Технология триз. «моделирование маленькими человечками», или использование технологии триз на занятиях по экспериментрованию

Школа Юрия Окунева

Всем доброго времени суток! Помните ли вы, уважаемые взрослые, как в детстве родители и педагоги объясняли вам задачки при помощи яблок, конфет, игрушечных поездов и плюшевых зверей?

Вы удивитесь, но по прошествии многих лет в основополагающих принципах педагогики многие вещи остались неизменными. В том числе это относится и к славноизвестному подходу пояснения «на пальцах». Метод маленьких человечков также относится к данной категории «объяснялок». И, несмотря на кажущуюся детскость, техника эта работает просто прекрасно.

Начнем с того, что методика маленьких человечков (ММЧ) появилась в рамках теории решения изобретательских задач благодаря отцу-основателю , Генриху Альтшуллеру. Ученый решил, что при помощи забавных человечков и самым маленьким, и уже более взрослым изобретателям будет легче понять суть различных явлений происходящих на микроуровнях.

Стоит заметить, что Альтшуллер в этом смысле не был одинок, т.к. аналогичный принцип задолго до этого применил известнейший британский физик Максвелл. Зрелый и действительно очень умный ученый (это я на тот случай, если вы вдруг начали в этом сомневаться) представлял различные физические процессы в виде соответствующих действий смешных гномиков.

Так ему удавалось находить грамотные решения задач быстрее, чем если бы использовались одни лишь сухие формулы и расчеты. Кроме этого, с таким подходом, Максвелл, вполне возможно, просто нашел для себя способ воспринимать сложную и серьезную науку как увлекательную забавную игру.

А если вы не поленитесь покопаться в истории еще немного, то узнаете, что принцип упрощения условий задач путем представления неких сложных систем в виде самых простых и понятных каждому вещей, использовали многие исследователи. Так, почему бы и нам не последовать их примеру?!

Как это работает?

Суть ММЧ в том, чтобы заменять некие сложные системы группами человечков, действующих конкретным образом - в соответствии со свойствами данной системы. Например, если говорить про разные состояния вещества, то их можно выразить следующим образом:

  • Твердое. Это группа человечков, которые стоят близко друг к другу и крепко держатся за руки.
  • Жидкое. Это группа человечков, которые всегда стоят близко друг к другу, но при этом за руки не держатся.
  • Газообразное. Человечки достаточно удалены друг от друга и за руки не держатся.

В итоге становится понятно, что первая группа будет перемещаться только вся целиком. Иначе придется придумать способ, как разделить дружных человечков. Зато с третьей группой в этом проблем не будет, здесь еще придется постараться, чтобы собрать всех человечков в одну кучку, ведь они все время пытаются разбежаться в стороны.

Такой способ ассоциативного мышления отлично работает и для дошкольников, которые только учатся решать свои первые «взрослые» задачки, и для уже достаточно взрослых школьников.

Причем в случае с теми же состояниями вещества ребятам можно будет предложить взять роль человечков на себя и в зависимости от поставленной ситуации попытаться действовать тем или иным образом. Так дети в форме очень простой и наглядной веселой игры поймут базовые принципы действия метода ММЧ.

Благодаря своей простоте и действенности техника активно применяется не только педагогами в ДОУ и школах, но и самими родителями в ходе обучающих игр в домашних условиях.

Примеры решения задачек с ММЧ

Принцип задействования человечков включает три этапа:

  • Выяснить, что именно вызывает некое противоречие, трудность в системе.
  • Понять, какой именно элемент системы испытывает противоречия в отношении своего физического (или, быть может, химического) состояния, когда к нему предъявляются некие требования идеальности. То есть, какой элемент не в состоянии стать идеальным в силу объективных на то причин.
  • Изобразить данный элемент в виде группы маленьких человечков или запустить в него «группу быстрого реагирования» в виде все тех же крошечных помощников. При этом человечков может быть сколь угодно много. И они могут делать абсолютно все, что вашей душе заблагорассудится! Любой каприз будет исполнен в мгновение ока. Принципиально важно не думать о том, как эти проворные малыши будут выполнять очередное ваше поручение. Акцентируйте внимание на том, что (!) именно они будут делать для того, чтобы справиться с задачей и устранить те самые противоречия, которые мешают вам спать спокойно. Выяснив это, вы уже сможете подобрать грамотное решение проблемы, действующее по аналогии с тем, что делали человечки.

В качестве подсказки можно добавить, что в большинстве случаев для устранения некоего противоречия приходится менять тем или иным образом те элементы, которые соприкасаются с оперативной зоной.

Задачка

Весной и осенью, когда погода на улице еще не устоялась, и температура прыгает туда-сюда, у коммунальщиков возникает одна серьезная сложность. Скапливающийся в верхней части водостоков снег многократно тает и замерзает снова, образуя внутри труб такие себе пробки из льда.

Затем с очередным потеплением эти пробки подтаивают и всей своей внушительной массой с грохотом стремятся вниз по трубе, срывая нижние части конструкции. В итоге, водосточные трубы приходится очень часто ремонтировать.

Ребятам среднего школьного возраста предложили придумать решение этой проблемы. Для этого сначала нужно было определить оперативную зону - то есть ту, в которой и возникает проблема. Как уже было отмечено, ей становится верхняя часть трубы, в которой скапливается снег.

После нужно было обозначить причину проблемы - образование ледяных пробок. В завершении было предложено сформулировать идеальный конечный результат - пробка не падает по трубе, пока не растает полностью.

Подумав, ребята решают, что это было бы возможно, если бы пробка держалась каким-то образом за сами стены трубы. Но в этом случае как только она начнет таять, она будет падать. А значит, таять ей нельзя. Возникает противоречие - таять нужно, но нельзя.

Школьники зовут на помощь маленьких человечков, запуская их в источник проблемы - пробку. Вот они пытаются удержать рвущийся вниз тяжелый кусок льда. Для этого человечки берутся за руки по цепочке. Самые верхние хватаются за верхушку трубы, чтобы удержать на себе своих товарищей. А нижние обхватывают саму пробку.

Ученики старательно рисуют все эту композицию и, взглянув на готовую картинку, выдают ответ - «Нужно запустить в трубу что-то прочное, что могло бы держать на себе лед. Например, проволоку. Лед будет обмерзать вокруг нее, а подтаивая, потихоньку стекать вниз. И так, пока не «рассосется» вся пробка». Отлично, решение найдено, браво!

Развить подобное мышление помогут специальные книги по Для детей можно порекомендовать яркую интересную серию книг «Новейшие приключения колобка» . А взрослые почерпнут для себя огромное количество нового и полезного из книги Юрия Саламатова «Как стать изобретателем» и его тренинга по ТРИЗ .

Надеюсь, что я вас достаточно вдохновил на освоение новой методики. Если есть вопросы - задавайте их в комментариях к статье. Всем обязательно отвечу. На этом все, до новых встреч! Ваш Юрий Окунев.

Эмпатия и ассоциативные ряды

Эмпатия осознанное сопереживание текущему эмоциональному состоянию другого человека без потери ощущения внешнего происхождения этого переживания.

Ассоциативный ряд – это ряд понятий или определений, когда следующий член ряда "всплывает" в связи с тем, что вспоминается по поводу предыдущего.

1. Составить абстрактный портрет собеседника, описать рисунок.

2. Нарисовать абстрактный портрет человека, используя ассоциативный ряд, подчиненных ему образов, описать рисунок.

Метод фокальных объектов

Метод фокальных объектов (МФО) – это метод поиска новых идей и характеристик объекта на основе присоединения к исходному объекту свойств других, выбранных случайно, объектов. Отсюда другое название – метод случайных объектов.

Теоретической основой МФО является алгоритм из 6 шагов, выполняемых последовательно:

1. Выбирается фокальный объект – то, что необходимо усовершенствовать.

2. Выбираются случайные объекты (3-5 понятий, из энциклопедии, книги, газеты, обязательно существительные, разной тематики, отличной от исходного объекта).

3. Записываются свойства случайных объектов.

4. Найденные свойства присоединяются к исходному объекту.

5. Полученные варианты развиваются путём ассоциаций.

6. Варианты оцениваются с точки зрения эффективности, интересности и жизнеспособности полученных решений.

Перенос на исследуемый объект свойств других объектов, никак не связанных с исходным, нередко дает сильные идеи, поскольку позволяет взглянуть на предмет под иным, неочевидным углом. При этом техника применения проста и инвариантна. Ещё одним преимуществом МФО считается содействие развитию ассоциативного мышления. Но он не лишен и недостатков. Применяя метод, нет никакой гарантии, что полученное решение будет сильным. Также слабыми сторонами метода являются непригодность в работе со сложными техническими задачами и отсутствие чёткости при выборе критериев оценки получаемых идей.

Пример:

ФО – кастрюля.

Цель – расширение ассортимента и спроса на продукцию.

Случайные объекты: дерево, лампа, кошка, сигарета.

Их свойства: дерево – высокое, зелёное, с толстыми корнями; лампа – электрическая, светящаяся, разбитая, матовая; кошка – игривая, пушистая, мяукающая; сигарета – дымящаяся, с фильтром, брошенная, отсыревшая.

Поочерёдно присоединяем полученные свойства к кастрюле и развиваем.

Слабые сочетания можно сразу отбросить.

Сильные решения дают: кастрюля с корнями – кастрюля с теплоизолирующим дном; разбитая кастрюля – разделённая на секции для одновременной готовки нескольких блюд; мяукающая кастрюля – подаёт сигнал, когда блюдо готово.

Применить метод фокальных объектов к:

1. рабочему столу;

2. случайному объекту;

3. предмету, связанному с темой диссертации.

Метод синектики

Термин «синектика» обозначает совмещение в процессе поиска решения проблемы разнородных, порой даже несовместимых элементов. В методе приветствуется критика, а также активно используются различного рода сравнения и аналогии. В процессе решения поставленной задачи участие принимает группа людей (синектиков), все участники группы должны хорошо знать друг друга, чтобы не чувствовать неловкости высказывая абсурдные идеи и относиться к разным психотипам, что обеспечит разнообразие подходов и выдвигаемых идей. По сути задача синектики превратить незнакомое в знакомое и определить решение или напротив превратить знакомое в незнакомое, тем самым открыв горизонты развития.

Обсуждение по методу синектики состоит из следующих основных этапов:

1. Заслушивается имеющаяся информация по обсуждаемой проблеме.

2. Заказчик определяет проблему и желаемую цель.

3. Генерируется перечень ключевых слов, характеризующих проблему.

4. На основе этого списка с применением четырех методов синектики генерируется первый уровень абсурдных идей, непосредственно касающихся желаний заказчика.

4 метода синектики:

Прямая аналогия – внешние, структурные или функциональные аналоги, существующие в окружающем мире.

Субъективные (личные) аналогии – личные представления, представления собственного тела как части проблемы.

Символическая аналогия – сравнения, аллегории, метафоры, отождествление свойств чего-то одного со свойствами чего-то другого.

Фантастическая аналогия – представление вещей фантастическими и невозможными, вмешательство чудесных сказочных сил, способных решить рассматриваемую проблему.

5. На основе первого уровня формируется второй уровень идей, которые являются максимально практичными, но при этом, не теряют своей оригинальности.

6. Из сформированных вариантов клиентом выбирается наиболее интересная версия.

7. В результате совместного обсуждения идея доводится до стадии практического воплощения.

1. В качестве проблемы предлагается разработать фирменный знак для ИжГТУ имени М.Т. Калашникова в котором буде чувствоваться оружейная тематика.

2. На первоначальном этапе нужно предложить 12 аналогий – по 3 для каждого из 4-х методов синектики (поработать нужно группой – можно в кругу семьи или друзей).

3. На основе получившихся аналогий предложить в виде 2-5 эскизов идеи по оформлению знака.

4. Одну идею оформить как рабочий вариант знака.

Метод маленьких человечков

Суть Метода маленьких человечков в том, чтобы заменять некие сложные системы группами человечков, действующих конкретным образом – в соответствии со свойствами изучаемой системы. Например, если говорить про разные состояния вещества, то их можно выразить следующим образом:

Твердое – это группа человечков, которые стоят близко друг к другу и крепко держатся за руки.

Жидкое – это группа человечков, которые всегда стоят близко друг к другу, но при этом за руки не держатся.

Газообразное – человечки достаточно удалены друг от друга и за руки не держатся.

В итоге становится понятно, что первая группа будет перемещаться только вся целиком. Иначе придется придумать способ, как разделить дружных человечков. Зато с третьей группой в этом проблем не будет, здесь еще придется постараться, чтобы собрать всех человечков в одну кучку, ведь они все время пытаются разбежаться в стороны.

1. Составить 5 орнаментов из держащихся друг за друга человечков (пар, троек, четверок), придав им конкретные качества – пол, возраст, м.б. это семьи, м.б. друзья.

2. На основе двух орнаментов придумать два кованых заборчика, принцип соединения секций которых должен быть обусловлен тем, как человечки держатся за руки.

Требования к отчету:

1. Наличие стандартно оформленного титульного листа.

2. По каждому методу – кратко описать задание и результат его выполнения, привести необходимые рисунки и пояснения к ним.

3. Сделать выводы.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

Петров Владимир Михайлович,
Израиль, Тель-Авив, 2002
[email protected]

Основы
теории решения изобретательских задач

7.1.3. Метод моделирования маленькими человечками ММЧ.

Метод моделирования маленькими человечками (ММЧ) предложил Генрих Альтшуллер .

Уже давно замечено, что решение многих задач облегчает представление их в виде моделей. Такое моделирование мы уже частично рассматривали, излагая прием эмпатии (см. п. 2.3) . Но такое моделирование не всегда приносит успех. Особенно сложно с помощью эмпатии моделировать процессы, где требуется разделить объект на части, и это вполне объяснимо. Человеку не свойственно делить себя на части, а при использовании эмпатии в таких процессах он должен представить свое разделение. Именно поэтому такие задачи достаточно сложно решаются этим способом.

Решая многие задачи, знаменитый физик Максвелл представлял себе исследуемый процесс в виде маленьких гномиков, которые могут делать все, что необходимо. Такие гномики в литературе получили название "гномиков Максвелла". Аналогичный метод моделирования с помощью толпы маленьких человечков предложил Г.Альтдуллер. Любой процесс моделируется с помощью маленьких человечков, которые в нашем воображении могут осуществлять любые действия.

Проиллюстрируем и этот метод.

Задача 7.2. Имеется дозатор жидкости, выполненный в виде устройства, показанного на рис. 7.9. Жидкость поступает в ковш дозатора, Когда наберется установленное количество жидкости, дозатор наклонится влево, жидкость выливается. Левая часть дозатора становится легче, дозатор возвращается в исходное положение.
К сожалению, дозатор работает неточно. При наклоне влево, как только начинается слив жидкости, левая часть дозатора становится легче, дозатор возвращается в исходное положение, хотя в ковше остается часть жидкости. "Недолив" зависит от многих факторов (разность левой и правой частей дозатора, вязкость жидкости, трение оси дозатора и пр.), поэтому нельзя просо взять ковш побольше.
Надо устранить описанный недостаток дозатора. Не предлагайте другие дозаторы: суть задачи в усовершенствовании имеющейся конструкции. Помните: надо сохранить присущую ей простоту.
Представим описанную конструкцию в виде модели с помощью маленьких человечков (рис. 7.10).
Анализ данной модели показывает, что человечки противовеса не отвечают необходимым требованиям.

Здесь возникает обостренное (физическое) противоречие "Человечки противовеса должны быть справа, чтобы возвращать дозатор в исходное положение, и не должен быть справа, чтобы человечки жидкости могли полностью сойти".
Такое противоречие может быть разрешено, если человечки противовеса станут подвижными (рис. 7.11). Технически это можно представить, например, как показано на рис. 7.12. Дозатор выполнен в виде корпуса, посаженного на ось, по одну сторону которой расположена мерная емкость, а по другую - каналы с перемещающимся балластом, например шариком 4 .

Разберем еще одну задачу.

Задача 7.3. В гидростроительстве при перекрытиях русел рек и разного рода отсыпках под воду используют саморазгружающиеся (опрокидывающиеся) баржи, в частности, баржи показанные на рис. 7.13 5 . Они состоят из двух отсеков плавучести 1 и 2 ("нос" и "корма"), которые держат баржу на плаву. Между отсеками плавучести находится грузовой трюм 3, выполненный в виде трехгранной призмы.

Стенки трюма имеют отверстия, в трюм всегда проходит вода (без этого трудно было бы опрокидывать баржу и возвращать ее в исходное положение). Вдоль корпуса с обеих сторон расположены воздушные полости 4. Нижняя часть этих полостей открыта. Когда баржу нагружают, она оседает, вода поджимает воздух в воздушных полостях. Когда надо произвести разгрузку баржи, открывают кран 5, воздух выходит, вода заполняет одну бортовую полость, баржа опрокидывается. После того, как груз высыпался, вращающий момент, создаваемый килем 6, автоматически возвращает баржу в исходное положение.

Такие баржи решено было использовать на строительстве Асуанской плотины. В силу специфических условий потребовалось создать баржи грузоподъемностью 500 т с низкой осадкой, то есть, болев широкие и плоские. Построили модель баржи и обнаружили, что модель не возвращается в исходное положение.
Чтобы возвратить баржу в исходное положение, необходимо было делать киль тяжелее, но тогда придется все время возить "мертвый" груз. Чем тяжелее киль, тем меньше полезная грузоподъемность баржи.
Как быть?
Изобразим описанный процесс в виде модели маленьких человечков (рис. 7.14).
При анализе модели убеждаемся, что не справляются с возвращением баржи в исходное положение человечки противовеса. Идеальная модель данной задачи: "Человечки противовеса сами возвращают баржу в исходное положение, не увеличивая свой вес. Или легкий противовес возвращает баржу в исходное положение".
На первый взгляд такое решение противоречит законам природы. Возникает противоречие: "Человечков противовеса должно быть много, чтобы возвратить баржу в исходное положение, и должно быть мало (или вообще их быть не должно), чтобы не возить ""мертвый" груз".
Выход - увеличивать массу человечков противовеса за счет кого-то другого, имеющегося рядом.
Увеличивая массу за счет человечков груза, мы, конечно, перевернем баржу, но они станут человечками противовеса, и опять придется возить "лишний груз" то есть снижать общую грузоподъемность баржи. Таким образом, человечки груза нам не помогли.

Попробуем использовать человечков жидкости. Если они присоединятся к небольшому количеству человечков противовеса, то они смогут возвращать баржу в исходное положение. В воде же они не будут создавать дополнительной массы. Значит, такое решение годится. Остается только подумать, как задержать человечков жидкости около человечков противовеса (рис. 7.15).
Технически такое решение осуществляется в виде полого киля (рис. 7.16).

Саморазгружающаяся баржа выполнена с балластной килевой цистерной, имеющей отверстия в наружных стенках, постоянно сообщающиеся с забортным пространством 6 . Это может быть, например, труба.

Задача 7.4 7 . Во время Второй Мировой войны возникла проблема, как сделать, что бы противник не обнаружил поставленную подводную мину?
Подводная мина в те времена представляла собой сферу, начиненную взрывчаткой, а взрыватели были выполнены в виде "рожек" (рис. 7.17). Мина имеет положительную плавучесть. Она прикреплялась к якорю с помощью троса (минрепа), так чтобы она оставалась на глубине осадки корабля.
Мины вылавливают с помощью специальных кораблей - тральщиков. Между двумя тральщиками натянут трос (трал).
Трос заглубляется с помощью специальных заглубителей. Трос трала подходит к тросу минрепа (рис.7.18). Когда в трал попадает мина (трос трала движется по тросу минрепа), то специальными ножом или взрывным устройством, обрывается минреп. Мина всплывает и ее расстреливают.


1.«Моделирование маленькими человечками» или

«Использование технологии ТРИЗ в

экспериментировании».

подготовила Спиридонова Т. С.

2.Одной из эффективных педагогических технологий для развития творчества у

детей является ТРИЗ - Теория решения изобретательских задач. Она возникла в

нашей стране в 50-х

годах

усилиями выдающегося российского учёного,

изобретателя, писателя – фантаста Генриха Сауловича Альтшуллера. В детские

сады технология ТРИЗ пришла в 80-х годах. Но, несмотря на это и сейчас

остаётся актуальной и востребованной.

3. ТРИЗ для дошкольников:

- это система коллективных игр, занятий, призванных не изменять основную

программу, а максимально увеличить её эффективность.

Главное отличие технологии ТРИЗ от классического подхода к дошкольному

развитию – это дать детям возможность самостоятельно находить ответы на

вопросы, решать задачи, анализировать, а не повторять сказанное взрослыми.

ТРИЗ – технология, как универсальный инструментарий можно использовать

практически во всех видах деятельности. Это позволяет формировать единую,

гармоничную, научно обоснованную модель мира в сознание ребёнка дошкольника.

Создаётся ситуация успеха, идёт взаимообмен результатами решения, решение

одного ребёнка активизирует мысль другого, расширяет диапазон воображения,

стимулирует его развитие. Технология даёт возможность каждому ребёнку

проявить

свою

индивидуальность,

учит

дошкольников

нестандартному

мышлению.

В арсенале технологии ТРИЗ существует множество методов, которые хорошо

используются следующие методы ТРИЗ:

- Метод мозгового штурма. Это оперативный метод решения проблемы на основе

стимулирования творческой активности, при котором участникам обсуждения

предлагают высказать как можно большее количество вариантов решений, в том

числе самых фантастичных. Затем из общего числа высказанных идей отбирают

наиболее удачные, которые могут быть использованы на практике.

- Метод каталога. Метод позволяет в большей степени решить проблему

обучения дошкольников творческому рассказыванию.

- Метод фокальных объектов. Сущность данного метода в перенесение свойств

одного объекта или нескольких на другой. Этот метод позволяет не только

развивать воображение, речь, фантазию, но и управлять своим мышлением.

- Метод «Системный анализ». Метод помогает рассмотреть мир в системе, как

совокупность связанных между собой определенным образом элементов, удобно

функционирующих между собой. Его цель – определить роль и место объектов, и

их взаимодействие по каждому элементу.

- Метод морфологического анализа. В работе с дошкольниками этот метод очень

эффективен для развития творческого воображения, фантазии, преодоления

стереотипов. Суть его заключается в комбинировании разных вариантов

характеристик определённого объекта при создании нового образа этого объекта.

- Метод обоснования новых идей «Золотая рыбка». Суть метода заключается в

чтобы

разделить

ситуации

составляющие

(реальную

фантастическую),

последующим

нахождением

реальных

проявлений

фантастической составляющей.

4.- Метод ММЧ (моделирования маленькими человечками)-

моделирование

процессов, происходящих в природном и рукотворном мире между веществами

(твердое – жидкое –газообразное)

- Мышление по аналогии. Так как аналогия - это сходство предметов и явлений по

каким-либо свойствам и признакам, надо сначала научить детей определять

свойства и признаки предметов, научить их сравнивать и классифицировать.

- Типовые приёмы фантазирования (ТПФ). Чтобы у ребёнка развить фантазию

вводят в помощь шесть волшебников. Цель волшебников – изменить свойства

объекта.

Приёмы

волшебства:

увеличение-уменьшение,

деление-объединение,

преобразование

признаков

времени,

оживление-окаменение,

специализация-

универсализация, наоборот.

Занятия с применением методов ТРИЗ проводятся, как поиск истины и сути,

подведение ребенка к проблеме и совместного поиска ее разрешения.

Свою работу по применению технологии ТРИЗ в образовательной деятельности я

начала в 2014 году. Мне очень понравился метод ММЧ, который использую в

образовательных

областях:

«социально

коммуникативное

развитие»,

«познавательное развитие».

5.Сущность метода ММЧ в том, что он представляет все предметы и

вещества состоящими из множества Маленьких Человечков (МЧ). В понимании

нас, взрослых – это молекулы, но на этом слове внимание не заостряется,

сведения

подаются

детям

виде сказки

«Маленькие

человечки».

Детям

становится понятно, что в зависимости от состояния вещества Маленькие

Человечки ведут себя по разному (в твёрдых – крепко держатся за руки, в жидких

– просто стоят рядом, в газообразных – находятся в постоянном движении).

С помощью метода ММЧ мы рассмотрели условия перехода вещества (на

примере воды: лёд-вода-пар) из одного агрегатного состояния в другое. Вместе с

детьми провели опыты, рассуждали, делали выводы, находили ответы.

Занятия с использованием приёмов ТРИЗ помогают детям увидеть

неожиданное рядом.

Я предлагаю вашему вниманию использование приема

моделирование маленькими человечками при ознакомлении детей с объектами

неживой природы.

5.«Маленькие человечки»фото

6.Цель: познакомить детей с агрегатными состояниями веществ в неживой

природе.

7.Задачи:

- используя метод моделирования маленькими человечками (ММЧ), объяснить

детям, почему вещества бывают твердыми, жидкими, газообразными;

-расширить представления детей о многообразии веществ неживой природы;

- учить детей опытным путем определять агрегатное состояние окружающих

веществ;

-учить детей моделировать объекты неживой природы;

Материалы и оборудование:

- плоскостные изображения моделей " маленькие человечки", характеризующие

такие вещества как: вода, лёд, пар, молоко, воздух, дерево, туман, камень, сок, дым

и т.д.

- стаканчики с водой и молоком, деревянный брусок, небольшой камень, лёд,

кусочек

пластмассы,

деревянная

палочка,

пустой

полиэтиленовый

пакет

небольшого размера.

- карточки с моделями " маленькие человечки";

- бутылка лимонада (пластиковая);

Ход занятия:

1. Постановка проблемы - можете ли вы изобразить бутылку лимонада, не

ПОЛЬЗУЯСЬ при этом карандашом или красками?

2. Рассказ воспитателя о маленьких человечках, живущих вокруг нас.

- Ребята, сегодня я хочу вам рассказать о том, что 8.всё существующее вокруг нас

- и камни, и дерево, и лужа, и игрушки, и мы с вами состоит из мельчайших

частиц, которые можно увидеть только в микроскоп. Этих частиц столько

много, что соединяясь между собой, они и превращаются, например в камень.

Частицы эти- МЧ- очень разные и они по- разному дружат между собой. Одни

частицы, давайте назовём их маленькими человечками, - очень дружны, они всегда

держатся за руки, чтобы не потеряться, держатся так крепко, что их и не

разъединить, как мы с вами, когда играем в «Цепи кованые». Эти человечки -

крепкие, твердые, и именно они живут в камнях, дереве, горах. Я покажу вам их

фотографию.

8. фото

Видите, как они крепко держатся - их дружбу не разрушишь! 8.Это твердые

человечки и они образуют все твердые вещества и предметы на нашей планете!

Другие человечки тоже не убегают далеко друг от друга, но они не так дружны,

стоят просто рядом и только прикасаются локтями. Если мы вспомним с вами

нашу игру «Цепи кованые», когда дети слабо держатся за руки, то вы поймете,

как легко можно пробежать между ними. 9.Такие человечки живут в жидких

веществах, они менее дружны, поэтому мы с вами можем легко опустить ложку в

стакан с чаем и размешать сахар! Я покажу вам их фотографию тоже.

Фото 9

Ну, а 10.третьи человечки - вообще хулиганы! Они двигаются как хотят и совсем

не держатся за руки! Согласитесь, что сквозь таких человечков очень легко

пройти! Они живут в таких веществах, как воздух, пар, дым, туман. Такие

вещества называются газообразными. Трудное слово, но мы с вами уже большие и

должны узнавать новые слова!

Я покажу вам и их фотографию:10.фото

Вот такую историю про маленьких человечков я вам рассказала, а теперь давайте

сами узнаем, где какие человечки живут.

3. Задание -11 эксперименты " Где какие маленькие человечки живут? "

11Детям предлагается по очереди попробовать проткнуть деревянной

палочкой деревянный брусок, камень, кусочек пластмассы. В результате опыта

дети выясняют, что это сделать невозможно! Значит во всех этих веществах

живут дружные человечки! Эти вещества - твердые! Фото…

Б. 12.Детям предлагается по очереди проткнуть деревянной палочкой воду в

стаканчике, молоко в стаканчике. В результате опыта дети выясняют, что

палочка достаточно легко проходит через воду и молоко. Значит здесь живут не

очень дружные человечки! Но все- таки они рядом, иначе бы мы не увидели не воду,

не молоко! Во всех этих веществах живут жидкие человечки и такие вещества

называются - жидкими. Фото….

В. 13.Ребята, а как же нам найти третьих человечков? Где нам взять, например,

дым или воздух? (ответы детей, возможно, они скажут, что воздух вокруг нас) Я

предлагаю вам поймать воздух! Возьмите пакет. Он пустой? А сейчас, возьмите

пакет за верхние уголки и попробуйте его закручивать. Ой, а что же это у нас в

пакете появилось? (пакет надувается, как шарик). Да ребята, это мы с вами

поймали воздух! Воздух находится вокруг нас! Попробуйте проткнуть его рукой -

проходит? Да и очень легко! Потому что в воздухе живут те самые недружные

человечки! Фото…

4. 14.Подвижная игра " Игры маленьких человечков"

Дети выступают в роли маленьких человечков и показывают, в каком веществе

какие человечки живут. Воспитатель говорит: камень - дети берутся за руки, сок

- дети становятся рядом друг с другом, соприкасаясь локтями, воздух - дети

отбегают друг от друга, болтая при этом руками и ногами и т. д. фото…

5. 15.Дидактическое упражнение " Узнай вещество"

Воспитатель показывает детям модели различных маленьких человечков - задача

детей - узнать о каком веществе идет речь. Фото..

Например:

Это- молоко.

Это-лёд, камень, пластмасса.

Это – сок.

Это – дым.

Это - вода (человечки прозрачные)

Это – дерево.

Это - воздух (человечки прозрачные)

Вы можете придумать своих человечков. Надеюсь, идея понятна.

г с другом, касаясь локтями. А что еще есть в лимонаде, это особенно видно,

когда мы открываем бутылку? (пузырьки) Да, в лимонад для шипучести

добавляют углекислый газ. Давайте покажем пузырьки.

Вот и закончилось наше занятие, я вас хвалю за внимание и надеюсь, что сегодня

вы узнали много нового из жизни неживой природы.

Уважаемые коллеги! Занятие, по мнению детей было интересным.

технологии ТРИЗ.

Тема: Метод «маленьких человечков».

Цели: познакомить с методом «маленьких человечков»; обобщить

представления детей о свойствах твердых веществ; развивать воображение,

умение инсценировать; развивать познавательный интерес, умение

анализировать причины.

Оборудование: мяч.

Обсуждение «Что не делится на части?».

Обобщая ответы детей, воспитатель указывает, что эти «маленькие

частицы», из которых состоят вещества, называются «молекулы». Можно

сказать, что кирпич состоит из молекул кирпича, вода - из молекул воды,

бумага - из молекул бумаги и т. д.

О молекулах вы подробно узнаете, когда будете учиться в школе. А пока вы

маленькие, вместо слова «молекулы» мы будем говорить «маленькие

человечки». Разные предметы состоят из разных человечков. Дом, стол,

машина не очень похожи друг на друга, но они все твердые, значит, и

«человечки» там похожи. В твердых предметах «человечки» крепко держатся

за руки...

Игра «Назови твердое».

Проводится игра с мячом. Тот, кто получил мяч, должен назвать различные

твердые предметы. Кто ошибся или повторил - выходит из игры.

Дети нередко путают понятия «твердое» (в смысле «крепкое») и «твердое» (в

смысле «нежидкое»). Могут быть ситуации типа: «Нет, бумага не твердая,

вот фанерка твердая...». При возникновении подобных ситуаций воспитатель

уточняет задание: твердое - это то, что не жидкое. (Бумага - это не

жидкость,

она состоит из «твердых человечков», но они, наверное, не очень сильно

держатся за руки, вот почему бумага легко рвется.)

Инсценировка «маленьких человечков».

Воспитатель «превращает» детей в «маленьких человечков» и предлагает

изобразить проволоку, брусок, спичку (дети становятся в линию, держась за

руки).

При этом анализируются свойства этих предметов: почему проволоку

можно согнуть, а брусок нет; почему спичка не гнется, а ломается.

Как показать резинку, почему она растягивается, что происходит, если

растянутую резинку отпустить? Продолжать растягивать? (Все ответы

моделируются.)

Подведение итогов.

Тема: «Твердые и жидкие человечки».

Цели: активизировать мышление детей; закрепить представления детей о

свойствах жидких веществ; обучать умению сравнивать и анализировать

свойства объектов.

Оборудование: бумажная коробочка, стакан с водой, кубики.

Решение проблемной ситуации.

- В воскресенье я была на дне рождения у Снежной Королевы. На Севере все

кругом такое красивое, сверкает, переливается... Особенно мне понравилась

посуда - тонкая, прозрачная, искристая... Снежная Королева мне даже одну

чашечку подарила на память. Я ее положила в коробочку, чтобы не разбить и

привезла вам. Сейчас покажу...

Игрушка открывает коробочку, но там ничего нет, только мокрое дно.

- Ой, а куда же она делась? Как она могла исчезнуть? В процессе обсуждения

выясняется, что чашка у Снежной Королевы была сделана изо льда, а лед

растаял.

Сравнение твердых и жидких веществ.

Оказывается, лед волшебный, он умеет превращаться.

Лёд-это твердое вещество, в нем «человечки» крепко держатся за руки

Когда становится тепло, они перестают держаться за руки, и получается

жидкость, вода. А чем жидкие вещества отличаются от твердых? Что можно

делать с водой, а что - со льдом?

Ответы детей желательно сопровождать соответствующим показом

различных свойств твердых и жидких веществ: поставить рядом стаканы с

водой и с кубиками льда (можно заменить обычными кубиками (они тоже

твердые, но не тают)).

Можно показать следующие опыты: жидкость растекается, она может

впитываться, принимает форму емкости, в которой находится; а твердые

вещества сохраняют свою форму в любой емкости; «жидкие человечки» легко

перемещаются (если дотронуться до воды, палец станет мокрым, а если до

кубиков, то палец деревянным или пластмассовым не становится); вода занима-

ет весь стакан, без «пустот», с кубиками так не получается (а в коробку кубики

можно уложить плотно, почему?); если налить воду в тряпичный мешочек, она

вытечет, а кубики останутся.

Игра «Замри».

Дети свободно перемещаются по группе. Когда воспитатель подает сигнал

(бубном или колокольчиком), они превращаются в ледяные фигуры, т. е должны

замереть - «замерзнуть», повторный сигнал - «растаяли» и т. д.

Моделирование ситуации.

Воспитатель предлагает детям проинсценировать ситуацию «Сосулька

весной»: Что происходит, когда солнце пригревает? Что образуется па земле

под сосулькой? Что происходит ночью?

Подведение итогов.

Можно предложить ответить на вопрос: «Бывает ли так, чтобы люди по

воде ходили?»

Тема: «Газообразные человечки».

Цели: активизировать мышление детей; систематизировать представления

детей о свойствах газообразных веществ; развивать воображение, умение

перевоплощаться и абстрагироваться.

Оборудование: карточки с «маленькими человечками».

Анализ проблемной ситуации.

Приходит Игрушка и рассказывает:

- Вчера я шла по улице, вспоминала, что есть «твердые человечки», они крепко

держатся за руки; есть «жидкие человечки», они за руки не держатся, а просто

так ходят или стоят... И вдруг вижу: калитка впереди - то откроется, то

закроется. Подошла поближе: никого нет. А калитка все равно то

откроется, то закроется... Кто же ее открывал?

В результате обсуждения различных вариантов дети приходят к выводу, что

это делал ветер.

Беседа о «газообразных человечках».

Примерные вопросы для беседы:

Что такое ветер?

Можно ли его увидеть, нарисовать?

По каким «следам» (признакам) люди узнают, что погода ветреная?

Ветер какой - твердый или жидкий?

Ветер - это сильная струя воздуха. Воздух состоит из «человечков газа»: эти

«человечки» очень подвижные, они бегают в разные стороны, кто куда

захочет. Если подуть на ладошку, можно почувствовать «газообразных

человечков».

Некоторых «газовых человечков» можно увидеть, когда кипит вода, она

превращается в пар, который хорошо виден (можно вспомнить или показать

кипящий чайник).

Во время беседы желательно использовать Игрушку, которая дает

неправильные, ошибочные варианты ответа или сомневается в очевидном.

Игра «Маленькие человечки».

Воспитатель называет слова «твердые», «жидкие», «газообразные», а дети

должны соответственно реагировать: браться за руки, спокойно ходить

или бегать по группе. Порядок и темп команд - произвольный.

Тема:

«Цветные человечки»

Цели: активизировать мышление детей; развивать воображение,

фантазию; обобщить представления о веществах в различных

агрегатных состояниях; формировать экологическое мышление.

Оборудование: краски, кисточка, бумага, прозрачный кружок.

1. Анализ проблемной ситуации.

Приходит Игрушка грустная на занятие, дети и воспитатель

волнуются: что случилось?

И.: Захотела я сейчас порисовать, чтобы принести вам рисунок на

занятие, а у меня ничего не получилось... И акварельные краски у меня

хорошие, и кисточка новая - в чем дело, не понимаю...

В результате дополнительных вопросов выясняется, что при рисовании

Игрушка не обмакивала в воду кисточку, а пробовала рисовать сухой.

В.: «Человечки краски» твердые, но они спят. Их нужно умыть и

разбудить. Когда кисточку макаем в воду, «человечки кисточки» берут за

руки «человечков воды» и несут их на бумагу. А потом «человечки краски»

и «человечки кисточки» вместе держатся, и, когда кисточку плотно

прижимаешь при рисовании, они остаются на бумаге.

И.: Я все поняла, буду теперь рисовать. (Берет кисточку не тем концом и

обмакивает в краску.) Опять ничего не получается!

В.: Почему ты кисточку не тем концом взяла?

И.: А какая разница?

В.: Этот конец острый, деревянный, с него «человечки воды» будут

скатываться. А нужный конец кисточки пушистый, там много волосков

- легко зацепиться «человечкам краски», и «человечки воды» не разбегутся.

2. Упражнение «Волшебная дорожка».

И.: Спасибо, теперь я все поняла и нарисую картину - вол

шебную дорожку...

(Игрушка «рисует» дорожку из квадратиков разного цвета.)

Черный

Желтый

Зеленый

Например:

Красный

В.: Какая красивая разноцветная дорожка получилась! А почему ты

говоришь, что она волшебная?

И.: Потому что, когда по ней путешествуешь, меняешь Цвет.

Смотрите: вот кружок - он вначале белый, потом стал красным, затем

желтым и т. д. (Используется прозрачный кружок из полиэтилена или

целлофана.)

В.: А еще, наверное, этот кружок умеет превращаться в разные

предметы?

И.: Конечно, если он на белой дорожке, то это одуванчик…

В.: Подожди, дай ребятам сказать...

3. Игра «Разноцветный светофор». Правила игры: воспитатель

называет любой цвет. Дети, у которых этот цвет есть в одежде,

держатся за него и проходят через препятствие. У кого такого цвета

нет, могут присоединиться к кому-нибудь или пробежать, чтобы их

не поймали.

Упражнение «Волшебная дорожка» (продолжение).

В.: А можно, чтобы по твоей дорожке путешествовали «маленькие

человечки»?

И.: Конечно, можно!

В.: Первыми будут «твердые человечки». Что это будет: белое и

твердое?

Д.: Мел, стена, зубы...

Аналогичная игра проводится с другими цветами, совершают

«путешествие» «жидкие и газообразные человечки».

Когда обсуждается сочетание «Черные газообразные человечки, что

это?» (дым), желательно проанализировать, что хорошего и что

плохого в дыме; высказывается пожелание, чтобы небо было всегда

чистым, голубым.

Подведение итогов.

Тема: «Обобщающее занятие по ММЧ»

Цели: развивать познавательную активность; развивать умение

сравнивать и обобщать; формировать умение моделировать

физические процессы.

Оборудование: «черный ящик», мыло, соломинки, стаканчики с пеной,

карточки МЧ.

Упражнение «Черный ящик».

Приходит Игрушка с черным ящиком и предлагает детям узнать, что

в нем находится.

Отгадка: мыло.

Обсуждение: зачем оно нужно, что еще можно делать с мылом.

Беседа о мыльных пузырях.

И.: Сегодня мы с вами будем пускать мыльные пузыри!

В.: Хорошо, но давай вначале разберемся, как они получаются. Мыло

ведь твердое. А пузыри какие?

В.: Откуда берется воздух внутри пузырей?

И.: Так мы же сами его надуваем!

В.: Мыло состоит из «твердых человечков». Но они очень любят

купаться. Когда рядом с ними вода, они отпускают руки и начинают

плавать и брызгаться получается пена. Если мы захотим выдуть

пузырь, то на соломинку берем капельку воды, а в ней «человечки

мыла». Когда мы начинаем дуть «человечки» растягивают руки в

стороны, запуская «газообразных человечков» внутрь...

И.: Почему пузыри так быстро лопаются?

В.: У человечков руки скользкие, мокрые, они уже не могут крепко

держаться и отпускают их.

И.: А почему, когда пузырь лопнет, остается капелька воды?

Практическая работа.

И.: Давайте сами попробуем выдуть пузыри!

В.: Конечно!

Дети получают трубочки и стаканчики с пеной; можно устроить

соревнование: у кого самый большой пузырь, у кого дольше не лопнул и

Беседа о свойствах вещества.

И.: Сейчас я покажу опыт (берет стакан, наполненный водой до

середины). Запомните, где сейчас вода (отмечает границу воды на

стакане). Сейчас я брошу туда кубики. Смотрите, что произойдет.

Д.: Вода поднялась!

И.: Верно, а вы можете объяснить, почему так произошло?

В.: Наши дети могут не только рассказать, но и показать на

карточках весь этот опыт и объяснить его.

Воспитатель вызывает несколько детей, дает им карточки

Ч и предлагает смоделировать этот процесс.

И.: А что будет, если кубики достать?

Д.: Вода опустится снова.

И.: Сейчас проверим. Точно! Как это объяснить?

В.: Сейчас наши ребята тебе снова все расскажут и покажут.

И.: Спасибо, теперь мне все понятно.

4. Подведение итогов.

Воспитатель подчеркивает, что сегодня было последнее занятие с

«маленькими человечками», но мы с ними не прощаемся, потому что

молекулы - «маленькие человечки» - повсюду, из них состоит все, что

нас окружает.

Плаксин Михаил Александрович

Пермский государственный университет (ПГУ), Компьютерная школа ПГУ, г.Пермь

В докладе рассматривается использование на уроках информатики в начальной школе «Метода маленьких человечков» - одного из методов Теории решения изобретательских задач (ТРИЗ) - для освоения понятия «моделирование» и изучения физических свойств и процессов.

«Пермская версия» курса информатики исходит из того, что в школе должны изучаться основы системного анализа и Теории решения изобретательских задач (ТРИЗ).

«Метод маленьких человечков» (ММЧ) - это один из методов ТРИЗ. Он предлагается для изучения во втором полугодии I-го класса.

Суть метода маленьких человечков в следующем. Представим, что все окружающие предметы состоят из маленьких человечков. Человечки бывают трех видов: твердики, гидратики и пневматики. Твердики стоят рядом друг с другом и крепко держатся за руки. Гидратики тоже стоят рядом друг с другом, но за руки не держатся. Пневматики на месте стоять не могут и все время бегают.

С помощью этих маленьких человечков моделируются окружающие нас предметы и процессы. Например, стакан с чаем будет выглядеть так: дно и стенки из твердиков, внутри - гидратики. Если чай горячий, то над ним надо будет дорисовать пар - несколько пневматиков. Если вместо стакана с чаем рисовать пустой стакан, то внутри оболочки из твердиков надо будет нарисовать воздух, т.е. несколько пневматиков. Если вместо чая рисовать газировку, то пневматиков, т.е. газ, надо будет поместить внутрь жидкости. И т.д.

При использовании ММЧ понятие «моделирование» вводится совершенно естественным образом. Мы МОДЕЛИРУЕМ предметы с помощью маленьких человечков. Дети прекрасно понимают, что маленькие человечки - это способ выразить вполне определенные свойства предметов. Другие свойства (которые нам в данный момент не важны) на этом изображении (в этой МОДЕЛИ) никак не видны. Например, модель (изображение) стакана с чаем не изменится, если чай заменить на молоко или сок, стеклянный стакан на пластмассовый или на металлическую кастрюлю. В данной модели мы отражаем только одно важное свойство: в сосуде с твердыми стенками налита жидкость. От остальных свойств мы абстрагируемся.

Модели из МЧ можно использовать двумя способами: изобразить с помощью МЧ какой-либо объект или догадаться, какому именно объекту соответствует конкретная модель. Оба направления удобно состыковать: домой задается построение моделей, а урок начинается с того, что несколько человек рисуют на доске придуманные ими модели, а остальные должны отгадать, что именно промоделировано. Для одного и того же рисунка, как правило, можно придумать несколько ПРАВИЛЬНЫХ объяснений. Это значит, что мы абстрагируемся от тех отличий, которые есть в этих предметах, и обращаем внимание только на то, что у них общего.

Другое направление использования ММЧ - понимание свойств окружающих нас предметов и физических процессов. При построении моделей в роли МЧ будут выступать дети.

Например, чем твердое отличается от жидкого? Почему если сжать пальцы в ванночке с водой, поднимется только одна капелька, а если сжать карандаш, поднимется весь карандаш? Для объяснения этой ситуации смоделируем ее с помощью МЧ. Карандаш моделируется из 10-12 «твердиков», которые держат друг друга за плечи. Если сдвинуть одного человека, сдвинется весь ряд. Ряд можно разорвать (сломать карандаш), но обе его половинки останутся твердыми. Если твердиков заменить на гидратиков (отпустить руки), то любого из них можно будет спокойно отделить от остальных.

Другой эксперимент на ту же тему - проход через отверстие твердого тела и жидкости. Шеренга твердиков может выйти через дверь только боком, а гидратики пройдут свободно каждый сам по себе.

Другие вопросы, которые очень хорошо моделируются маленькими человечками:

  • что такое мягкое: твердики вперемешку с пневматиками, например, снежинка;
  • фазовые переходы: при нагревании куска льда на сковородке твердики начинают подпрыгивать и при этом сначала расцепляют руки, а потом начинают бегать; при охлаждении для того, чтобы согреться, они прижимаются друг к другу;
  • давление газа: пневматики бегают внутри оболочки и стукаются в нее;
  • связь между количеством газа, объемом, температурой и давлением: дети, взявшись за руки, образуют оболочку, внутри которой движутся пневматики; меняем размер оболочки, количество пневматиков и скорость их движения.
Поделиться: