорогих материалах. Прошедший стадию переработки алебастр подразделяют на следующие классы:

Существуют и другие разновидности, но на практике пользуются ограниченным перечнем. Аналогом является мелкодисперсная пыль серовато-белого цвета - алебастровый порошок, который получают из гипса путем термической обработки.

Другие направления использования

В необработанном виде камень применяют как добавку в производстве портландцемента, изготовления скульптур и поделок. Перечень дополнительных направлений:

Нетрадиционное направление - магия. Считается, что гипс притягивает благополучие и удачу, подсказывает поступки человека в сложной ситуации. Астрологи рекомендуют амулеты из этого минерала особам, родившимся под знаками Льва, Овна и Козерога.

Месторождения камня

Распространение гипса в земной коре наблюдается повсюду, преимущественно в пластах осадочных пород мощностью 20―30 м. Мировая добыча составляет около 110 млн т камня в год. Крупнейшими производителями являются Турция, Канада, США, Испания и Иран. Из уникальных можно отметить термальные пещеры Naica Mine в Мексике, где были найдены друзы гигантских кристаллов гипса длиной 11 м.

Многочисленные месторождения верхнеюрского периода расположены на территории стран ближнего зарубежья: Северный Кавказ, среднеазиатские республики. В России насчитывается 86 промышленных залежей, но 90% добычи приходится на 19 месторождений, из которых можно выделить 9 крупнейших: Баскунчакское, Болоховское, Лазинское, Новомосковское, Оболенское, Павловское, Плетнёвское, Порецкое, Скуратовское. Их доля в добыче 75% от общероссийской. Большинство месторождений представлены смесью гипса и ангидрита в соотношении 9:1. В России ежегодно добывают 6 млн тонн, что составляет 5,5% от мирового объёма.

«Гипс» - имеет старое греческое происхождение и применялось для обозначения обожженного гипса или алебастра

Гипс является широко распространенным породообразующим минером осадочных пород.

] * 2H 2 O

Химический состав

CaO - 32,57 %, SO3 - 46,50 %, Н2О - 20,93 %. Обычно чист. В виде механических примесей устанавливаются: глинистое вещество, органические вещества (пахучий гипс), включения песчинок, иногда сульфидов и др.

Разновидности
1. Селенит - волокнистый гипс с шелковистым блеском. Применяется для обозначения полупрозрачного гипса, проявляющего своеобразные луноподобные светлые рефлексы.

Кристаллографическая характеристика

Сингония моноклинная

Класс призматический в. с. L2PC. Пр. гр. А2/п (C 6 2h). а0 = 10,47; b0 = 15,12; с0 = 6,28; β = 98°58′. Z = 4.

Кристаллическая структура

Согласно данным рентгенометрии, отчетливо выступает слоистая структура этого минерала. Два листа анионных групп 2–, тесно связанные с ионами Са2+, слагают двойные слои, ориентированные вдоль плоскости (010). Молекулы Н2О занимают места между указанными двойными слоями. Этим легко объясняется весьма совершенная спайность , столь характерная для гипса. Каждый ион кальция окружен шестью кислородными ионами, принадлежащими к группам SO4, и двумя молекулами воды. Каждая молекула воды связывает ион Са с одним ионом кислорода в том же двойном слое и с другим ионом кислорода в соседнем слое.

Главные формы: Облик кристаллов. Кристаллы, благодаря преимущественному развитию граней {010}, имеют таблитчатый, редко столбчатый или призматический облик. Из призм наиболее часто встречаются {110} и {111}, иногда {120} и др. Грани {110} и {010} часто обладают вертикальной штриховкой.


Друза кристаллов

Форма нахождения гипса в природе

Облик кристаллов. Образует толсто- и тонкотаблитчатые кристаллы

Часты двойники характерные по виду - так называемые "ласточкины хвосты".

Двойники срастания часты и бывают трех типов:

  1. галльские контактные двойники по (100),
  2. парижские контактные двойники по (101)
  3. реже встречаются крестообразные двойники прорастания по (209). Отличить их друг от друга не всегда легко.

Два первые типа напоминают ласточкин хвост.
Галльские двойники характеризуются тем, что ребра призмы m{110} располагаются параллельно двойниковой плоскости, а ребра призмы l{111} образуют входящий угол, в то время как в парижских двойниках ребра призмы l{111} параллельны двойниковому шву.

Физические свойства гипса

Агрегаты. Встречается в виде плотных (алебастр), зернистых, землистых, листоватых и волокнистых агрегатов (атласный шпат), искривленные кристаллы, конкреции и пылевидные массы.

В пустотах встречается в виде друз кристаллов.

В трещинах иногда наблюдаются асбестовидные параллельно-волокнистые массы гипса с шелковистым отливом и расположением волокон перпендикулярно к стенкам трещин. На Урале такой гипс называют селенитом. В тех случаях, когда гипс кристаллизуется в рыхлых песчаных массах, он в своей среде содержит множество захваченных песчинок, отчетливо заметных на плоскостях спайности крупных кристаллических индивидов (так называемый репетекский гипс).

Оптические

  • Цвет гипса белый. Отдельные кристаллы часто водяно-прозрачны и бесцветны. Бывает окрашен также в серый, медово-желтый, красный, бурый и черный цвета (в зависимости от цвета захваченных при кристаллизации примесей).
  • Черта белая.
  • Блеск стеклянный.
  • Отлив на плоскостях спайности перламутровый; матовый, у волокнистых разностей - шелковистый.
  • Прозрачный или просвечивает.
  • Показатели преломления Ng = 1,530, Nm = 1,528 и Np = 1,520.Nm = b; (+)2V = 58°, с: Ng = 52°. Сильная дисперсия г > и {001}.

Механические

  • Твердость 2 (царапается ногтем). Весьма хрупок.
  • Плотность 2,32.
  • Спайность по {010} весьма совершенная, по {100}, соответствующая слоям из молекул Н2O;и {011} ясная; спайные выколки имеют ромбическую форму с углами 66 и 114°.
  • Излом ступенчатый, зернистый, занозистый.
  • Плоскости скольжения {010}

Химические свойства

Обладает заметной растворимостью в воде. Замечательной особенностью гипса является то обстоятельство, что растворимость его при повышении температуры достигает максимума при 37–38 °С, а затем довольно быстро падает. Наибольшее снижение растворимости устанавливается при температурах свыше 107 °С вследствие образования «полугидрата»- Ca . 1/2 H2O.

В воде, подкисленной H2SO4, растворяется гораздо лучше, чем в чистой. Однако при концентрации H2SO4 свыше 75 г/л растворимость резко падает. В HCl растворим очень мало.

Диагностические признаки

Сходные минералы

Хорошо диагностируется по малой твердости (царапается ногтем) и весьма совершенной спайности. По спайности можно отщеплять тонкие листочки. Листочки гибкие. Похож на ангидрит , но более мягкий и в отличие от него царапается ногтем.

Для кристаллического гипса характерны весьма совершенная спайность по {010} и низкая твердость (царапается ногтем). Плотные мраморовидные агрегаты и волокнистые массы узнаются также по низкой твердости и отсутствию выделения пузырьков CO2 при смачивании HCl.

Сопутствующие минералы. Галит , ангидрит, сера , кальцит .

Происхождение и нахождение

Гипс в природных условиях образуется различными путями.

  • В значительных массах он отлагается осадочным путем в озерных морских соленосных отмирающих бассейнах. При этом гипс наряду с NaCl может выделяться лишь в начальных стадиях испарения, когда концентрация других растворенных солей еще невысока. При достижении некоторого определенного значения концентрации солей, в частности NaCl и особенно MgCl2, вместо гипса будут кристаллизоваться ангидрит затем уже другие, более растворимые соли. Следовательно, гипс в этих бассейнах должен принадлежать к числу более ранних химических осадков. И действительно, во многих соляных месторождениях пласты гипса (а также ангидрита), переслаиваясь с пластами каменной соли, располагаются в нижних частях залежей и в ряде случаев подстилаются лишь химически осажденными известняками.
  • Весьма значительные массы гипса возникают в результате гидратации ангидрита в осадочных отложениях под влиянием действия поверхностных вод в условиях пониженного внешнего давления (в среднем до глубины 100–150 м) по реакции: CaSO4 + 2H2O = CaSO4 . 2H2O

При этом происходят сильное увеличение объема (до 30 %) и в связи с этим, многочисленные и сложные местные нарушения в условиях залегания гипсоносных толщ. Таким путем возникло большинство крупных месторождений гипса на земном шаре. В пустотах среди сплошных гипсовых масс иногда встречаются гнезда крупнокристаллических, нередко прозрачных кристаллов («шпатоватый гипс»).

  • В полупустынных и пустынных местностях гипс очень часто встречается в виде прожилков и желваков в коре выветривания самых различных по составу горных пород. Нередко образуется также на известняках под действием на них вод, обогащенных серной кислотой или растворенными сульфатами. Встречается, наконец, в зонах окисления сульфидных месторождений, но не в столь больших количествах, как этого можно было бы ожидать. Дело в том, что в подавляющем большинстве случаев в сульфидных рудах в том или ином количестве присутствуют пирит или пирротин , окисление которых (особенно первого) существенно увеличивает содержание серной кислоты в поверхностных водах. Подкисленные же серной кислотой воды значительно увеличивают растворимость гипса. Поэтому в ряде месторождений гипс более обычен в верхних частях зон первичных руд, где он в трещинах встречается вместе с другими сульфатами.
  • Сравнительно редко гипс наблюдается как типичный гидротермальный минерал в сульфидных месторождениях, образовавшихся в условиях низких давлений и температур. В этих месторождениях он иногда наблюдается в виде крупных кристаллов в пустотах и содержит включения халькопирита , пирита, сфалерита и других минералов. Многократно устанавливались псевдоморфозы по гипсу кальцита, арагонита , малахита , кварца и других минералов, так же как и псевдоморфозы гипса по другим минералам.

Редким примером эндогенного (гидротермального) гипса могут служить прозрачные монокристальные массы, наросшие поверх щеток кристаллов цеолитов в полостях габброидов Талнахского месторождения (Норильская группа, Красноярский край).

Типичный морской химический осадок. По происхождению и нахождению в природе тесно связан с ангидритом. Может образовываться при дегидратации ангидрита. Образуется также в зоне выветривания сульфидов и самородной серы (так называемые гипсовые шляпы). Как и ангидрит, гипс иногда может быть гидротермального происхождения, встречаясь в продуктах фумарольной деятельности.

Месторождения

Осадочные месторождения гипса распространены по всему земному шару и приурочены к отложениям различного возраста. На перечислении их останавливаться не будем. Укажем лишь, что на территории России мощные гипсоносные толщи пермского возраста распространены по Западному Приуралью, в Башкирии и Татарии, Архангельской, Вологодской, Нижегородской и других областях. Многочисленные месторождения позднеюрского возраста устанавливаются на Северном Кавказе, в Дагестане, Туркмении, Таджикистане, Узбекистане и др.

Хорошо известны его месторождения в районе Джирдженти, Сицилия; в Парижском бассейне, Франция; в Северной Германии; в районе Кракова, Польша; в Зальцбурге, Австрия; в Чихуахуа, Мексика; в штатах Нью-Йорк и Мичиган, США; в провинциях Онтарио и Нью-Брансуик (Хилсборо), Канада, и других местах.


Практическое применение

Практическое значение гипса велико, особенно в строительном деле.

  1. Модельный или лепной (полуобожженный) гипс применяется для получения отливок, гипсовых слепков, лепных украшений карнизов, штукатурки потолков и стен, в хирургии, бумажном производстве при выделке плотных белых сортов бумаги и пр. В строительном деле он употребляется как цемент при кирпичной и каменной кладке, для набивных полов, изготовления кирпичей, плит для подоконников, лестниц и т. п.
  2. Сырой (природный) гипс находит применение главным образом цементной промышленности в качестве добавки к портландцементу, каменный материал для ваяния статуй, различных поделок (особенно уральский селенит), в производстве красок, эмали, глазури, при металлургической переработке окисленных никелевых руд и др.

Используется в производстве вяжущих строительных минералов (строительный гипс, алебастр - полуобоженный гипс, цемент), в медицине, бумажной промышленности, в качестве удобрения. Селенит применяется как недорогой поделочный камень.

Физические методы исследования

Дифференциальный термический анализ. Теряя воду переходит в ангидрит (дегидратация).

Дегидратация гипса происходит постепенно; сначала он превращается в полугидрат Ca *0,5Н2О, затем в растворимый ангидрит y-Ca, далее в нерастворимый ангидрит (i-Ca и, наконец, при температуре выше 1500° в вероятную модификацию

При нагревании в условиях атмосферного внешнего давления, как показывают термограммы, гипс начинает терять воду при 80–90 °С, и при температурах 120–140 °С полностью переходит в полугидрат, так называемый модельный, или штукатурный, гипс (алебастр). Этот полугидрат, замешанный с водой в полужидкое тесто, вскоре твердеет, расширяясь и выделяя тепло.

ГИПС - 1. Ca·2H 2 O. Мон. К-лы тонко- и толстотаблитчатые. Сп. в. сов. по {010}, сов. по {100} и {110). Дв. по {100} обычны - ласточкин хвост. Агр.: зернистые, листоватые, порошк., волокн., прожилки, радиальноигольчатые. Бесцветный, белый, желтоватый до черного. Бл. стеклянный. Тв. 1,5-2. Уд. в. 2,32. Гибкий, но не эластичный. В воде заметно растворим. Образует осад. г. п.; часто в з. окисл. рудных м-ний; известен гидротерм. Образуется при t 63,5 °С, а в растворах, насыщенных NaCl, при t 30 °С; при гидратации ангидрита, а также при воздействии сульфатных растворов на карбонатные п. В совр. солеродных басс. сульфат Са отлагается в виде гипса, в древних известны преимущественно ангидритовые, реже гипсовые образования. Разнов.: кристаллический Г.; волокн., или ; зернистый или ; песчанистый - пойкилитовый. 2. Осад. г. п., состоящая в основном из м-ла гипса и входящая в гр. галогенных п. По условиям образования Г. может быть первичным (собственно осад.), образовавшимся хим. осаждением в осолоненных басс. на начальных стадиях галогенеза, или вторичным. К последнему относятся широко развитые Г., возникающие при гидратации ангидрита в приповерхностной зоне: гипсовые шляпы; метасоматический Г. (гл. обр. по карбонатным п.) и др. Г. применяется в сыром и обожженном виде в строительной промышленности, при производстве вяжущих веществ, штукатурного и формовочного гипса, эстрихгипса, гипсового цемента и для получения серной .

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

(от греч. gypsos - , известь * a. gypsum; н. Gips; ф. gypse, pierre а platre; и. yeso ) –
1) минерал класса сульфатов, Ca(SО 4)·2H 2 О. B чистом виде содержит 32,56% СаО, 46,51% SО 3 и 20,93% Н 2 О. Механич. примеси гл. обр. в виде органического и глинистого веществ, сульфидов и др. Кристаллизуется в моноклинной сингонии. В основе кристаллич. структуры - двойные из анионных групп (SO 4) 2- , связанных катионами Ca 2+ . Кристаллы таблитчатые или призматические, образуют двойники, т.н. ласточкин хвост. весьма совершенная. Агрегаты: зернистые, листоватые, порошковатые, конкреции, волокнистые прожилки, радиально-игольчатые. Чистый Г. - бесцветный и прозрачный, при наличии примесей имеет серую, желтоватую, розоватую, бурую до чёрной окраску. Блеск стеклянный. Тв. 1,5-2. 2300 кг/м 3 . В воде заметно растворим (2,05 г/л при 20°С). По происхождению гл. обр. хемогенный. Выпадает в осадок при t 63,5°С, а в растворах, насыщенных NaCl, - при темп-ре 30°С. При значит. повышении солёности в усыхающих мор. лагунах и солёных озёрах вместо Г. начинает выпадать безводный сернокислый - Ангидрит, аналогичным образом возникает при обезвоживании Г. Известен также Г., образующийся в низкотемпературных сульфидных м-ниях. Разновидности: селенит - полупрозрачные волокнистые агрегаты, отливающие в отражённом свете красивым шелковистым блеском; гипсовый шпат - пластинчатый Г. в виде прозрачных кристаллов слоистой структуры и др.
.
2) Осадочная горн. порода, состоящая в осн. из минерала Г. и примесей ( , ангидрит, гидрооксиды железа, сера, и др.). По условиям образования Г. может быть первичным, образовавшимся путём хим. осаждения в осолонённых бассейнах на нач. стадиях Галогенеза, или вторичным, возникающим при гидратации ангидрита в приповерхностной зоне, - гипсовые шляпы, метасоматич. Г. и др. Качество гипсового сырья определяется в осн. содержанием двуводной сернокислой соли кальция (CaSО 4 ·2H 2 О), к-рое в разл. сортах гипсового камня изменяется от 70 до 90%.
Г. применяется в сыром и обожжённом виде. 50-52% добываемого в СССР гипсового камня используется для выработки гипсовых вяжущих веществ разл. назначения (ГОСТ 195-79), получаемых обжигом природного Г., 44% Г. - в произ-ве портландцемента, где Г. применяется как добавка (3-5%) для регулирования сроков схватывания цемента, а также для выпуска спец. цементов: гипсоглинозёмистого расширяющегося цемента, напрягающего цемента и др. 2,5% Г. потребляет с. х-во при произ-ве азотных удобрений (сульфата аммония) и для гипсования засоленных почв; в цветной металлургии Г. используется в качестве флюса, в осн. при выплавке никеля; в бумажном произ-ве - в качестве наполнителя, преим. в высших сортах писчих бумаг. В нек-рых странах ( , Великобритания и др.) Г. применяется для произ-ва серной к-ты и цемента. Способность Г. легко обрабатываться, хорошо воспринимать полировку и обычно высокие декоративные свойства позволяют применять его в качестве имитатора мрамора при произ-ве облицовочных плит для внутр. отделки зданий и как материал для разл. поделок.
В юж. р-нах СССР в нар. х-ве используется глиногипс с содержанием CaSО 4 ·2H 2 О от 40 до 90%. Рыхлую породу, состоящую из Г., и песка, наз. землистым Г., а в Закавказье и Ср. Азии - " " или "ганч". Эти породы в сыром виде употребляются для гипсования почв, в обожжённом - для штукатурки, как вяжущее средство.
В СССР наиболее крупные м-ния расположены в Донбассе, Тульской, Куйбышевской, Пермской областях РСФСР, на Кавказе и в Ср. Азии. На 150 м-ниях Г. и 22 м-ниях глиногипса, гажи и ганча разведаны по пром. категориям запасы 4,2 млрд. т (1981). Имеются 11 м-ний, запасы гипса на к-рых превышают 50 млн. т (в том числе Новомосковское - 857,4 млн. т).
М-ния Г. разрабатываются карьерами (Шедокский, Сауриешский комб-ты и др.) и шахтами ("Новомосковский", "Артёмовский", "Камское Устье" и др.). В СССР эксплуатируются 42 м-ния Г. и ангидрита и 6 м-ний гипсоносных пород с годовой добычей ок. 14 млн. т (1981), из к-рых 60,2% - на терр. РСФСР и 15,8% - УССР. Наиболее крупные предприятия - "Новомосковский" (2,33 млн. т), "Ергачинский", "Артёмовский" (по 1,0 млн. т) и "Заларинский" (0,85 млн. т).
Мировые разведанные запасы Г. оцениваются в 2,2 млрд. т: 0,6 млрд. т в США; 0,375 млрд. т в Канаде; 0,825 млрд. т в странах Европы (во Франции, ФРГ, Испании, Италии, Югославии и Греции); 0,09 млрд. т в странах Азии; по 0,07 млрд. т в Мексике и странах Африки. Ресурсы Г. во много раз превышают разведанные запасы. Мировая добыча Г. среди капиталистич. стран составляет 70 млн. т (1978), из них на долю США приходится 20% (13,5 млн. т), Канады - 11% (7,9 млн. т). В странах Европы добывают 30,7 млн. т, Азии - 11,9 млн. т Г. Литература : Виноградов Б. Н., Сырьевая база промышленности вяжущих веществ СССР, М., 1971; Вихтер Я. И., Производство гипсовых вяжущих веществ, 4 изд., М., 1974. Ю. С. Микоша.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Синонимы :

Смотреть что такое "Гипс" в других словарях:

    гипс - гипс, а … Русский орфографический словарь

    гипс - гипс/ … Морфемно-орфографический словарь

    Гипс - – (от греч. gypsos – мел, известь) – 1) Г. природный – минерал, водный сульфат кальция CaSO4*2H2O. Цвет белый, желтоватый, кремовый; часто бесцветный. Тв. по минералогия, шкале 1,5 – 2; плотн. 2300 кг/м3. Состоящая гл. обр … Энциклопедия терминов, определений и пояснений строительных материалов - (Туркмения). ГИПС (от греческого gypsos мел, известь), 1) минерал, водный сульфат кальция. Бесцветные, серые кристаллы, агрегаты. Твердость 1,5 2; плотность 2,3 г/см3. Разновидности: гипсовый шпат (полупрозрачные кристаллы); атласный шпат, или… … Иллюстрированный энциклопедический словарь

    ГИПС - ГИПС, сернокислый кальций, Calcium sul furicum, CaS04+2H20, белый мягкий, легко растирающийся в порошок минерал, встречающийся в природе в виде больших залежей; синтетически получается при действии серной кислоты или ее растворимых в воде солей… … Большая медицинская энциклопедия

    - (от греч. gypsos мел известь), 1) минерал класса сульфатов, CaSO4.2H2O. Бесцветные, белые, серые кристаллы, агрегаты. Твердость 1,5 2; плотность 2,3 г/см³. Разновидности: гипсовый шпат (полупрозрачные кристаллы); атласный шпат, или уральский… … Большой Энциклопедический словарь

    ГИПС, гипса, муж. (греч. gypsos). 1. только ед. Серноизвестковая кристаллическая минеральная соль б. ч. белого или желтого цвета, употр. между прочим в хирургии и служащая материалом для скульптурных работ (минер.). 2. Скульптурный слепок из… … Толковый словарь Ушакова

/ минерал Гипс

Гипс это минерал, водный сульфат кальция.

Синонимы

гипсовый камень, зеркальный камень, монмартит, песчаная роза, роза пустыни, шпат гипсовый.

Химический состав

В состав гипса входят следующие элементы: Са, S, O.

Окись кальция (СаО) 32,6%, трехокись серы (SO 3) 46,5%, вода (Н 2 О) 20,9%. Тонкие кристаллы и спайные пластинки гибки.

Кристаллическая структура слоистая; два листа анионных групп 2-, тесно связанные с ионами Ca2+, слагают двойные слои, ориентированные вдоль плоскости (010). Молекулы H2O занимают места между указанными двойными слоями. Этим легко объясняется весьма совершенная спайность, характерная для гипса. Каждый ион кальция окружен шестью кислородными ионами, принадлежащими к группам SO4, и двумя молекулами воды. Каждая молекула воды связывает ион Ca с одним ионом кислорода в том же двойном слое и с другим ионом кислорода в соседнем слое.

Разновидности минерала

Алебастр , марьино стекло (лёд девичий, стекло девичье), селенит (атласный шпат)

Обладает заметной растворимостью в воде. Замечательной особенностью гипса является то обстоятельство, что растворимость его при повышении температуры достигает максимума при 37-38°, а затем довольно быстро падает. Наибольшее снижение растворимости устанавливается при температурах свыше 107° вследствие образования "полугидрата" - CaSO4 × 1/2H2O.

При 107oC частично теряет воду, переходя в белый порошок алебастра, (2CaSO4 × Н2О), который заметно растворим в воде. В силу меньшего количества гидратных молекул, алебастр при полимеризации не даёт усадки (увеличивается в объеме прибл. на 1%). Под п. тр. теряет воду, расщепляется и сплавляется в белую эмаль. На угле в восстановительном пламени даёт CaS. В воде, подкисленной H2SO4, растворяется гораздо лучше, чем в чистой. Однако при концентрации H2SO4 свыше 75 г/л. растворимость резко падает. В HCl растворим очень мало.

Формы нахождения

Характерны сростки в виде "розы" и двойники - т.наз. "ласточкины хвосты"). Образует прожилки параллельно-волокнистой структуры (селенит) в глинистых осадочных породах, а также плотные сплошные мелкозернистые агрегаты, напоминающие мрамор (алебастр). Иногда в виде землистых агрегатов и скрытокристаллическте масс. Также слагает цемент песчаников.

Обычны псевдоморфозы по гипсу кальцита, арагонита, малахита, кварца и др., так же как и псевдоморфозы гипса по другим минералам.

Происхождение

Широко распространённый минерал, в природных условиях образуется различными путями. Происхождение осадочное (типичный морской хемогенный осадок), низкотемпературно-гидротермальное, встречается в карстовых пещерах и сольфатарах. Осаждается из богатых сульфатами водных растворов при усыхании морских лагун, солёных озёр. Образует пласты, прослои и линзы среди осадочных пород, часто в ассоциациях с ангидритом, галитом, целестином, самородной серой, иногда с битумами и нефтью. В значительных массах он отлагается осадочным путем в озёрных и морских соленосных отмирающих бассейнах. При этом гипс наряду с NaCl может выделяться лишь в начальных стадиях испарения, когда концентрация других растворенных солей еще не высока. При достижении некоторого определенного значения концентрации солей, в частности NaCl и особенно MgCl2, вместо гипса будут кристаллизоваться ангидрит и затем уже другие, более растворимые соли, т.е. гипс в этих бассейнах должен принадлежать к числу более ранних химических осадков. И действительно, во многих соляных месторождениях пласты гипса (а также ангидрита), переслаиваясь с пластами каменной соли, располагаются в нижних частях залежей и в ряде случаев подстилаются лишь химически осажденными известняками.

Значительные массы гипса в осадочных породах образуются прежде всего в результате гидратации ангидрита, который в свою очередь осаждался при испарении морской воды; нередко при её испарении осаждается непосредственно гипс. Гипс возникают в результате гидратации ангидрита в осадочных отложениях под влиянием действия поверхностных вод в условиях пониженного внешнего давления (в среднем до глубины 100-150м.) по реакции: CaSO4 + 2H2O = CaSO4 × 2H2О. При этом происходят сильное увеличение объёма (до 30%) и, в связи с этим, многочисленные и сложные местные нарушения в условиях залегания гипсоносных толщ. Таким путем возникло большинство крупных месторождений гипса на земном шаре. В пустотах среди сплошных гипсовых масс иногда встречаются гнёзда крупных, нередко прозрачных кристаллов.

Может служить цементом в осадочных породах. Жильный гипс обычно является продуктом реакции сульфатных растворов (образующихся при окислении сульфидных руд) с карбонатными породами. Образуется в осадочных породах при выветривании сульфидов, при воздействии образующейся при разложении пирита сер-ной кислоты на мергели и известковистые глины. В полупустынных и пустынных местностях гипс очень часто встречается в виде прожилков и желваков в коре выветривания самых различных по составу горных пород. В почвах аридной зоны формируются новообразования вторично переотложенного гипса: одиночные кристаллы, двойники («ласточкины хвосты»), друзы, «гипсовые розы» и т.д.

Гипс довольно хорошо растворим в воде (до 2,2 г/л.), причём с повышением температуры его растворимость сперва растёт, а выше 24°С падает. Благодаря этому гипс при осаждении из морской воды отделяется от галита и образует самостоятельные пласты. В полупустынях и пустынях, с их сухим воздухом, резкими суточными перепадами температуры, засолёнными и загипсованными почвами, утром, с повышением температуры гипс начинает растворяться и, поднимаясь в растворе капиллярными силами, отлагается на поверхности при испарении воды. К вечеру, с понижением температуры, кристаллизация прекращается, но из-за недостатка влаги кристаллы не растворяются, - в районах с такими условиями кристаллы гипса встречаются в особенно большом количестве.

Местонахождения

В России мощные гипсоносные толщи пермского возраста распространены по Западному Приуралью, в Башкирии и Татарстане, в Архангельской, Вологодской, Горьковской и других областях. Многочисленные месторождения верхнеюрского возраста устанавливаются на Сев. Кавказе, в Дагестане. Замечательные коллекционные образцы с кристаллами гипса известны из м-ния Гаурдак (Туркмения) и других м-ний Средней Азии (в Таджикистане и Узбекистане), в Среднем Поволжье, в юрских глинах Калужской области. В термальных пещерах Naica Mine, (Мексика) были найдены друзы уникальных по размерам кристаллов гипса длиной до 11 м.

Применение

Волокнистый гипс (селенит) используют как поделочный камень для недорогих ювелирных изделий. Из алебастра издревле вытачивали крупные ювелирные изделия - предметы интерьера (вазы, столешницы, чернильницы и т. д.). Обожженный гипс применяют для отливок и слепков (барельефы, карнизы и т. д.), как вяжущий материал в строительном деле, в медицине.

Используется для получения строительного гипса, высокопрочного гипса, гипсоцементно-пуццоланового вяжущего материала.

рассказать об ошибке в описании

Свойства Минерала

Цвет Белый, красноватый, монокристаллы часто бесцветные, прозрачные, водяно-прозрачные (марьино стекло).
Цвет черты белый
Происхождение названия От греческого γυψοζ означающего мел или штукатурка
Год открытия Первое упоминание о гипсе у Теофраста 300-325г.
IMA статус действителен, описан впервые до 1959 (до IMA)
Химическая формула CaSO 4 *2H 2 O
Блеск стеклянный
перламутровый
шелковистый
тусклый
Прозрачность прозрачный
полупрозрачный
просвечивает
непрозрачный
Спайность совершенная по {010}
средняя по {100}
Излом раковистый
ступенчатый
занозистый
Твердость 2
Термические свойства П. тр. Разлагается с потерей кристаллизационной воды и плавится в белую эмаль. В закрытой трубочке теряет кристаллизационную воду, превращаясь в сульфат кальция (“намертво обожженный гипс”)
Люминесценция Кристаллы гипса с включениями иногда проявляют голубовато-белую, жёлтую, зелёную флюоресценцию
Strunz (8-ое издание) 6/C.22-20
Hey"s CIM Ref. 25.4.3
Dana (7-ое издание) 29.6.3.1
Dana (8-ое издание) 29.6.3.1
Молекулярный вес 172.17
Параметры ячейки a = 5.679(5) Å, b = 15.202(14) Å, c = 6.522(6) Å β = 118.43°
Отношение a:b:c = 0.374: 1: 0.429
Число формульных единиц (Z) 4
Объем элементарной ячейки V 495.15 ų
Двойникование часты двойники прорастания по одному из двух законов: 1) двойники ласточкин хвост, пользующиеся наибольшим распространением-двойникование по граням призмы; 2) монмартрские (парижские) двойники-ребра призм расположены параллельно двойниковому шву
Точечная группа 2/m - Prismatic
Плотность (расчетная) 2.308
Плотность (измеренная) 2.312 - 2.322
Дисперсия оптических осей сильная r > v наклонная
Показатели преломления nα = 1.519 - 1.521 nβ = 1.522 - 1.523 nγ = 1.529 - 1.530
Максимальное двулучепреломление δ = 0.010
Тип двухосный (+)
угол 2V измеренный: 58° , рассчитанный: 58° до 68°
Оптический рельеф низкий
Форма выделения Кристаллы таблитчатые, редко столбчатые и призматические; характерны двойники срастания. Друзы кристаллов, плотные тонкокристаллические агрегаты, асбестовидные параллельно-волокнистые массы (селенит), прожилки, желваки
Классы по систематике СССР Сульфаты

Двойник гипса "Ласточкин хвост", 7см., Туркмения

Гипс Таманский полуостров, РФ

Гипс , Мюнхен-Шоу, 2011

Гипс Испания 80-70*60 мм

Гипс , наросший на деревянную палку. Австралия. Коллекция музея Terra Mineralia. Фото Д.Тонкачеев

Обычны псевдоморфозы по гипсу кальцита , арагонита , малахита , кварца и др., так же как и псевдоморфозы гипса по другим минералам.

Происхождение

Широко распространённый минерал, в природных условиях образуется различными путями. Происхождение осадочное (типичный морской хемогенный осадок), низкотемпературно-гидротермальное, встречается в карстовых пещерах и сольфатарах . Осаждается из богатых сульфатами водных растворов при усыхании морских лагун, солёных озёр. Образует пласты, прослои и линзы среди осадочных пород, часто в ассоциациях с ангидритом , галитом , целестином , самородной серой , иногда с битумами и нефтью. В значительных массах он отлагается осадочным путем в озёрных и морских соленосных отмирающих бассейнах. При этом гипс наряду с NaCl может выделяться лишь в начальных стадиях испарения, когда концентрация других растворенных солей еще не высока. При достижении некоторого определенного значения концентрации солей, в частности NaCl и особенно MgCl 2 , вместо гипса будут кристаллизоваться ангидрит и затем уже другие, более растворимые соли, т.е. гипс в этих бассейнах должен принадлежать к числу более ранних химических осадков. И действительно, во многих соляных месторождениях пласты гипса (а также ангидрита), переслаиваясь с пластами каменной соли, располагаются в нижних частях залежей и в ряде случаев подстилаются лишь химически осажденными известняками.
Значительные массы гипса в осадочных породах образуются прежде всего в результате гидратации ангидрита , который в свою очередь осаждался при испарении морской воды; нередко при её испарении осаждается непосредственно гипс. Гипс возникают в результате гидратации ангидрита в осадочных отложениях под влиянием действия поверхностных вод в условиях пониженного внешнего давления (в среднем до глубины 100-150м.) по реакции: CaSO 4 + 2H 2 O = CaSO 4 × 2H 2 О. При этом происходят сильное увеличение объёма (до 30%) и, в связи с этим, многочисленные и сложные местные нарушения в условиях залегания гипсоносных толщ. Таким путем возникло большинство крупных месторождений гипса на земном шаре. В пустотах среди сплошных гипсовых масс иногда встречаются гнёзда крупных, нередко прозрачных кристаллов.
Может служить цементом в осадочных породах. Жильный гипс обычно является продуктом реакции сульфатных растворов (образующихся при окислении сульфидных руд) с карбонатными породами. Образуется в осадочных породах при выветривании сульфидов, при воздействии образующейся при разложении пирита сер­ной кислоты на мергели и известковистые глины . В полупустынных и пустынных местностях гипс очень часто встречается в виде прожилков и желваков в коре выветривания самых различных по составу горных пород. В почвах аридной зоны формируются новообразования вторично переотложенного гипса: одиночные кристаллы, двойники («ласточкины хвосты»), друзы , «гипсовые розы» и т.д.
Гипс довольно хорошо растворим в воде (до 2,2 г/л.), причём с повышением температуры его растворимость сперва растёт, а выше 24°С падает. Благодаря этому гипс при осаждении из морской воды отделяется от галита и образует самостоятельные пласты. В полупустынях и пустынях , с их сухим воздухом, резкими суточными перепадами температуры, засолёнными и загипсованными почвами, утром, с повышением температуры гипс начинает растворяться и, поднимаясь в растворе капиллярными силами, отлагается на поверхности при испарении воды. К вечеру, с понижением температуры, кристаллизация прекращается, но из-за недостатка влаги кристаллы не растворяются, - в районах с такими условиями кристаллы гипса встречаются в особенно большом количестве.

Местонахождения

В России мощные гипсоносные толщи пермского возраста распространены по Западному Приуралью, в Башкирии и Татарстане, в Архангельской, Вологодской, Горьковской и других областях. Многочисленные месторождения верхнеюрского возраста устанавливаются на Сев. Кавказе, в Дагестане. Замечательные коллекционные образцы с кристаллами гипса известны из м-ния Гаурдак (Туркмения) и других м-ний Средней Азии (в Таджикистане и Узбекистане), в Среднем Поволжье, в юрских глинах Калужской области. В термальных пещерах Naica Mine, (Мексика) были найдены друзы уникальных по размерам кристаллов гипса длиной до 11 м.

Применение

Волокнистый гипс (селенит) используют как поделочный камень для недорогих ювелирных изделий. Из алебастра издревле вытачивали крупные ювелирные изделия - предметы интерьера (вазы, столешницы, чернильницы и т. д.). Обожженный гипс применяют для отливок и слепков (барельефы, карнизы и т. д.), как вяжущий материал в строительном деле, в медицине.
Используется для получения строительного гипса, высокопрочного гипса, гипсоцементно-пуццоланового вяжущего материала.

  • Гипсом также называется осадочная горная порода , сложенная преимущественно этим минералом. Происхождение её эвапоритовое .

Гипс (англ. GYPSUM) - C a S O 4 * 2H 2 O

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 6/C.22-20
Dana (7-ое издание) 29.6.3.1
Dana (8-ое издание) 29.6.3.1
Hey"s CIM Ref. 25.4.3

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минерала бесцветный переходящий в белый, часто бывает окрашен минералами-примесями в жёлтый, розовый, красный, бурый и др.; иногда наблюдается секториально-зональная окраска или распределение включений по зонам роста внутри кристаллов; бесцветный во внутренних рефлексах и напросвет..
Цвет черты белый.
Прозрачность прозрачный, полупрозрачный, непрозрачный
Блеск стеклянный, близкий к стеклянному, шелковистый, перламутровый, тусклый
Спайность весьма совершенная легко получаемая по {010}, почти слюдоподобная в некоторых образцах; по {100} ясная, переходящая в раковистый излом; по {011}, дает занозистый излом {001}?.
Твердость (шкала Мооса) 2
Излом ровный, раковистый
Прочность гибкий
Плотность (измеренная) 2.312 - 2.322 g/cm3
Плотность (расчетная) 2.308 g/cm3
Радиоактивность (GRapi) 0
Электрические свойства минерала Пьезоэлектрических свойств не обнаруживает.
Термические свойства при нагревании теряет воду и превращается в белую порошковатую массу.

ОПТИЧЕСКИЕ СВОЙСТВА

Тип двухосный (+)
Показатели преломления nα = 1.519 - 1.521 nβ = 1.522 - 1.523 nγ = 1.529 - 1.530
угол 2V измеренный: 58° , рассчитанный: 58° to 68°
Максимальное двулучепреломление δ = 0.010
Оптический рельеф низкий
Дисперсия оптических осей сильная r > v наклонная
Люминесценция Common and varied. Most common colours of fluorescence are baby-blue and shades of golden yellow to yellow. Selenite crystals often exhibit zoned "hourglass" fluorescence in zones that may, or may not, be evident in ordinary light.

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группа 2/m - Моноклинно-призматический
Сингония Моноклинная
Параметры ячейки a = 5.679(5) Å, b = 15.202(14) Å, c = 6.522(6) Å
β = 118.43°
Отношение a:b:c = 0.374: 1: 0.429
Число формульных единиц (Z) 4
Объем элементарной ячейки V 495.15 ų (рассчитано по параметрам элементарной ячейки)
Двойникование {100} ("swallowtail"), very common, with a re-entrant angle formed ordinarily by {111}; on {101} as contact twins ("butterfly" or "heart-shaped"), along {111}; on {209}; also as cruciform penetration twins.

Перевод на другие языки

Ссылки

Список литературы

  • Мальцев В.А. Гипсовые "гнезда" - сложные минеральные индивиды. - Литология и полезные ископаемые, 1997, N 2.
  • Мальцев В. А. Минералы системы карстовых пещер Кап-Кутан (юго-восток Туркменистана). - Мир камня, 1993, №2, С. 3-13 (5-30-на англ.)
  • Руссо Г.В., Шляпинтох Л.П., Мошкии С.В., Петров Т.Г. 0б изучении кристаллизации гипса при экстракционном получении фосфорной кислоты. - Труды Ин-та Ленгипрохим, 1976, вып. 26, с. 95-104.
  • Семенов В. Б. Селенит. Свердловск; Средне-Уральское книжное из-во, 1984. - 192 с.
  • Linnaeus (1736) Systema Naturae of Linnaeus (as Marmor fugax).
  • Delamétherie, J.C. (1812) Leçons de minéralogie. 8vo, Paris: volume 2: 380 (as Montmartrite).
  • Reuss (1869) Annalen der Physik, Halle, Leipzig: 136: 135.
  • Baumhauer (1875) Akademie der Wissenschaften, Munich, Sitzber.: 169.
  • Beckenkamp (1882) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 6: 450.
  • Mügge (1883) Neues Jahrbuch für Mineralogie, Geologie und бледноontologie, Heidelberg, Stuttgart: II: 14.
  • Reuss (1883) Akademie der Wissenschaften, Berlin (Sitzungsberichte der): 259.
  • Mügge (1884) Neues Jahrbuch für Mineralogie, Geologie und бледноontologie, Heidelberg, Stuttgart: I: 50.
  • Des Cloizeaux (1886) Bulletin de la Société française de Minéralogie: 9: 175.
  • Dana, E.S. (1892) System of Mineralogy, 6th. Edition, New York: 933.
  • Auerbach (1896) Annalen der Physik, Halle, Leipzig: 58: 357.
  • Viola (1897) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 28: 573.
  • Mügge (1898) Neues Jahrbuch für Mineralogie, Geologie und бледноontologie, Heidelberg, Stuttgart: I: 90.
  • Tutton (1909) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 46: 135.
  • Berek (1912) Jahrbuch Minerl., Beil.-Bd.: 33: 583.
  • Hutchinson and Tutton (1913) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 52: 223.
  • Kraus and Young (1914) Centralblatt für Mineralogie, Geologie und бледноontologie, Stuttgart: 356.
  • Grengg (1915) Mineralogische und petrographische Mitteilungen, Vienna: 33: 210.
  • Rosický (1916) Ak. Česká, Roz., Cl. 2: 25: No. 13.
  • Goldschmidt, V. (1918) Atlas der Krystallformen. 9 volumes, atlas, and text: vol. 4: 93.
  • Gaudefroy (1919) Bulletin de la Société française de Minéralogie: 42: 284.
  • Richardson (1920) Mineralogical Magazine: 19: 77.
  • Gross (1922) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 57: 145.
  • Mellor, J.W. (1923) A Comprehensive Treatise on Inorganic and Theoretical Chemistry. 16 volumes, London: 3: 767.
  • Carobbi (1925) Ann. R. Osservat. Vesuviano : 2: 125.
  • Dammer and Tietze (1927) Die nutzbaren mineralien, Stuttgart, 2nd. edition.
  • Foshag (1927) American Mineralogist: 12: 252.
  • Himmel (1927) Centralblatt für Mineralogie, Geologie und бледноontologie, Stuttgart: 342.
  • Matsuura (1927) Japanese Journal of Geology and Geography: 4: 65.
  • Nagy (1928) Zeitschrift für Physik, Brunswick, Berlin: 51: 410.
  • Berger, et al (1929) Akademie der Wissenschaften, Leipzig, Ber.: 81: 171.
  • Hintze, Carl (1929) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1 , 4274. (localities)
  • Ramsdell and Partridge (1929) American Mineralogist: 14: 59.
  • Josten (1932) Centralblatt für Mineralogie, Geologie und бледноontologie, Stuttgart: 432.
  • Parsons (1932) University of Toronto Studies, Geology Series, No. 32: 25.
  • Gallitelli (1933) Periodico de Mineralogia-Roma: 4: 132.
  • Gaubert (1933) Comptes rendu de l’Académie des sciences de Paris: 197: 72.
  • Beljankin and Feodotiev (1934) Trav. inst. pétrog. ac. sc. U.R.S.S., no. 6: 453.
  • Caspari (1936) Proceedings of the Royal Society of London: 155A: 41.
  • Terpstra (1936) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 97: 229.
  • Weiser, et al (1936) Journal of the American Chemical Society: 58: 1261.
  • Wooster (1936) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 94: 375.
  • Büssem and Gallitelli (1937) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 96: 376.
  • Gossner (1937) Forschritte der Mineralogie, Kristallographie und Petrographie, Jena: 21: 34.
  • Gossner (1937) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 96: 488.
  • Hill (1937) Journal of the American Chemical Society: 59: 2242.
  • de Jong and Bouman (1938) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 100: 275.
  • Posnjak (1939) American Journal of Science: 35: 247.
  • Tokody (1939) Ann. Mus. Nat. Hungar., Min. Geol. Pal.: 32: 12.
  • Tourtsev (1939) Bull. Académie of Sciences of the U.S.S.R., Ser. Geol., no. 4: 180.
  • Huff (1940) Journal of Geology: 48: 641.
  • Acta Crystallographica: B38: 1074-1077.
  • Bromehead (1943) Mineralogical Magazine: 26: 325.
  • Miropolsky and Borovick (1943) Comptes rendus de l’académie des sciences de U.R.S.S.: 38: 33.
  • Berg and Sveshnikova (1946) Bull. ac. sc. U.R.S.S.: 51: 535.
  • Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 481-486.
  • Groves, A.W. (1958), Gypsum and Anhydrite, 108 p. Overseas Geological Surveys, London.
  • Hardie, L.A. (1967), The gypsum-anhydrite equilibrium at one atmosphere pressure: American Mineralogist: 52: 171-200.
  • Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig (1997), Dana"s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th. edition: 598.
  • Sarma, L.P., P.S.R. Prasad, and N. Ravikumar (1998), Raman spectroscopy of phase transition in natural gypsum: Journal of Raman Spectroscopy: 29: 851-856.
Поделиться: