Необратимые реакции. Обратимые и необратимые реакции — Гипермаркет знаний

Все химические реакции делятся на два типа: обратимые и необратимые.

Необратимыми называются реакции, которые протекают только в одном направлении, т. е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

Необратимая реакция заканчивается тогда, когда полностью расходуется хотя бы одно из исходных веществ. Необратимыми являются реакции горения; многие реакции термического разложения сложных веществ; большинство реакций, в результате которых образуются осадки или выделяются газообразные вещества, и др. Например:

C 2 H 5 OH + 3O 2 → 2CO 2 + 3H 2 O

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Обратимыми называются реакции, которые одновременно протекают в прямом и в обратом направлениях:

В уравнениях обратимых реакций используется знак обратимости .

Примером обратимой реакции является синтез йодоводорода из и :

Через некоторое время после начала химической реакции в газовой смеси можно обнаружить не только конечный продукт реакции НI, но и исходные вещества -H 2 и I 2 . Как бы долго ни продолжалась реакция, в реакционной смеси при 350 o С всегда будет содержаться приблизительно 80% HI,10% Н 2 и 10% I 2 . Если в качестве исходного вещества взять НI и нагреть его до той же температуры, то можно обнаружить, что через некоторое время соотношение между количествами всех трех веществ будет таким же. Таким образом, при образовании йодоводорода из водорода и йода одновременно осуществляются прямая и обратная реакции.

Если в качестве исходных веществ взяты водород и йод в концентрациях и , то скорость прямой реакции в начальный момент времени была равна: v пр = k пр ∙ . Скорость обратной реакции v обр = k обр 2 в начальный момент времени равна нулю, так как йодоводород в реакционной смеси отсутствует ( = 0). Постепенно скорость прямой реакции уменьшается, так как водород и йод вступают в реакцию и их концентрации понижаются. При этом скорость обратной реакции увеличивается, потому что концентрация образующегося йодоводорода постепенно возрастает. Когда скорости прямой и обратной реакций станут одинаковыми, наступает химическое равновесие. В состоянии равновесия за определенный промежуток времени образуется столько же молекул НI, сколько их распадается на Н 2 и I 2 .

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием .

Химическое равновесие является динамическим равновесием. В равновесном состоянии продолжают протекать и прямая, и обратная реакции, но так как скорости их равны, концентрации всех веществ в реакционной системе не изменяются. Эти концентрации называются равновесными концентрациями.

Смещение химического равновесия

Принцип Ле-Шателье

Химическое равновесие является подвижным. При изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что обусловливает смещение (сдвиг) равновесия.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если скорость обратной реакции становится больше скорости прямой реакции, то говорят о смещении равновесия влево (в сторону обратной реакции). Результатом смещения равновесия является переход системы в новое равновесное состояние с другим соотношением концентраций реагирующих веществ.

Направление смещения равновесия определяется принципом, который был сформулирован французским ученым Ле-Шателье (1884 г):

Если на равновесную систему оказывается внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

Важнейшими внешними факторами, которые могут приводить к смещению химического равновесия, являются:

а) концентрации реагирующих веществ;

б) температура;

в) давление.

Влияние концентрации реагирующих веществ

Если в равновесную систему вводится какое-либо из участвующих в реакции веществ, то равновесие смещается в сторону той реакции, при протекании которой данное вещество расходуется. Если из равновесной системы выводится какое-либо вещество, то равновесие смещается в сторону той реакции, при протекании которой данное вещество образуется.

Например, рассмотрим, какие вещества следует вводить и какие вещества выводить из равновесной системы для смещения обратимой реакции синтеза вправо:

Для смещения равновесия вправо (в сторону прямой реакции образования аммиака) необходимо в равновесную смесь вводить и водород (т. е. увеличивать их концентрации) и выводить из равновесной смеси аммиак (т. е. уменьшать его концентрацию).

Влияние температуры

Прямая и обратная реакции имеют противоположные тепловые эффекты: если прямая реакция экзотермическая, то обратная реакция эндотермическая (и наоборот). При нагревании системы (т. е. повышении ее температуры) равновесие смещается в сторону эндотермической реакции; при охлаждении (понижении температуры) равновесие смещается в сторону экзотермической реакции.

Например, реакция синтеза аммиака является экзотермической: N 2 (г) + 3H 2 (г) → 2NH 3 (г) + 92кДж, а реакция разложения аммиака (обратная реакция) является эндотермической: 2NH 3 (г)→ N 2 (г) + 3H 2 (г) — 92кДж. Поэтому повышение температуры смещает равновесие в сторону обратной реакции разложения аммиака.

Влияние давления

Давление влияет на равновесие реакций, в которых принимают участие газообразные вещества. Если внешнее давление повышается, то равновесие смещается в сторону той реакции, при протекании которой число молекул газа уменьшается. И наоборот, равновесие смещается в сторону образования большего числа газообразных молекул при понижении внешнего давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

Например, для увеличения выхода аммиака (смещение вправо) необходимо повышать давление в системе обратимой реакции , так как при протекании прямой реакции число газообразных молекул уменьшается (из четырех молекул газов азота и водорода образуются две молекулы газа аммиака).

Химические реакции, протекающие в одном направлении, называют необратимыми .

Большинство химических процессов являются обратимыми . Это значит, что при одних и тех же условиях протекают и прямая, и обратная реакции (особенно если речь идет о замкнутых системах).

Например:

а) реакция

в открытой системе необратима ;

б) эта же реакция

в замкнутой системе обратима .

Химическое равновесие

Рассмотрим более подробно процессы, протека­ющие при обратимых реакциях, например, для ус­ловной реакции:

На основании закона действующих масс ско­рость прямой реакции :

Так как со временем концентрации веществ А и В уменьшаются, то и скорость прямой реакции тоже уменьшается.

Появление продуктов реакции означает воз­можность обратной реакции, причем со временем концентрации веществ С и D увеличиваются, а зна­чит, увеличивается и скорость обратной реакции .

Рано или поздно будет достигнуто состояние, при котором скорости прямой и обратной реакций станут равными = .

Состояние системы, при котором скорость прямой ре­акции равна скорости обрат­ной реакции, называют хи­мическим равновесием .

При этом концентрации реагирующих веществ и про­дуктов реакции остаются без изменения. Их называют рав­новесными концентрациями. На макроуровне ка­жется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы про­должают идти, но с равной скоростью. Поэтому такое равновесие в системе называют подвижным и динамическим.

Обозначим равновесные концентрации ве­ществ [A], [B], [C], [D]. Тогда так как = , k 1 [A] α [B] β = k 2 [C] γ [D] δ , откуда

где α, β, γ, δ - показатели степеней, равные коэффициентам в обратимой реакции ; К равн - констан­та химического равновесия .

Полученное выражение количественно описы­вает состояние равновесия и представляет собой математическое выражение закона действующих масс для равновесных систем.

При неизменной температуре константа равно­весия - величина постоянная для данной обрати­мой реакции . Она показывает соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое уста­навливается при равновесии.

Константы равновесия рассчитывают из опыт­ных данных, определяя равновесные концентра­ции исходных веществ и продуктов реакции при определенной температуре.

Значение константы равновесия характеризует выход продуктов реакции, полноту ее протекания. Если получают К » 1, это означает, что при равновесии [C] γ [D] δ » [A] α [B] β , т. е. концентра­ции продуктов реакции преобладают над концен­трациями исходных веществ, а выход продуктов реакции большой.

При К равн « 1 соответственно выход продуктов реакции мал. Например, для реакции гидролиза этилового эфира уксусной кислоты

константа равновесия:

при 20 °C имеет значение 0,28 (то есть меньше 1).

Это означает, что значительная часть эфира не ги­дролизовалась.

В случае гетерогенных реакций в выражение константы равновесия входят концентрации толь­ко тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

Константы равновесия выражается так:

Значение константы равновесия зависит от при­роды реагирующих веществ и температуры.

От присутствия катализатора константа не за­висит , поскольку он изменяет энергию активации и прямой, и обратной реакции на одну и ту же ве­личину. Катализатор может лишь ускорить насту­пление равновесия, не влияя на значение констан­ты равновесия.

Состояние равновесия сохраняется сколь угодно долго при неизменных внешних условиях: темпе­ратуре, концентрации исходных веществ, давлении (если в реакции участвуют или образуются газы).

Изменяя эти условия, можно перевести систему из одного равновесного состояния в другое, отвеча­ющее новым условиям. Такой переход называют смещением или сдвигом равновесия .

Рассмотрим разные способы смещения равно­весия на примере реакции взаимодействия азота и водорода с образованием аммиака:

Влияние изменения концентрации веществ

При добавлении в реакционную смесь азота N 2 и водорода H 2 увеличивается концентрация этих газов, а значит, увеличивается скорость прямой реакции . Равновесие смещается вправо, в сторону продукта реакции, то есть в сторону аммиака NH 3 .

N 2 +3H 2 → 2NH 3

Этот же вывод можно сделать, анализируя вы­ражение для константы равновесия. При увеличе­нии концентрации азота и водорода знаменатель увеличивается, а так как K равн. - величина постоянная, должен увеличиваться числитель. Таким образом, в реакционной смеси увеличится количе­ство продукта реакции NH 3 .

Увеличение же концентрации продукта реак­ции аммиака NH 3 приведет к смещению равно­весия влево, в сторону образования исходных ве­ществ. Этот вывод можно сделать на основании аналогичных рассуждений.

Влияние изменения давления

Изменение давления оказывает влияние только на те системы, где хотя бы одно из веществ нахо­дится в газообразном состоянии. При увеличении давления уменьшается объем газов, а значит, уве­личивается их концентрация.

Предположим, что давление в замкнутой си­стеме повысили, например, в 2 раза. Это значит, что концентрации всех газообразных веществ (N 2 , H 2 , NH 3) в рассматриваемой реакции возрастут в 2 раза. В этом случае числитель в выражении для К равн увеличится в 4 раза, а знаменатель - в 16 раз, т. е. равновесие нарушится. Для его вос­становления должна увеличиться концентрация аммиака и должны уменьшиться концентрации азота и водорода. Равновесие сместится вправо. Изменение давления практически не сказывается на объеме жидких и твердых тел, т. е. не изме­няет их концентрацию. Следовательно, состояние химического равновесия реакций, в которых не участвуют газы, не зависит от давления .

Влияние изменения температуры

При повышении темпера­туры скорости всех реакций (экзо- и эндотермических) увеличиваются. Причем по­вышение температуры боль­ше сказывается на скорости тех реакций, которые имеют большую энергию активации, а значит, эндотермических .

Таким образом, скорость обратной реакции (эндотермической) увеличивается сильнее, чем скорость прямой. Равновесие сместится в сторо­ну процесса, сопровождающегося поглощением энергии.

Направление смещения равновесия можно предсказать, пользуясь принципом Ле Шателье :

Если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в ту сторону, которая осла­бляет данное воздействие.

Таким образом:

При увеличении концентрации реагирующих ве­ществ химическое равновесие системы смещает­ся в сторону образования продуктов реакции;

При увеличении концентрации продуктов реак­ции химическое равновесие системы смещается в сторону образования исходных веществ;

При увеличении давления химическое равнове­сие системы смещается в сторону той реакции, при которой объем образующихся газообразных веществ меньше;

При повышении температуры химическое рав­новесие системы смещается в сторону эндотер­мической реакции;

При понижении температуры - в сторону экзо­термического процесса.

Принцип Ле Шателье применим не только к хи­мическим реакциям, но и ко многим другим про­цессам: к испарению, конденсации, плавлению, кри­сталлизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и рас­четы, вытекающие из закона действующих масс, дают возможность находить такие условия для про­ведения химических процессов, которые обеспечи­вают максимальный выход желаемого вещества.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Среди многочисленных классификаций типов реакций, например таких, которые определяются по тепловому эффекту (экзотермические и эндотермические), по изменению степеней окисления веществ (окислительно-восстановительные), по количеству участвующих в них компонентов (разложения, соединения) и так далее, рассматриваются реакции, протекающие в двух взаимных направлениях, иначе, называемых обратимыми . Альтернативой обратимых реакций являются реакции необратимые, в процессе которых образуется конечный продукт (осадок, газообразное вещество, вода). Среди таких реакций можно указать следующие:

Реакции обмена между растворами солей, в процессе которых образуются либо нерастворимый осадок – СаСО 3:

Са(ОН) 2 + К 2 СО 3 → СаСО 3 ↓ + 2КОН (1)

либо газообразное вещество – СО 2:

3 К 2 СО 3 + 2Н 3 РО 4 →2К 3 РО 4 + 3СО 2 + 3Н 2 О (2)

или получается малодиссоциируемое вещество – Н 2 О:

2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O (3)

Если рассматривать обратимую реакцию, то она протекает не только в прямом (в реакциях 1,2,3 слева направо), но и в обратном направлении. Примером такой реакции является синтез аммиака из газообразных веществ - водорода и азота:

3H 2 + N 2 ↔ 2NH 3 (4)

Таким образом, химическая реакция называется обратимой, если она протекает не только в прямом(→) , но и в обратном направлении (←) и обозначается символом (↔).

Главной особенностью данного типа реакций является то, что из исходных веществ образуются продукты реакции, но и одновременно из этих же продуктов, обратно, образуются исходные реагенты. Если рассматривать реакцию (4), то в относительную единицу времени одновременно с образованием двух молей аммиака будет происходить их распад с образованием трёх молей водорода и одного моля азота. Обозначим скорость прямой реакции (4) символом V 1 тогда выражение этой скорости примет вид:

V 1 = kˑ [Н 2 ] 3 ˑ , (5)

где величина «k» определяется как константа скорости данной реакции, величины [Н 2 ] 3 и соответствуют концентрациям исходных веществ, возведённых в степени, соответствующие коэффициентам в уравнении реакции. В соответствии с принципом обратимости, скорость обратной реакции примет выражение:

V 2 = kˑ 2 (6)

В начальный момент времени скорость прямой реакции принимает наибольшее значение. Но постепенно концентрации исходных реагентов уменьшаются и скорость реакции замедляется. Одновременно скорость обратной реакции начинает возрастать. Когда скорости прямой и обратной реакции становятся одинаковыми (V 1 = V 2) , наступает состояние равновесия , при котором уже не происходит изменения концентраций как исходных, так и образующихся реагентов.

Следует отметить, что некоторые необратимые реакции не следует понимать в буквальном смысле слова. Приведём пример наиболее часто приводимой реакции взаимодействия металла с кислотой, в частности, цинка с соляной кислотой:

Zn + 2HCl = ZnCl 2 + H 2 (7)

В действительности, цинк, растворяясь в кислоте, образует соль: хлорид цинка и газообразный водород, но по истечении некоторого времени скорость прямой реакции замедляется, поскольку увеличивается концентрация соли в растворе. Когда реакция практически прекращается, в растворе наряду с хлоридом цинка будет присутствовать некоторое количество соляной кислоты, поэтому реакцию (7) следует приводить в следующем виде:

2Zn + 2HCl = 2ZnНCl + H 2 (8)

Или в случае образования нерастворимого осадка, получаемого при сливании растворов Na 2 SO 4 и BaCl 2:

Na 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2NaCl (9)

осажденная соль BaSO 4 пусть и в малой степени, но будет диссоциировать на ионы:

BaSO 4 ↔ Ba 2+ + SO 4 2- (10)

Поэтому понятия необратимой и необратимой реакций является относительным. Но тем не менее, и в природе и в практической деятельности людей данные реакции имеют большое значение. К примеру, процессы горения углеводородов или более сложных органических веществ, например спирта:

СН 4 + О 2 = СО 2 + Н 2 О (11)

2С 2 Н 5 ОН + 5О 2 = 4СО 2 + 6Н 2 О (12)

являются процессами абсолютно необратимыми. Было бы считать счастливой мечтой человечества, если бы реакции (11) и (12) были бы обратимыми! Тогда бы можно было из СО 2 и Н 2 О опять синтезировать и газ и бензин и спирт! С другой стороны, обратимые реакции, такие как (4) или окисление сернистого газа:

SO 2 + O 2 ↔ SO 3 (13)

являются основными в производстве солей аммония, азотной кислоты, серной кислоты и др. как неорганических, так и органических соединений. Но данные реакции являются обратимыми! И чтобы получать конечные продукты: NH 3 или SO 3 необходимо использовать такие технологические приёмы, как: изменение концентраций реагентов, изменение давления, повышение или понижение температуры. Но это уже будет являться предметом следующей темы: «Смещение химического равновесия».

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Все химические реакции можно разбить на две группы: необратимые и обратимые реакции. Необратимые реакции протекают до конца - до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлениях.

Рассмотрим два примера.

Пример 1. Взаимодействие между цинком и концентрированной азотной кислотой протекает согласно уравнению:

При достаточном количестве азотной кислоты реакция закончатся только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении - пропускать диоксид азота через раствор нитрата цинка, то металлического цинка и азотной кислоты не получится - данная реакция не может протекать в обратном направлении. Таким образом, взаимодействие цинка с азотной кислотой - необратимая реакция.

Пример 2. Синтез аммиака протекает согласно уравнению:

Если смешать один моль азота с тремя молями водорода, осуществить в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение между количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким образом, синтез аммиака - обратимая реакция.

В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.

На рис. 68 показано изменение скоростей прямой и обратной реакций с течением времени. Вначале, при смешении исходных веществ, скорость прямой реакции велика, а скорость обратной ракцни равна нулю, По мере протекания реакции исходные вещества расходуются и их концентрации падают.

Рис. 63. Изменение скорости прямой и обратной реакции с течением времени .

В результате этого уменьшается скорость прямой реакции. Одновременно появляются продукты реакции, и их концентрация возрастает. Вследствие этого начинает идти обратная реакция, причем ее скорость постепенно увеличивается. Когда скорости прямой и обратной реакций становятся одинаковыми, наступает химическое равновесие. Так, в последнем примере устанавливается равновесие между азотом, водородом и аммиаком.

Химическое равновесие называют динамическим равновесием. Этим подчеркивается, что при равновесии протекают и прямая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.

Количественной характеристикой химического равновесия служит величина, называемая константой химического равновесия. Рассмотрим ее на примере реакции синтеза иодо-водорода:

Согласно закону действия масс, скорости прямой и обратной реакций выражаются уравнениями:

При равновесии скорости прямой и обратной реакций равны друг другу, откуда

Отношение констант скорости прямой и обратной реакций тоже представляет собой константу. Она называется константой равновесия данной реакции (К):

Отсюда окончательно

В левой части этого уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии- равновесные концентрации. Правая же часть уравнения представляет собой постоянную (при постоянной температуре) величину.

Можно показать, что в общем случае обратимой реакции

константа равновесия выразится уравнением:

Здесь большие буквы обозначают формулы веществ, а маленькие - коэффициенты в уравнении реакции.

Таким образом, при постоянной температуре константа равновесия обратимой реакции представляет собой постоянную величину, показывающую то соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ; в итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия.

Численное значение константы равновесия в первом приближении характеризует выход данной реакции. Например, при выход реакции велик, потому что при этом

т. е. при равновесии концентрации продуктов реакции много больше концентраций исходных веществ, а это и означает, что выход реакции велик. При (по аналогичной причине) выход реакции мал.

В случае гетерогенных реакций в выражение константы равновесия, так же как и в выражение закона действия масс (см. § 58), входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

константа равновесия имеет вид:

Величина константы равновесия зависит от природы реагирующих веществ и от температуры. От присутствия катализаторов она не зависит. Как уже сказано, константа равновесия равна отношению констант скорости прямой и обратной реакции. Поскольку катализатор изменяет энергию активации и прямой, и обратной реакций на одну и ту же величину (см. § 60), то на отношение констант их скорости он не оказывает влияния.

Поэтому катализатор не влияет на величину константы равновесия и, следовательно, не может ни увеличить, ни снизить выход реакции. Он может лишь ускорить или замедлить наступление равновесия.

Видеоурок 2: Смещение химического равновесия

Лекция: Обратимые и необратимые химические реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов


Обратимые и необратимые химические реакции

Из предыдущего урока вы узнали, что такое скорость химической реакции и какие факторы оказывают на неё влияние. На данном уроке рассмотрим, как эти реакции протекают. Зависит это от поведения исходных веществ, участвующих в реакции – реагенты. Если они полностью превращаются в конечные вещества – продукты, то реакция является необратимой. Ну, а если конечные продукты вновь превращаются в исходные вещества, то реакция обратимая. Учитывая это сформулируем определения:

Обратимая реакция - это определенная реакция, протекающая при одних условиях в прямом и обратном направлениях.

Вспомните, на уроках химии вам демонстрировали наглядный пример обратимой реакции получения угольной кислоты:

CO 2 + H 2 O <-> H 2 CO 3


Необратимая реакция - это определенная химическая реакция, которая идет до конца в одном конкретном направлении.

Примером является реакция горения фосфора: 4P + 5O 2 → 2P 2 O 5


Одними из свидетельств необратимости реакции являются выпадение осадка или выделение газа.

Химическое равновесие

Когда скорости прямой и обратной реакции равны возникает химическое равновесие .

То есть в обратимых реакциях образуются равновесные смеси реагентов и продуктов. Увидим на примере как образуется химическое равновесие. Возьмем реакцию образования йодоводорода:

H 2 (г) + I 2 (г) <-> 2HI(г)


Мы можем нагревать смесь газообразных водорода и йода или же уже готовый йодовород, результат в обоих случаях будет один: образование равновесной смеси трех веществ H 2 , I 2 , HI.

В самом начале реакции, до образования йодоводорода идет прямая реакция со скоростью (v пр ). Выразим её кинетическим уравнением v пр = k 1 , где k 1 – это константа скорости прямой реакции. Постепенно образуется продукт HI, который в тех же условиях начинает разлагаться на H 2 и I 2 . Уравнение данного процесса выглядит следующим образом: v обр = k 2 2 , где v обр – скорость обратной реакции, k 2 – константа скорости обратной реакции. В тот момент, когда HI достаточно для выравнивания v пр и v обр наступает химическое равновесие. Количество веществ, находящихся в равновесии, в нашем случае это H 2 , I 2 и HI не меняется со временем, но только если нет внешних воздействий. Из сказанного следует, что химическое равновесие динамично. В нашей реакции йодоводород то образуется, то расходуется.


Помните, изменение условий реакции позволяет сдвинуть равновесии в нужном направлении. Если мы увеличим концентрацию йода или водорода, то увеличится v пр, произойдет сдвиг вправо, больше будет образовываться йодоводорода. Если же мы увеличим концентрацию йодоводорода, увеличится v обр, а сдвиг будет влево. Можем получить больше/меньше реагентов и продуктов.


Таким образом, химическому равновесию свойственно сопротивляться внешнему воздействию. Добавление H 2 или I 2 в итоге приводит к увеличению их расходования и возрастанию HI. И наоборот. Этот процесс в науке получил название принципа Ле – Шателье . Он гласит:


Если на систему, пребывающую в устойчивом равновесии, воздействовать извне (меняя температуру, или давление, или концентрацию), то наступит сдвиг в направлении процесса, ослабляющего это воздействие.

Помните, катализатор не в состоянии сместить равновесие. Он может только ускорить его наступление.


Смещение химического равновесия под действием различных факторов

    Изменение концентрации . Выше мы рассмотрели каким образом, данный фактор сдвигает равновесие то в прямом, то в обратном направлениях. Если увеличить концентрацию реагирующих веществ, равновесие смещается на сторону, где это вещество расходуется. Если уменьшить концентрацию – смещается на сторону, где это вещество образуется. Помните, реакция обратимая, и реагирующими веществами могут быть вещества как на правой стороне, так и на левой, в зависимости от того, какую реакцию рассматриваем (прямую или обратную).

    Влияние t . Её рост провоцирует сдвиг равновесия в сторону эндотермической реакции (- Q), а снижение в сторону экзотермической реакции (+ Q). В уравнениях реакций указывается тепловой эффект прямой реакции. Тепловой эффект обратной реакции ему противоположен. Данное правило подходит только для реакций с тепловым эффектом. Если его нет, то t не способна смещать равновесие, но её повышение ускорит процесс возникновения равновесия.

    Влияние давления . Этот фактор может быть использован в реакциях с участием газообразных веществ. В случае если моли газа равны нулю, изменения проходит не будут. При повышении давления, равновесие смещается в сторону меньших объемов. При понижении давления, равновесие сместится в сторону больших объемов. Объемы – смотрим на коэффициенты перед газообразными веществами в уравнении реакции.



Поделиться: