Периодическая система менделеева краткое описание. Лекция на тему: "Периодическая система химических элементов Д.И

Периодическая система химических элементов — это классификация химических элементов, основанная на определенных особенностях строения атомов химических элементов. Она была составлена на основе Периодического закона, открытого в 1869 году Д. И. Менделеевым. В то время Периодическая система включала 63 химических элементов и по виду отличалась от современной. Сейчас в Периодической системы входят около ста двадцати химических элементов.

Периодическую систему составлен в виде таблицы, в которой химические элементы расположены в определенном порядке: по мере роста их атомных масс. Сейчас существует много видов изображения Периодической системы. Наиболее распространенным является изображение в виде таблицы с расположением элементов слева направо.

Все химические элементы в Периодической системе объединены в периоды и группы. Периодическая система включает семь периодов и восемь групп. Периодами называют горизонтальные ряды химических элементов, в которых свойства элементов изменяются от типичных металлических к неметаллическим. Вертикальные колонки химических элементов, которые содержат элементы, схожие по химическим свойствам, образуют группы химических элементов.

Первый, второй и третий периоды называют малыми, поскольку они содержат небольшое количество элементов (первый — два элемента, второй и третий — по восемь элементов). Элементы второго и третьего периодов называют типовыми, их свойства закономерно изменяются от типичного металла до инертного газа.

Все остальные периоды называют большими (четвертый и пятый содержат по 18 элементов, шестой — 32 и седьмой — 24 элемента). Особое сходство свойств проявляют элементы, находящиеся внутри больших периодов, в конце каждого четного ряда. Это так называемые триады: Ферум — Кобальт — Никол, образующих семью железа, и две другие: Рутений — Родий — Палладий и Осмий — Иридий — Платина, которые образуют семью платиновых металлов (платиноидов).

В нижней части таблицы Д. И. Менделеева расположены химические элементы, образующие семью лантаноидов и семью актиноидов. Все эти элементы формально входят в состав третьей группы и идут после химических элементов лантана (номер 57) и актиния (номер 89).

Периодическая система элементов содержит десять рядов. Малые периоды (первый, второй и третий) состоят из одного ряда, большие периоды (четвертый, пятый и шестой) содержат по два ряда каждый. В седьмом периоде находится один ряд.

Каждый большой период состоит из четного и нечетного рядов. В парных рядах содержатся элементы металлы, в нечетных рядах свойства элементов изменяются так, как в типовых элементов, т.е. от металлических до выраженных неметаллических.

Каждая группа таблицы Д. И. Менделеева состоит из двух подгрупп: главной и побочной. В состав главных подгрупп входят элементы как малых, так и больших периодов, то есть главные подгруппы начинаются либо с первого, или второго периода. В состав побочных подгрупп входят элементы только больших периодов, т.е. побочные подгруппы начинаются лишь с четвертого периода.

Девятнадцатый век в истории человечества - век, в который многие науки реформировались, в том числе и химия. Именно в это время появилась периодическая система Менделеева, а вместе с ней - и периодический закон. Именно он стал основой современной химии. Периодическая система Д. И. Менделеева представляет собой систематизацию элементов, которая устанавливает зависимость химических и физических свойств от строения и заряда атома вещества.

История

Начало периодической положила книга «Соотношение свойств с атомным весом элементов», написанная в третьей четверти XVII века. В ней были отображены основные понятия относительно известных химических элементов (на тот момент их насчитывалось всего 63). К тому же у многих из них атомные массы были определены неправильно. Это сильно мешало открытию Д. И. Менделеева.

Дмитрий Иванович начал свою работу со сравнения свойств элементов. В первую очередь он занялся хлором и калием, а уж потом перешёл к работе со щелочными металлами. Вооружась специальными карточками, на которых были изображены химические элементы, он многократно пытался собрать эту «мозаику»: раскладывал на своем столе в поисках нужных комбинаций и совпадений.

После долгих стараний Дмитрий Иванович все же нашёл ту закономерность, которую искал, и выстроил элементы в периодические ряды. Получив в результате пустые ячейки между элементами, учёный понял, что русским исследователям известны не все химические элементы, и что именно он должен дать этому миру те знания в области химии, которые ещё не были даны его предшественниками.

Всем известен миф о том, что Менделееву периодическая таблица явилась во сне, и он по памяти собрал элементы в единую систему. Это, грубо говоря, ложь. Дело в том, что Дмитрий Иванович довольно долго и сосредоточенно работал над своим трудом, и его это сильно выматывало. Во время работы над системой элементов Менделеев однажды заснул. Проснувшись, он понял, что не закончил таблицу, и скорее продолжил заполнение пустых ячеек. Его знакомый, некий Иностранцев, университетский педагог, решил, что таблица Менделееву приснилась во сне и распространил данный слух среди своих студентов. Так и появилась данная гипотеза.

Известность

Химических элементов Менделеева является отображением созданного Дмитрием Ивановичем ещё в третьей четверти XIX века (1869 год) периодического закона. Именно в 1869 году на заседании русского химического сообщества было зачитано уведомление Менделеева о создании им определённой структуры. И в этом же году была выпущена книга «Основы химии», в которой впервые была опубликована периодическая система химических элементов Менделеева. А в книге «Естественная система элементов и использование её к указанию качеств неоткрытых элементов» Д. И. Менделеев впервые упомянул понятие «периодический закон».

Структура и правила размещения элементов

Первые шаги в создании периодического закона были сделаны Дмитрием Ивановичем еще в 1869-1871 годах, в то время он усиленно работал над установлением зависимости свойств данных элементов от массы их атома. Современный вариант представляет собой сведённые в двумерную таблицу элементы.

Положение элемента в таблице несёт определённый химический и физический смысл. По местонахождению элемента в таблице можно узнать, какая у него валентность, определить и другие химические особенности. Дмитрий Иванович пытался установить связь между элементами, как сходными между собой по свойствам, так и отличающимися.

В основу классификации известных на тот момент химических элементов он положил валентность и атомную массу. Сопоставляя относительные свойства элементов, Менделеев пытался найти закономерность, которая объединила бы все известные химические элементы в одну систему. Расположив их, основываясь на возрастании атомных масс, он всё-таки добился периодичности в каждом из рядов.

Дальнейшее развитие системы

Появившаяся в 1969 году таблица Менделеева ещё не раз дорабатывалась. С появлением благородных газов в 1930 годах получилось выявить новейшую зависимость элементов - не от массы, а от порядкового номера. Позднее удалось установить число протонов в атомных ядрах, и оказалось, что оно совпадает с порядковым номером элемента. Учёными XX века было изучено электронное Оказалось, что и оно влияет на периодичность. Это сильно меняло представления о свойствах элементов. Данный пункт был отражён в более поздних редакциях периодической системы Менделеева. Каждое новое открытие свойств и особенностей элементов органично вписывалось в таблицу.

Характеристики периодической системы Менделеева

Таблица Менделеева поделена на периоды (7 строк, расположенных горизонтально), которые, в свою очередь, подразделяются на большие и малые. Начинается период со щелочного металла, а заканчивается элементом с неметаллическими свойствами.
Вертикально таблица Дмитрия Ивановича поделена на группы (8 столбцов). Каждая из них в периодической системе состоит из двух подгрупп, а именно - главной и побочной. После долгих споров по предложению Д. И. Менделеева и его коллеги У. Рамзая было решено ввести так называемую нулевую группу. В неё входят инертные газы (неон, гелий, аргон, радон, ксенон, криптон). В 1911 году учёным Ф. Содди было предложено поместить в периодической системе и неразличимые элементы, так называемые изотопы, - для них были выделены отдельные ячейки.

Несмотря на верность и точность периодической системы, научное общество долго не хотело признавать данное открытие. Многие великие учёные высмеивали деятельность Д. И. Менделеева и считали, что невозможно предсказать свойства элемента, который ещё не был открыт. Но после того как предполагаемые химические элементы были открыты (а это были, например, скандий, галлий и германий), система Менделеева и его периодический закон стали науки химии.

Таблица в современности

Периодическая система элементов Менделеева - основа большинства химических и физических открытий, связанных с атомно-молекулярным учением. Современное понятие элемента сложилось как раз благодаря великому учёному. Появление периодической системы Менделеева внесло кардинальные изменения в представления о различных соединениях и простых веществах. Создание ученым периодической системы оказало огромное влияние на развитие химии и всех наук, смежных с ней.

Д. И. Менделеев пришел к выводу, что их свойства должны быть обусловлены какими-то фундаментальными общими характеристиками. Такой фундаментальной характеристикой для химического элемента он выбрал атомную массу элемента и кратко сформулировал периодический закон (1869 г.):

Свойства элементов, а также свойства образуемых ими простых и сложных тел находятся в периодической зависимости от величин атомных весов элементов.

Заслуга Менделеева состоит в том, что он понял проявленную зависимость как объективную закономерность природы, чего не смогли сделать его предшественники. Д. И. Менделеев считал, что в периодической зависимости от атомной массы находятся состав соединений, их химические свойства, температуры кипения и плавления, строение кристаллов и тому подобное. Глубокое понимание сути периодической зависимости дало Менделееву возможность сделать несколько важных выводов и предположений.

Современная таблица Менделеева

Во-первых, из известных в то время 63 элементов Менделеев изменил атомные массы почти у 20 элементов (Be, In, La, Y, Ce, Th, U). Во-вторых, он предсказал существование около 20 новых элементов и оставил для них место в периодической системе. Три из них, а именно экабор, екаалюминий и екасилиций были описаны достаточно подробно и с удивительной точностью. Это триумфально подтвердилось в течение последующих пятнадцати лет, когда были открыты элементы Галлий (екаалюминий), скандий (экабор) и Германий (екасилиций).

Периодический закон является одним из фундаментальных законов природы. Его влияние на развитие научного мировоззрения можно сравнить только с законом сохранения массы и энергии или квантовой теории. Еще во времена Д. И. Менделеева периодический закон стал основой химии. Дальнейшие открытия строения и явления изотопии показали, что главной количественной характеристикой элемента является не атомная масса, а заряд ядра(Z). В 1913 г. Мозли и Резерфорд ввели понятие «порядковый номер элемента», пронумеровали в периодической системе все символы и показали, что в основу классификации элементов является порядковый номер элемента, равный заряда ядер их атомов.

Это утверждение известно сейчас как закон Мозли.

Поэтому современное определение периодического закона формулируется следующим образом:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от значения заряда их атомных ядер (или от порядкового номера элемента в периодической системе).

Электронные структуры атомов элементов наглядно показывают, что при росте заряда ядра происходит закономерное периодическое повторение электронных структур, а значит, и повторение свойств элементов. Это отражается в периодической системе элементов, для которой предложено несколько сотен вариантов. Чаще всего используют две формы таблиц — сокращенную и развернутую, — содержащие все известные элементы и имеющие свободные места для пока не открытых.

Каждый элемент занимает в периодической таблице определенную ячейку, в которой указано символ и название элемента, его порядковый номер, относительную атомную массу, а для радиоактивных элементов в квадратных скобках приведены массовое число наиболее стабильного или доступного изотопа. В современных таблицах часто приводятся и некоторые другие справочные сведения: плотность, температуры кипения и плавления простых веществ и т.п.

Периоды

Основными структурными единицами периодической системы есть периоды и группы — естественные совокупности, на которые делятся химические элементы по электронным структурами.

Период — это горизонтальный последовательный ряд элементов, в атомах которых электроны заполняют одинаковое количество энергетических уровней.

Номер периода совпадает с номером внешнего квантового уровня. Например, элемент кальций (4s 2) находится в четвертом периоде, то есть его атом имеет четыре энергетические уровни, а валентные электроны находятся на внешнем, четвертом уровне. Разница в последовательности заполнения как внешних, так и более близких к ядру электронных слоев объясняет причину различной длины периодов.

В атомов s- и р-элементов идет застройка внешнего уровня, в d-элементов — второго снаружи, а в f-элементов — третьего снаружи энергетического уровня.

Поэтому различие в свойствах наиболее отчетливо проявляется в соседних s- или р-элементах. В d- и особенно f-элементах одного и того же периода различие в свойствах менее значительно.

Как уже упоминалось, по признаку номера энергетического подуровня застраиваемого электронами, элементы объединяются в электронные семьи. Например, в IV-VI периодах находятся семьи, которые содержат по десять d-элементов: 3d-семья (Sc-Zn), 4d- семья (Y-Cd), 5d- семья (La, Hf-Hg). В шестом и седьмом периодах по четырнадцать элементов составляют f-семьи: 4f-семью (Се-Lu), которая носит название лантаноидной, и 5f-семью (Th-Lr) — актиноидную. Эти семьи размещают под периодической таблицей.

Первые три периода называются малыми, или типичными периодами, поскольку свойства элементов этих периодов является основой для распределения всех других элементов на восемь групп. Все остальные периоды, включая и седьмой, незавершенный, называются большими периодами.

Все периоды, кроме первого, начинаются с щелочных (Li, Na, K, Rb, Cs, Fr) и заканчиваются, за исключением седьмого, незавершенного, инертными элементами (He, Ne, Ar, Kr, Xe, Rn). Щелочные металлы имеют одну и ту же внешнюю электронную конфигурацию n s 1 , где n — номер периода. Инертные элементы, кроме гелия (1s 2), имеют одинаковое строение внешнего электронного слоя: n s 2 n p 6 , то есть электронными аналогами.

Рассмотренная закономерность дает возможность прийти к выводу:

Периодическое повторение одинаковых электронных конфигураций внешнего электронного слоя является причиной сходства физических и химических свойств у элементов-аналогов, так как именно внешние электроны атомов в основном определяют их свойства.

В малых типовых периодах с увеличением порядкового номера наблюдается постепенное уменьшение металлических и рост неметаллических свойств, поскольку увеличивается количество валентных электронов на внешнем энергетическом уровне. Например, атомы всех элементов третьего периода имеют по три электронных слоя. Строение двух внутренних слоев одинаково для всех элементов третьего периода (1s 2 2s 2 2p 6), а строение внешнего, третьего, слоя различно. При переходе от каждого предыдущего элемента к каждому последующему заряд ядра атома возрастает на единицу и соответственно увеличивается количество внешних электронов. В результате их притяжение к ядру усиливается, а радиус атома уменьшается. Это приводит к ослаблению металлических свойств и росту неметаллических.

Третий период начинается очень активным металлом натрием (11 Na — 3s 1), за которым следует несколько менее активный магний (12 Mg — 3s 2). Оба эти металлы относятся к 3s-семье. Первый р-элемент третьего периода алюминий (13 Al — 3s 2 3p 1), металлическая активность которого меньше, чем у магния, имеет амфотерные свойства, то есть в химических реакциях может вести себя и как неметалл. Далее следуют неметаллы кремний (14 Si — 3s 2 3p 2), фосфор (15 P — 3s 2 3p 3), сера (16 S — 3s 2 3p 4), хлор (17 Cl — 3s 2 3p 5). Их неметаллические свойства усиливаются от Si к Cl, который является активным неметаллом. Период заканчивается инертным элементом аргоном (18 Ar — 3s 2 3p 6).

В пределах одного периода свойства элементов меняются постепенно, а при переходе от предыдущего периода к следующему наблюдается резкое изменение свойств, поскольку начинается застройка нового энергетического уровня.

Постепенность изменения свойств характерна не только для простых веществ, но и для сложных соединений, как это представлено в таблице 1.

Таблица 1 — Некоторые свойства элементов третьего периода и их соединений

Электронная семья s-элементы р-элементы
Символ элемента Na Mg Al Si P S Cl Ar
Заряд ядра атома +11 +12 +13 +14 +15 +16 +17 +18
Внешняя электронная конфигурация 3s 1 3s 2 3s 2 3p 1 3s 2 3p 2 3s 2 3p 3 3s 2 3p 4 3s 2 3p 5 3s 2 3p 6
Атомный радиус, нм 0,189 0,160 0,143 0,118 0,110 0,102 0,099 0,054
Максимальная валентность I II III IV V VI VII
Высшие оксиды и их свойства Na 2 O MgO Al 2 O 3 SiO 2 P 2 O 5 SO 3 Cl 2 O 7
Основные свойства Амфотерные свойства Кислотные свойства
Гидраты оксидов (основы или кислоты) NaOH Mg (OH) 2 Al (OH) 3 H 2 SiO 3 H 3 PO 4 H 2 SO 4 HСlO 4
Основание Слабое основание Амфотерный гидроксид Слабая кислота Кислота средней силы Сильная кислота Сильная кислота
Соединения с водородом NaH MgH 2 AlH 3 SiH 4 PH 3 H 2 S HCl
Твердые солеобразные вещества Газообразные вещества

В больших периодах металлические свойства ослабляются медленнее. Это связано с тем, что, начиная с четвертого периода, появляются десять переходных d-элементов, в которых застраивается не внешний, а второй снаружи d-подуровень, а на внешнем слое d-элементов находятся один или два s-электрона, которые и определяют в известной степени свойства этих элементов. Таким образом, для d-элементов закономерность несколько усложняется. Например, в пятом периоде металлические свойства постепенно уменьшаются от щелочного Rb, достигают минимальной силы у металлов семьи платины (Ru, Rh, Pd).

Однако после неактивного Ag серебра размещается кадмий Cd, у которого наблюдается скачкообразный рост металлических свойств. Далее с ростом порядкового номера элемента появляются и постепенно усиливаются неметаллические свойства вплоть до типового неметалла йода. Заканчивается этот период, как и все предыдущие, инертным газом. Периодическая смена свойств элементов внутри больших периодов позволяет разделить их на два ряда, в которых вторая часть периода повторяет первую.

Группы

Вертикальные столбики элементов в периодической таблице — группы состоят из подгрупп: главной и побочной, они иногда обозначаются буквами А и Б соответственно.

В состав главных подгрупп входят s- и р-элементы, а в состав побочных — d- и f-элементы больших периодов.

Главная подгруппа — это совокупность элементов, которая размещается в периодической таблице вертикально и имеет одинаковую конфигурацию внешнего электронного слоя в атомах.

Как следует из приведенного определения, положения элемента в главной подгруппе определяется общим количеством электронов (s- и р-) внешнего энергетического уровня, равным номеру группы. Например, сера (S — 3s 2 3p 4 ), в атоме которого на внешнем уровне содержится шесть электронов, относится к главной подгруппе шестой группы, аргон (Ar — 3s 2 3p 6 ) — к главной подгруппе восьмой группы, а стронций (Sr — 5s 2 ) — к ІІА-подгруппе.

Элементы одной подгруппы характеризуются сходством химических свойств. В качестве примера рассмотрим элементы ІА и VІІА подгрупп (табл.2). С ростом заряда ядра увеличивается количество электронных слоев и радиус атома, но количество электронов на внешнем энергетическом уровне остается постоянной: для щелочных металлов (подгруппа IА) — один, а для галогенов (подгруппа VIIА) — семь. Поскольку именно внешние электроны наиболее существенно влияют на химические свойства, то понятно, что каждая из рассмотренных групп элементов-аналогов имеет подобные свойства.

Но в пределах одной подгруппы наряду с подобием свойств наблюдается их некоторое изменение. Так, элементы подгруппы ІА все, кроме Н — активные металлы. Но с ростом радиуса атома и количества электронных слоев экранирующих влияние ядра на валентные электроны, металлические свойства усиливаются. Поэтому Fr более активный металл, чем Сs, a Cs — более активный, чем R в и т.д. А в подгруппе VIIA по той же причине ослабляются неметаллические свойства элементов при росте порядкового номера. Поэтому F — более активный неметалл по сравнению с Cl, a Cl — более активный неметалл сравнению с Br и т.д.

Таблица 2 — Некоторые характеристики элементов ІА и VІІА-подгрупп

период Подгруппа IA Подгруппа VIIA
Символ элемента Заряд ядра Радиус атома, нм Символ элемента Заряд ядра Радиус атома, нм Внешняя электронная конфигурацiя
II Li +3 0,155 2 s 1 F +9 0,064 2 s 2 2 p 5
III Na +11 0,189 3 s 1 Cl +17 0,099 3 s 2 3 p 5
IV K +19 0,236 4 s 1 Br 35 0,114 4 s 2 4 p 5
V Rb +37 0,248 5 s 1 I +53 0,133 5 s 2 5 p 5
VI Cs 55 0,268 6 s 1 At 85 0,140 6 s 2 6 p 5
VII Fr +87 0,280 7 s 1

Побочные подгруппа — это совокупность элементов, размещаемых в периодической таблице вертикально и имеют одинаковое количество валентных электронов за счет застройки внешнего s- и втором снаружи d-энергетических подуровней.

Все элементы побочных подгрупп относятся к d-семейству. Эти элементы иногда называют переходными металлами. В побочных подгруппах свойства изменяются более медленно, поскольку в атомах d-элементов электроны застраивают второй извне энергетический уровень, а на внешнем уровне находятся только один или два электрона.

Положение первых пяти d-элементов (подгруппы IIIБ- VIIБ) каждого периода можно определить с помощью суммы внешних s-электронов и d-электронов второго снаружи уровня. Например, из электронной формулы скандия (Sc — 4s 2 3d 1 ) видно, что он размещается в побочной подгруппе (поскольку является d-элементом) третьей группы (поскольку сумма валентных электронов равна трем), а марганец (Mn — 4s 2 3d 5 ) размещается в побочной подгруппе седьмой группы.

Положение последних двух элементов каждого периода (подгруппы IБ и IIБ) можно определить по количеству электронов на внешнем уровне, поскольку в атомах этих элементов предыдущий уровень является полностью завершенным. Например, Ag (5s 1 5d 10) размещается в побочной подгруппе первой группы, Zn (4s 2 3d 10) — в побочной подгруппе второй группы.

Триады Fe-Co-Ni, Ru-Rh-Pd и Os-Ir-Pt размещены в побочной подгруппе восьмой группы. Эти триады образуют две семьи: железа и платиноидов. Кроме указанных семей отдельно выделяют семью лантаноидов (четырнадцать 4f-элементов) и семью актиноидов (четырнадцать 5f-элементов). Эти семьи принадлежат к побочной подгруппе третьей группы.

Рост металлических свойств элементов в подгруппах сверху вниз, а также уменьшение этих свойств в пределах одного периода слева направо обусловливают появление в периодической системе диагональной закономерности. Так, Be очень похож на Al, B — на Si, Ti — на Nb. Это ярко проявляется в том, что в природе эти элементы образуют подобные минералы. Например, в природе Те всегда бывает с Nb, образуя минералы — титанониобаты.

Как пользоваться таблицей Менделеева?Для непосвященного человека читать таблицу Менделеева – все равно, что для гнома смотреть на древние руны эльфов. А таблица Менделеева, между прочим, если ей правильно пользоваться, может рассказать о мире очень многое. Помимо того, что сослужит Вам службу на экзамене, она еще и просто незаменима при решении огромного количества химических и физических задач. Но как ее читать? К счастью, сегодня этому искусству может научиться каждый. В этой статье расскажем, как понять таблицу Менделеева.

Периодическая система химических элементов (таблица Менделеева) – это классификация химических элементов, которая устанавливает зависимость различных свойств элементов от заряда атомного ядра.

История создания Таблицы

Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог. За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов. Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.

Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»

В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств. Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.

В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически. Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.

Современный вид таблицы Менделеева

Ниже приведем саму таблицу

Сегодня для упорядочения элементов вместо атомного веса (атомной массы) используется понятие атомного числа (числа протонов в ядре). В таблице содержится 120 элементов, которые расположены слева направо в порядке возрастания атомного числа (числа протонов)

Столбцы таблицы представляют собой так называемые группы, а строки – периоды. В таблице 18 групп и 8 периодов.

  • Металлические свойства элементов при движении вдоль периода слева направо уменьшаются, а в обратном направлении – увеличиваются.
  • Размеры атомов при перемещении слева направо вдоль периодов уменьшаются.
  • При движении сверху вниз по группе увеличиваются восстановительные металлические свойства.
  • Окислительные и неметаллические свойства при движении вдоль периода слева направо увеличиваютс я.

Что мы узнаем об элементе по таблице? Для примера, возьмем третий элемент в таблице – литий, и рассмотрим его подробно.

Первым делом мы видим сам символ элемента и его название под ним. В верхнем левом углу находится атомный номер элемента, в порядке которого элемент расположен в таблице. Атомный номер, как уже было сказано, равен числу протонов в ядре. Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов).

Атомная масса указана под атомным числом (в данном варианте таблицы). Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число. Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем.

Вот и закончился наш курс "Таблица Менделеева для чайников". В завершение, предлагаем Вам посмотреть тематическое видео, и надеемся, что вопрос о том, как пользоваться периодической таблицей Менделеева, стал Вам более понятен. Напоминаем, что изучать новый предмет всегда эффективнее не одному, а при помощи опытного наставника. Именно поэтому, никогда не стоит забывать о , которые с радостью поделятся с Вами своими знаниями и опытом.

Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента.

Шаги

Часть 1

Структура таблицы

    Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы (в нижнем правом углу). Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.

    Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми.

    • Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам.
  1. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке.

    • Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.
    • В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими (например, IA) или арабскими (например,1A или 1) цифрами.
    • При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».
  2. Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам (элементы одной группы обладают схожими физическими и химическими свойствами). Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.

    • Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21.
    • Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.
  3. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.

    • Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей.
    • Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.
    • При движении вдоль строки слева направо говорят, что вы «просматриваете период».
  4. Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.

    Часть 2

    Обозначения элементов
    1. Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.

      • Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия.
    2. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом.

      • Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.
    3. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.

      • Атомный номер всегда является целым числом.
    4. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент!

Поделиться: