Адронный ускоритель. Большой адронный коллайдер - зачем он нужен

Пожалуй, всему миру известно грандиознейшее научное сооружение Европы – Большой адронный коллайдер, который выстроен неподалёку от швейцарского города Женева.

Перед его запуском было немало панических слухов о грядущем конце света и о том, что установка нанесёт непоправимый вред экологии Швейцарии. Однако годы идут, коллайдер работает, а мир остаётся прежним. Для чего же построили столь огромную и дорогостоящую конструкцию? Давайте разберёмся.

Что такое Большой адронный коллайдер?

В конструкции Большого адронного коллайдера, или БАК, нет ничего мистического. Это всего лишь ускоритель заряженных элементарных частиц, который необходим для разгона тяжёлых частиц и изучения продуктов, образующихся при их столкновении с другими частицами.

Во всём мире существует больше десятка аналогичных установок, в их числе – российские ускорители в подмосковной Дубне и в Новосибирске. БАК был впервые запущен в 2008 году, но из-за случившейся вскоре аварии долгое время работал на невысокой энергетической мощности, и лишь с 2015 года стала возможной эксплуатация установки на расчётных мощностях.

Как и практически все подобные установки, БАК представляет собой тоннель, проложенный в виде кольца. Он находится на глубине примерно 100 метров на границе между Францией и Швейцарией. Строго говоря, в систему БАК входит две установки, одна меньшего, другая большего диаметра. Длина большого тоннеля превосходит размеры всех прочих существующих сегодня ускорителей и составляет 25,5 километров, из-за чего коллайдер получил название Большого.

Для чего построен коллайдер?

Современным физикам удалось разработать теоретическую модель , объединяющую три фундаментальных взаимодействия из четырёх существующих и названную Стандартной моделью (СМ). Однако она пока не может считаться всеобъемлющей теорией строения мира, поскольку практически неисследованной остаётся область, названная учёными теорией квантовой гравитации и описывающая гравитационное взаимодействие. Ведущую роль в нём, согласно теории, должен играть механизм образования массы частиц, названный бозоном Хиггса.


Учёные всего мира надеются, что исследования, проводимые на БАК, позволят изучить свойства бозона Хиггса экспериментальным путём. Кроме того, немалый интерес представляет изучение кварков – так называются элементарные частицы, образующие адроны (из-за них коллайдер назван адронным).

Как функционирует БАК?

Как уже сказано, БАК представляет собой круглый тоннель, состоящий из основного и вспомогательного колец. Стенки тоннеля сложены из множества мощнейших электромагнитов, которые генерируют поле, ускоряющее микрочастицы. Начальный разгон происходит во вспомогательном тоннеле, но необходимую скорость частицы набирают в основном кольце, после чего несущиеся навстречу частицы сталкиваются, а результат их столкновения фиксируют высокочувствительные приборы.

В результате многочисленных экспериментов в июле 2012 года руководство ЦЕРН (Европейского совета ядерных исследований) объявило о том, что эксперименты позволили обнаружить бозон Хиггса. В настоящее время продолжается изучение этого явления, так как многие его свойства отличаются от предсказанных в теории.

Для чего людям нужен БАК?

Затраты на строительство БАК составили, по разным сведениям, свыше 6 млрд долларов США. Сумма становится намного более внушительной, если вспомнить ежегодные расходы на эксплуатацию установки. Для чего нужно нести столь существенные расходы, какую пользу принесёт коллайдер обычным людям?

Исследования, запланированные и уже происходящие на БАК, в перспективе могут открыть людям доступ к дешёвой энергии, которую можно будет получать буквально из воздуха. Это будет, возможно, наиболее грандиозная научно-техническая революция в истории человечества. Кроме того, разобравшись в механизме бозона Хиггса, люди, возможно, получат власть над силой, которая пока остаётся полностью неподконтрольной людям – над гравитацией.


Безусловно, открытия, которые будут сделаны при помощи Большого адронного коллайдера, не позволят нам прямо завтра овладеть технологией преобразования вещества в энергию или создать антигравитационный летательный аппарат – практические результаты ожидаются лишь в отдалённом будущем. Однако эксперименты позволят сделать ещё несколько небольших шагов к пониманию сути строения Вселенной.

Сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) - ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. collider - сталкиватель) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Технические характеристики BAK

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см 2 ·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см 2 ·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (англ.) (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (-271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL, предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Ускорение частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц.

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света.

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду

Цели и задачи БАК

Главная задача Большого адронного коллайдера - выяснить устройство нашего мира на расстояниях меньше 10 –19 м, "прощупав" его частицами с энергией несколько ТэВ. К настоящему времени уже накопилось много косвенных свидетельств того, что на этом масштабе физикам должен открыться некий «новый пласт реальности», изучение которого даст ответы на многие вопросы фундаментальной физики. Каким именно окажется этот пласт реальности - заранее не известно. Теоретики, конечно, предложили уже сотни разнообразных явлений, которые могли бы наблюдаться на энергиях столкновений в несколько ТэВ, но именно эксперимент покажет, что на самом деле реализуется в природе.

Поиск Новой физики Стандартную модель не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц. БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» - например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий. Изучение топ-кварков Топ-кварк - самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c 2 . Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе - Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК - ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков. Изучение механизма электрослабой симметрии Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе. Сам бозон нестабилен и имеет большую массу (более 120 ГэВ/c 2). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Изучение кварк-глюонной плазмы Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики. Поиск суперсимметрии Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» - теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу». Изучение фотон-адронных и фотон-фотонных столкновений Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики. Также рассматривается особый класс реакций - непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение. Проверка экзотических теорий Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений. Другое Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.

Дата публикации: 17.09.2012

Что такое Большой Адронный Коллайдер? Зачем он нужен? Может ли он стать причиной конца света? Давайте разложим всё «по полочкам».

Что такое БАК?

Это огромный кольцеобразный тоннель, похожий на трубу для разгона частиц. Находится он на глубине около 100 метров под территорией Франции и Швейцарии. В его постройке участвовали учёные со всего мира.

БАК был построен для того, чтобы найти бозон Хиггса - механизм, наделяющий частицы массой. Второстепенной целью также является изучение кварков - фундаментальных частиц, из которых состоят адроны (отсюда и название «адронный» коллайдер).

Многие наивно полагают, что БАК - это единственный ускоритель частиц в мире. Однако по всему миру, начиная с 50х годов, был построен не один десяток коллайдеров. БАК считается самым большим - его длина 25,5 км. К тому же в его структуру входит ещё один, меньший по диаметру, ускоритель.

БАК и СМИ

С момента начала постройки, появилось множество статей о дороговизне и опасности ускорителя. Большинство людей считают, что деньги были потрачены зря, и не понимают, зачем нужно было тратить столько денег и сил для того, чтобы найти какую-то частицу.

Во-первых, БАК - это не самый дорогой научный проект в истории. На юге Франции находится научный центр Кадараш с дорогим термоядерным реактором. Кадараш был построен при поддержке 6 стран (в том числе и России); на данный момент в него уже вложено порядка 20 миллиардов долларов. Во-вторых, открытие бозона Хиггса принесёт миру множество революционных технологий. К тому же, когда изобрели первый сотовый телефон, люди тоже встретили его изобретение негативно…

Как работает БАК?

БАК сталкивает на больших скоростях пучки частиц и следит за последующим их поведением и взаимодействием. Как правило, один пучок частиц разгоняется сначала на вспомогательном кольце, а потом уже отправляется в основное кольцо.

Множество сильнейших магнитов удерживают частицы внутри коллайдера. А высокоточные приборы фиксируют перемещения частиц, так как столкновение происходит за доли секунды.

Организацией работы коллайдера занимается ЦЕРН (организация по ядерным исследованиям).

В итоге, после огромных трудов и денежных вложений, 4 июля 2012 года ЦЕРН официально объявило о том, что бозон Хиггса найден. Конечно, некоторые свойства бозона, обнаруженные на практике, отличаются от теоретических аспектов, однако сомнений у учёных в «реальности» бозона Хиггса нет.

Зачем нужен БАК?

Чем же полезен БАК для обычных людей? Научные открытия, связанные с открытием бозона Хиггса и изучением кварков, в перспективе могут привести к новой научно-технической революции.

Во-первых, так как масса - это энергия в состоянии покоя (грубо говоря), есть возможность в будущем преобразовывать материю в энергию. Тогда проблем с энергией не будет, а значит, появится возможность путешествовать к далёким планетам. А это шаг к межзвёздным путешествиям…

Во-вторых, изучение квантовой гравитации позволит, в будущем, управлять гравитацией. Однако это случится ещё не скоро, так как гравитоны пока ещё не очень хорошо изучены, а потому устройство, контролирующее гравитацию, может быть непредсказуемым.

В-третьих, есть возможность подробнее понять М-теорию (производная от теории струн). Данная теория утверждает, что мироздание состоит из 11 измерений. М-теория претендует на звание «теории всего», а значит, её изучение позволит нам гораздо лучше понять строение Вселенной. Кто знает, быть может, в будущем человек научится перемещаться и воздействовать на другие измерения.

БАК и Конец Света

Многие люди утверждают, что работа БАК может уничтожить человечество. Как правило, говорят об этом люди, которые плохо разбираются в физике. Запуск БАК много раз откладывался, но 10 сентября 2008 года он, всё же, был запущен. Однако стоит обратить внимание, что БАК ещё ни разу не разгоняли на полную мощь. Учёные планируют запустить БАК на полную мощность в декабре 2014 года. Давайте рассмотрим возможные причины конца света и другие слухи…

1. Создание чёрной дыры

Чёрная дыра, это звезда с огромной гравитацией, которая притягивает не только материю, но и свет, и даже время. Чёрная дыра не может появиться из ниоткуда, а потому учёные из ЦЕРН считают, что шансы появления устойчивой чёрной дыры крайне малы. Однако, это возможно. При столкновении частиц может быть создана микроскопическая чёрная дыра, размеров которой хватит, чтобы уничтожить нашу планету за пару лет (или быстрее). Но бояться человечеству не стоит, так как, благодаря излучению Хокинга, чёрные дыры быстро теряют свою массу и энергию. Хотя и среди учёных есть пессимисты, которые считают, что сильное магнитное поле внутри коллайдера не позволит чёрной дыре распасться. В итоге, шанс, что создастся чёрная дыра, которая уничтожит планету, очень мал, но такая вероятность есть.

2. Образование «тёмной материи»

Она же - «странная материя», страпелька (странная капелька), «странглет». Это материя, которая при столкновении с другой материей, превращают её в подобную себе. Т.е. при столкновении странглета и обычного атома, образуются два странглета, порождая цепную реакцию. Если такая материя появится в коллайдере, то человечество будет уничтожено за считанные минуты. Однако шанс, что это произойдёт, также мал, как и образование чёрной дыры.

3. Антивещество

Версия, связанная с тем, что при работе коллайдера может появиться такое количество антивещества, которое уничтожит планету, выглядит самой бредовой. И суть даже не в том, что шансы на образование антиматерии очень малы, а в том, что на земле уже есть образцы антиматерии, хранящиеся в специальных ёмкостях, где отсутствует гравитация. На Земле вряд ли появится такое количество антивещества, которое будет способно уничтожить планету.

Выводы

Многие жители России даже не знают, как правильно написать фразу «большой адронный коллайдер», чего уж говорить об их знании его предназначения. А некоторые псевдопророки утверждают, что во Вселенной нет разумных цивилизацией потому, что каждая цивилизация, достигнув научного прогресса, создаёт коллайдер. Тогда образуется чёрная дыра, уничтожающая цивилизацию. Отсюда они объясняют и большое количество массивных чёрных дыр в центре галактик.

Однако есть и такие люди, которые считают, что мы должны побыстрее уже запустить БАК, иначе в момент прилёта инопланетян, они нас захватят, так как посчитают нас дикарями.

В итоге, единственный шанс узнать о том, что принесёт нам БАК - это просто ждать. Рано или поздно мы всё-таки узнаем, что нас ждёт: уничтожение или прогресс.


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Новость о проводимом в Европе эксперименте сколыхнула общественное спокойствие, поднявшись на первые позиции списка обсуждаемых тем. Адронный коллайдер засветился всюду – на ТВ, в прессе и интернете. Что уж говорить, если жж-юзеры создают отдельные сообщества, где уже сотни неранодушных активно высказали свое мнения по поводу нового детища науки. «Дело» предлагает вам 10 фактов, которые нельзя не знать об адронном коллайдере .

Таинственное научное словосочетание перестает быть таковым, как только мы разберемся со значенем каждого из слов. Адрон – название класса элементарных частиц. Коллайдер – специальный ускоритель, с помощью которого возможно передать элементарным частицам вещества высокую энергию и, разогнав до высочайшей скорости, воспроизвести их столкновение друг с другом.

2. Почему о нем все говорят?

По мнению ученых Европейского центра ядерных исследований CERN, эксперимент позволит воспроизвести в миниатюре взрыв, в результате которого миллиарды лет назад образовалась Вселенная. Однако больше всего общественность волнует то, какими будут последствия мини-взрыва для планеты в случае неудачного исхода эксперимента. По мнению некоторых ученых, в результате сталкивания элементарных частиц, летящих с ультрарелятивистскими скоростями в противоположных направлениях, образуются микроскопические черные дыры, а также вылетят другие опасные частицы. Полагаться же на специальное излучение, приводящее к испарению черных дыр особо не стоит – экспериментальных подтверждений тому, что оно работает, нет. Потому-то к такой научной инновации и возникает недоверие, активно подогреваемое скептически настроенными учеными.

3. Как работает эта штуковина?

Элементарные частицы разгоняются на разных орбитах в противоположных направлениях, после чего помещаются на одну орбиту. Ценность замысловатого устройства в том, что благодаря ему ученые получают возможность исследовать продукты столкновения элементарных частиц, фиксируемые специальными детекторами в виде цифровых фотокамеры с разрешением в 150 мегапикселей, способных делать 600 миллионов кадров в секунду.

4. Когда появилась идея создать коллайдер?

Идея строительства машины родилась еще в 1984 году, однако строительство туннеля началось только в 2001 году. Ускоритель расположен в том же туннеле, где прежде находился предыдущий ускоритель – Большой электрон-позитронный коллайдер. 26,7 – километровое кольцо проложено на глубине около ста метров под землёй на территории Франции и Швейцарии. 10 сентября в ускорителе был запущен первый пучок протонов. В ближайшие несколько дней будет запущен второй пучок.

5. Во сколько обошлось строительство?

В разработке проекта участвовали сотни ученых всего мира, в том числе и российские. Его стоимость оценивается в 10 миллиардов долларов, из них 531 миллион в строительство адронного коллайдера вложили США.

6. Какой вклад внесла Украина в создание ускорителя?

Ученые украинского Института теоретической физики приняли непосредственное участие в построении андронного коллайдера. Специально для исследований ими была разработана внутренняя трековая система (ITS). Она является сердцем «Алисы» — части коллайдера , где должен произойти миниатюрный «большой взрыв». Очевидно, весьма не последняя по значимости деталь машины. Украина должна ежегодно выплачивать 200 тысяч гривен за право участия в проекте. Это в 500-1000 раз меньше взносов в проект других стран.

7. Когда ждать конца света?

Первый эксперимент по столкновению пучков элементарных частиц намечен на 21 октября. До этого времени ученые планируют разогнать частицы до скорости, приблеженной к скорости света. Согласно общей теории относительности Эйнштейна, черные дыры нам не грозят. Однако в случае, если теории с дополнительными пространственными измерениями окажутся верны, у нас осталось не очень много времени, чтоб успеть решить все свои вопросы на планете Земля.

8. Чем страшны черные дыры?

Чёрная дыра - область в пространстве-времени, сила гравитационного притяжения которой настолько сильна, что даже объекты, движущиеся со скоростью света, не могут ее покинуть. Существования черных дыр подтверждается решениями уравнений Эйнштейна. Не смотря на то, многие уже представляют себе, как образовавшаяся в Европе черная дыра, разрастаясь, поглотит всю планету, бить тревогу не стоит. Черные дыры , которые, согласно некоторым теориям, могут появиться при работе коллайдера , согласно все тем же теориям, будут существовать на протяжении настолько короткого отрезка времени, что просто не успеют начать процесс поглощения материи. По утверждениям некоторых ученых, они даже не успеют долететь до стенок коллайдера.

9. Чем могут быть полезны исследования?

Помимо того, что данные исследования – очередное невероятное достижения науки, которое позволит человечеству узнать состав элементарных частиц, это еще не весь выигрыш, ради которого человечество пошло на такой риск. Возможно, в скором будущем мы с вами сможем воочию увидеть динозавров и обсудить наиболее эффективные военные стратегии с Наполеоном. Российские ученые полагают, что в результате эксперимента человечеству станет посильным создание машины времени.

10. Как произвести впечатление научно подкованного человека с помощью адронного коллайдера?

Ну и наконец, если кто-либо, заранее вооружившись ответом, спросит у вас, что же это такое адронный коллайдер, предлагаем вам достойный вариант ответа, способного приятно удивить любого. Итак, пристегнули ремни! Адронный коллайдер - ускоритель заряженных частиц, предназначенный для разгона протонов и тяжёлых ионов на встречных пучках. Построен в научно-исследовательском центре Европейского совета ядерных исследований и представляет собой 27-километровый туннель, проложенный на глубине 100 метров. В связи с тем, что протоны электрически заряжены, ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится ещё сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Они могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом. Ученые побаиваются, что в результате эксперимента могут образоваться пространственно-временны́е «туннели» в пространстве, которые являются типологической особенностью пространства-времени. В результате эксперимента также может быть доказано существование суперсимметрии, которая, таким образом, станет косвенным подтверждением истинности теории суперструн.

Поделиться: