Построение изображений, получаемых с помощью сферических зеркал. Формула сферического зеркала

Сферические зеркала могут давать различные изображения предметов. Для построения изображения одной точки А, создаваемого сферическим зеркалом, пользуются любыми двумя из трех лучей , показанных на рис. 29.13. Луч 1 из точки А проводится параллельно главной оптической оси.

После отражения он проходит через главный фокус зеркала Ф. Луч 2 из точки А проводится через главный фокус Ф. После отражения от зеркала он идет параллельно главной оптической оси зеркала. Луч 3 проводится через сферический центр С зеркала. После отражения он идет обратно к точке А по т ой же прямой.

Примеры изображений предметов, создаваемых сферическими зеркалами, показаны на рис. 29.14. Заметим, что выпуклое зеркало всегда дает мнимое изображение предметов.

Выясним, как найти положение изображения светящейся точки А, расположенной на главной оптической оси ОС зеркала (рис. 29.15). Ясно, что изображение точки должно быть на этой же оси (объясните, почему).

Проведем из точки А произвольный луч АВ. В точку его падения В проведем радиус СВ. Он является нормалью (перпендикуляром) к поверхности зеркала, поэтому <1 = <2, что и определяет положение отраженного луча BA1. В точке A1 и получится изображение точки А. Положение точки А1 однозначно определяется положением самой точки А. Поэтому точки А и А1 называют сопряженными.

Обозначим расстояние АО через d, А1О - через f и ОС - через R. Для зеркал, поверхность которых составляет малую часть поверхности сферы, приближенно можно считать, что BA ≈ ОA = d и ВА1 ≈ OA1 = f. Так как <1 = <2, то линия ВС в треугольнике ABA1 является биссектрисой угла АВА1, а это означает, что отрезки АС и А1С пропорциональны сторонам треугольника АВА1.

А1С/АС = ВА1/ВА, или (R-f)/(d-R) = f/d.

Преобразуем последнее соотношение:

Rd – fd = fd – Rf; Rf + Rd = 2fd.

После деления на Rfd получим 1/d + 1/f = 2/R. Заменяя R его значением, получим формулу сопряженных точек зеркала:

1/d + 1/f = 1/F. (29.2)

Эта формула справедлива как для вогнутых, так и для выпуклых зеркал, но числовые значения действительных величин следует подставлять с плюсом, а мнимых - с минусом. Например, главное фокусное расстояние вогнутых зеркал берется со знаком плюс, а выпуклых - со знаком минус. Отрицательный ответ показывает, что соответствующая ему величина - мнимая.

Цель работы: ознакомление с принципом определения фокусного расстояния сферического зеркала.

Оборудование: оптическая скамья со шкалой, осветителем, экраном, ползунками; набор сферических зеркал, плоское зеркало, спица, линейка.

Теория метода.

Сферическим называют зеркало, отражающая поверхность которого имеет форму части сферы.

Рис 1. Сферическое зеркало

Радиус сферы (рис.1) является радиусом кривизны зеркала. Круг, ограничиваемый краями зеркала, называют апертурой. Прямая MN, проходящая через центр апертуры B и центр кривизны C зеркала, называется

главной оптической осью зеркала. Другие прямые, проходящие через центр кривизны, но не проходящие через центр апертуры, называются побочными оптическими осями зеркала. Точка A пересечения зеркала с главной оптической осью называют вершиной зеркала. Если отражающей является вогнутая поверхность зеркала, то его называют вогнутым, если же выпуклая – выпуклым. Вогнутое зеркало может дать как действительное, так и мнимое изображение, выпуклое - только мнимое. Главным фокусом вогнутого зеркала называют точку F, лежащую на главной оптической оси, в которой пересекаются после отражения от зеркала лучи, падающие на него параллельно главной оптической оси.

Расстояние AF от главного фокуса до вершины зеркала называют главным фокусным расстоянием зеркала. Приблизительно оно равно половине радиуса кривизны зеркала.

Непосредственное измерение фокусного расстояния зеркала оказывается недостаточно точным, так как создание точечного источника или вполне параллельного пучка лучей трудно осуществимо.

Для более точного определения фокусного расстояния сферического зеркала пользуются либо соотношением:

где F - фокусное расстояние,

f - расстояние от предмета до зеркала,

d – расстояние от изображения до зеркала,

либо формулой:

(2),

связывающей отношение размера предмета и его изображения с F; d и f. Формулы (1) и (2) справедливы только в тех случаях, когда падающие лучи составляют с осью зеркала лишь небольшие углы.

1.Определение главного фокусного расстояния вогнутого сферического зеркала.

Описание установки.

Вогнутое зеркало и экран для получения действительного изображения предмета укрепляются каждый на специальном держателе. Держатель может передвигаться по оптической скамье. Имеется шкала или линейка, дающая возможность довольно точно фиксировать положение держателя.

В качестве предмета можно использовать стрелку, начерченную на матовом стекле, а в качестве источника – электрическую лампочку.


Стрелка, служащая предметом, помещена выше экрана для того, чтобы экран

не преграждал лучам путь к зеркалу (рис.2).

Рис.2 Схема хода лучей.

Порядок выполнения работы.

1. Поставив предмет на расстоянии от зеркала заведомо большем, чем удвоенное фокусное расстояние, подбирают такое положение экрана, чтобы изображение было наиболее резким.

2. Отсчитав на шкале расстояния d и f и измерив линейкой величину стрелки (её длину) – x и величину её изображения на экране y, вносят данные в отчетную таблицу.

3. Изменив d на 1,0-1,5 см, вновь находят положение экрана, соответствующее наибольшей резкости и измеряют d, f, и x, y, и т.д.

4. Из данных каждого опыта вычисляют F, воспользовавшись выражениями:

вытекающими из равенств (1) и (2).

Таблица 1.

Расстояния F 1 F ср. ∆F ср. ∆F c р. /F ср.
d f
Среднее

Таблица 2.

Длина F 2 F ср. ∆F ср. ∆F c р. /F ср.
предмета x изображения y
Среднее

6. Сравнить полученные результаты.

2.Определение главного фокусного расстояния выпуклого сферического зеркала.

Описание установки.

Выпуклое зеркало не дает действительного изображения, главный фокус его является мнимым. Чтобы найти главное фокусное расстояние такого зеркала можно снова воспользоваться формулой зеркала (1), учтя при этом, что F , f будут мнимыми, т.е. войдут в формулу (1) со знаком «-». Основную трудность использования формулы (1) составляет определение величины f – расстояния от зеркала до мнимого изображения предмета. Определить f можно с помощью плоского зеркала методом отсутствия параллакса, сущность которого состоит в следующем: если два предмета не наложены друг на друга, а разделены пространственно, то, рассматривая их и перемещая при этом голову вправо или влево, можно обнаружить смещение одного предмета относительно другого (параллактическое смещение). Если же предметы наложены друг на друга, то такого смещения нет.

Если между рассматриваемым предметом и выпуклым зеркалом поместить еще плоское зеркало так, чтобы его верхний край был ниже верхней части выпуклого зеркала, то можно одновременно рассматривать изображение одного и того же предмета сразу в двух зеркалах: плоском и выпуклом.

Перемещая плоское зеркало, можно добиться такого его положения, при котором мнимые изображения предмета в плоском и выпуклом зеркалах при перемещении головы наблюдателя вправо или влево не будут смещаться друг относительно друга, т.е. будут находиться в одной плоскости. Так как изображение в плоском зеркале находится на таком же расстоянии от зеркала, что и предмет, то, измерив расстояние между рассматриваемым предметом и плоским зеркалом (рис.3) найдем, что

f + d = 2b ; f = 2b – d. (3)

Рис.3 Ход лучей и построение изображения, даваемое выпуклым зеркалом.

Порядок выполнения работы.

1.Расположить на оптической скамье рассматриваемый предмет (спицу), выпуклое и плоское зеркало. Измерить расстояние от спицы до выпуклого зеркала.

2.Перемещая плоское зеркало, определить местоположение мнимого изображения спицы. Повторить измерение не менее пяти раз и результаты внести в таблицу.

Таблица 3.

d b f F ∆F ∆F/F
Среднее

Контрольные вопросы.

1.Каковы основные характеристики сферических зеркал?

2.Почему при проведении опытов нужно предмет ставить на расстоянии, превышающем 2F?

3.Какое и где получилось бы изображение при F

4.Где надо поместить перед вогнутым зеркалом предмет, чтобы обратное и действительное изображение его было в 3 раза больше предмета?

5.Вывести соотношения данные в равенствах (2).

Список литературы:

1. Матвеев А.Н. Оптика: Учебное пособие для физ. спец. вузов. – М.: Высш. шк., 1985.-351с.

2.Савельев И.В. Курс общей физики 3-е изд., испр.-м.: Наука, - т.2: Электричество и магнетизм. Волны. Оптика. 1988. 496с.

3. Элементарный учебник физики: в трех томах, т.3:Колебание и волны. Оптика. Атомная и ядерная физика./Под ред. Г.С.Ландсберга – 12-е изд.-М.: ФИЗМАТХИТ, 2000.-656с.

Сферические зеркала подразделяются на выпуклые и вогнутые или соответственно отрицательные и положительные, которые разли­чаются между собой лишь знаком радиуса кривизны. Фокус вогнутого зеркала – действительный, а фокус выпуклого – мни­мый. Точка главного фокуса сферического зеркала расположена на середине между центром сферы и ее вершиной, т.е. при равенстве показателей преломления пространства предметов и пространства изображений: ƒ‌‌ = ƒ"= r/2 . Главные плоскости Н и Н" при этом совпадают и касательны к сферической поверхности. Построение изображения сферическим зеркалом можно выполнить графическим методом. Для такого построения изображения исполь­зуют лучи, ход которых заранее известен:

Луч, идущий в про­странстве предметов параллельно оптической оси;

Луч, про­ходящий через передний фокус;

Луч, направленный по радиусу кривизны.

Первый луч, отразившись от зеркала, пройдет через его фокус, второй – выйдет параллельно оптической оси, третий отразится в том же направлении.

Рассмотрим построение изображения предмета в вогнутом зеркале для нескольких вариантов положений предмета:

Вариант 1. При этом, как и для сферической линзы (случай 1), предмет бесконечно удален от сферического зеркала (находится на расстоянии намного большем, чем фокусное расстояние зеркала), т.е. а ® ¥ (рис. 11). В этом случае действительное изображение предмета в виде точки будет находится в главном фокусе зеркала. Покажем на этом же рисунке наличие продольной сферической аберрации в вогнутом зеркале, т.е. когда точки F 1 , F 2 , F 3 , F 4 являются фокусами лучей I, II, III, IV, а чем ближе луч к главной оптической оси зеркала, тем ближе его фокус к главному фокусу зеркала. При отсутствии сферической аберрации все лучи сойдутся в точке главного фокуса F.

Рис. 11. Построение изображения сферическим зеркалом при размещении предмета на расстоянии намного большем, чем фокусное расстояние а ® ∞.

Вариант 2. В этом случае предмет находится на конечном расстоянии от оптического центра О сферического зеркала (Рис. 12), т. е. 2f < a < ¥. Изображение предмета будет действительным, перевернутым, уменьшенным и находится между фокусом и оптическим центром зеркала.

Рис. 12. Построение изображения А"В" при размещении предмета АВ на расстоянии 2f < a < ¥.

Вариант 3. Предмет находится в точке оптического центра сферического зеркала (Рис. 13), т. е. a = 2f . Изображение предмета – действительное, перевернутое, равное предмету и находится также в оптическом центре зеркала.

Рис. 13. Построение изображения при размещении предмета АВ на расстоянии a = 2f .



Вариант 4. Предмет находится между оптическим центром вогнутого сферического зеркала и точкой главного фокуса (Рис. 14), т.е. f < a < 2f . Изображение предмета будет действительным, перевернутым, увеличенным и находится за оптическим центром зеркала.

Рис. 14. Построение изображения А"В" при размещении предмета АВ на расстоянии f < a < 2f .

Вариант 5. Предмет находится в точке фокуса сферического зеркала (Рис.15), т.е. a = f . Изображение предмета – перевернутое и находится в бесконечности.

Рис. 15. Построение изображения при размещении предмета АВ на расстоянии a = f .

Вариант 6. Предмет находится между главным фокусом и главной плоскостью сферического зеркала, т.е. a < f . Изображение предмета – мнимое, прямое, увеличенное.

Рис. 16. Построение изображения А"В" при размещении предмета АВ на расстоянии a < f .

Аналогично вогнутому зеркалу можно построить изображения предмета в выпуклом зеркале.

Рис. 17. При расположении предмета АВ перед зеркалом на любом расстоянии не равном нулю изображение А"В" получается мнимым и находится за зеркалом.

Рис. 18. Если предмет АВ находится в вершине зеркала, то изображение А"В" также будет в вершине (предмет находится в главной плоскости Н, следовательно, изоб­ражение будет в этой же плоскости, так как у зеркала главные плоскости Н и Н" совмещены).

Рис. 19. Предмет АВ - за зеркалом, между верши­ной и точкой F, изображение А"В" – перед зеркалом (в этом случае предмет - мнимый, а изображение - действительное).

Рис.20. Предмет АВ в точке главного фокуса F, изображение – в бесконечности.

Рис. 21. Предмет АВ за точ­кой главного фокуса F, изображение А"В" – за зеркалом (предмет и изображение мнимые).

Разновидностью сферических линз являются концентрические линзы, у которых центры кривизны поверхностей находятся в одной точке, и телескопические линзы (Рис. 22), преобразующие параллельные лучи, падающие на них, также в параллельные при их выходе из линзы.

Рис. 22. Разновидности телескопических линз.

Телескопическая двояковыпуклая линза переворачивает пучек лучей (простейшая система Кеплера), а выпукло-вогнутая телескопическая линза является простейшей системой Галилея, не переворачивающая пучек параллельных лучей. Для этих линз справедливы следующие соотношения:

ƒ" 1 = nr 1 / (n-1); ƒ" 2 = nr 2 / (n-1); ƒ" 1 - ƒ" 2 = d.

Мы рассмотрели оптическое действие отдельно для каждого элемента со сферическими поверхностями. Но еще есть волоконные, несферические, нецентрированные и растровые оптические элементы и системы, которые широко применятся в современных оптических и светотехнических приборах и о которых недостаточно информирован читатель. Мы постараемся восполнить этот пробел в следующей публикации.

Пример изображения в выпуклом зеркале.
Художник Пармиджанино. Автопортрет в выпуклом зеркале.
1524г. Вена

В жизни вы часто видели своё искаженное отражение на выпуклой поверхности, например, никелированного чайника или кастрюли. Интересно наблюдать за изменением своего отражения в обыкновенной полированной ложке, если поворачивать ее то вогнутой, то выпуклой стороной.


Сферическое зеркало представляет собой часть поверхности шара и может быть вогнутым или выпуклым. Хотя принято считать, что зеркала должны быть стеклянными, на практике сферические зеркала чаще делают металлическими.

Как же формируется изображение предмета в сферических зеркалах?

Изображение предметв в вогнутом зеркале.

Точка фокуса зеркала (F)расположена в середине отрезка, соединяющего центр кривизны сферической поверхности зеркала (O) и вершину зеркала точку M. Фокусное расстояние зеркала равно f = R/2.

Пучок лучей, падающий на вогнутое зеркало параллельно оптической оси, после отражения собирается в точке фокуса.

Если предмет находится на расстояниях от вогнутого зеркала, превышающих фокусное расстояние, изображение предмета действительное и перевернутое.

Если предмет расположен между фокусом и вершиной зеркала, то его изображение получается мнимым, прямым и увеличенным. Оно будет находиться за зеркалом.

Изображение предмета в выпуклом зеркале.

Пучок лучей, падающий на выпуклое зеркало параллельно оптической оси, отражается так, как будто все лучи выходят из точки фокуса, находящейся за зеркалом на расстоянии R/2 .

Независимо от расположения предмета его изображение в выпуклом зеркале является мнимым, уменьшенным и прямым.

Примеры применения сферических зеркал.

В оптических приборах применяются зеркала с различной отражающей поверхностью: плоские, сферические и более сложных форм. Неплоские зеркала подобны линзам, имеющим свойство увеличивать или уменьшать изображение предмета по сравнению с оригиналом.

Вогнутые зеркала.

В наше время вогнутые зеркала чаще используются для освещения. В карманном электрическом фонарике стоит крошечная лампочка всего в несколько свечей. Если бы она посылала свои лучи во все стороны, то от такого фонарика было бы мало пользы: его свет не проникал бы дальше одного-двух метров. Но за лампочкой поставлено маленькое вогнутое зеркальце. Поэтому луч света от карманного фонаря прорезывает темноту на десять метров вперед. Однако, в фонаре имеется еще и маленькая линза - перед лампочкой. Зеркальце и линза помогают друг другу создавать направленный луч света.

Так же устроены и автомобильные фары и прожекторы, рефлектор синей медицинской лампы, корабельный фонарь на верхушке мачты и фонарь маяка. В прожекторе светит мощная дуговая лампа. Но если бы вынули из прожектора вогнутое зеркало, то свет лампы бесцельно разошелся бы во все стороны, она светила бы не на семьдесят километров, а всего на один-два...

Особенно сложно устроен фонарь маяка. В древности самым мощным маяком был Александрийский маяк - последнее из чудес света, связанное с именем Александра Македонского. Согласно легенде, на Александрийском маяке находилось огромное зеркало, при помощи которого можно было видеть корабли, отплывавшие из Греции. Маяк находился в городе Александрия, основанном в 332 году до н.э. в дельте Нила. На подходе к городу на острове Фарос было решено построить маяк. Маяк получился в виде трехэтажной башни высотой 120 метров. На башне находилось множество остроумных технических приспособлений: флюгера, астрономические приборы, часы. На третьем этаже, в круглой, обнесенной колоннами ротонде, горел вечно громадный костер. Но и большой костер дает не так уж много света. К тому же свет его расходился бы во все стороны и должен был бы быстро терять свою силу. Можно предположить, что огонь костра отражался с помощью большого вогнутого металлического зеркала с линзой. Вогнутое зеркало отбрасывало все лучи в одном направлении, и благодаря этому свет маяка значительно усиливался. Дрова для костра доставлялись наверх по спиральной лестнице, такой пологой и широкой, что по ней на стометровую высоту въезжали повозки, запряженные ослами.
С падением римской империи он перестал светить, обвалилась верхняя башня, а стены нижнего этажа разрушились после землетрясения в 14 веке. Руины древнего маяка были встроены в турецкую крепость и в ней существуют поныне.

Английский ученый Исаак Ньютон использовал вогнутое зеркало в телескопе. И в современных телескопах также используются вогнутые зеркала.

А вот вогнутые антенны радиотелескопов очень большого диаметра состоят из множества отдельных металлических зеркал. Например, антенна телескопа РАТАН-600 состоит из 895 отдельных зеркал, расположенных по окружности. Конструкция этого телескопа позволяет одновременно наблюдать несколько участков неба

Выпуклые зеркала.

Такие выпуклые небьющиеся зеркала часто можно увидеть на улицах города и в общественных местах.

Установка дорожных зеркал на дорогах с ограниченной видимостью позволяет обезопасить автотранспорт и людей. Эти зеркала оснащены по контуру светоотражающими элементами и светятся в темноте, отражая свет фар автомашин.

Купольные зеркала для помещений представляют собой зеркальную полусферу, с углом обзора, достигающим 360 градусов. При этом зеркало крепится в основном на потолке.

Формула сферического зеркала

Найдем связь между расстоянием d светящейся точки от зеркала, расстоянием f изображения этой точки от зеркала и радиусом R сферы, частью которой является зеркало. Рассмотрим сначала вогнутое зеркало (рис. 3.26).

Пусть светящаяся точка S расположена на главной оптической оси ОР вогнутого зеркала. Из точки S на зеркало падает множество лучей, один из которых SP после отражения в точке Р идет вдоль главной оси. Для этого луча угол падения, а следовательно, и угол отражения равен нулю, так как радиус ОР является перпендикуляром (нормалью) к сферической поверхности. Построим ход произвольного луча SB , вышедшего из точки S и отразившегося от зеркала в точке В . Будем рассматривать лишь узкие, приосевые пучки лучей. Тогда точка В окажется на небольшом расстоянии h от главной оптической оси (h << R ).

При выполнении этого условия падающий луч SB и отраженный луч BS 1 , а также радиус ОВ , проведенный в точку падения В , составляют с главной осью углы столь малые, что их синусы можно заменить тангенсами, а также самими углами, выраженными в радианах. В точке S 1 луч BS 1 пересечется с лучом PS 1 , отразившимся в полюсе зеркала. Если остальные лучи после отражения также пройдут через точку S 1 , то эта точка будет являться действительным изображением точки S .

Радиус ОВ перпендикулярен к отражающей поверхности. По закону отражения угол падения a равен углу отражения g. Для треугольника SBO можно по теореме о внешнем угле треугольника записать:

Точно так же для треугольника OBS 1:

Учитывая, что g = a, из (2) получим

Найдем связь между углами g, b и q. Для этого выразим угол a из (1) и подставим в (3):

a = b – j Þ q = b + (b – j) Þ

Теперь рассмотрим прямоугольные треугольники SBM , OBM и S 1 ВМ и выразим значения углов j, b и q через катеты этих треугольников:

DSBM : ;

DОBM : ;

DS 1 BM : .

Подставляя эти значения g, b и q в формулу (4), получим

Формула (3.2) называется формулой сферического зеркала.

Поскольку h не входит в формулу (3.2), то получается, что любой луч, вышедший из точки S и отразившийся от зеркала, пройдет через точку S 1 , т.е. точка S 1 является действительным изображением точки S .

Если в формуле (3.2) положить d ® ¥, т.е. источник бесконечно удаляется от зеркала, и лучи, падающие на зеркало, параллельны главной оптической оси (рис. 3.27, а ), то из формулы (3.2) получим

.

Эта величина является фокусным расстоянием зеркала, т.е. расстоянием зеркала до главного фокуса, и обозначается буквой F :

Другими словами, фокусное расстояние равно половине радиуса! Мы с вами теоретически обосновали формулу (3.1), которую в начале параграфа приняли к сведению как экспериментальный факт. С учетом того, что F = R/ 2, формула (3.2) имеет вид

Из принципа обратимости световых лучей следует, что если в главном фокусе вогнутого зеркала расположить точечный источник, то лучи, выходящие из этого источника, после отражения от зеркала будут параллельны главной оптической оси (рис. 3.27, б ).

А вот когда все вроде бы стало ясно, давайте посмотрим, как пойдут отраженные от вогнутого зеркала лучи в случае, показанном на рис. 3.27, б ), если рассматривать не только малые, а все возможные углы, которые падающие лучи составляют с главной оптической осью.

Рис. 3.28

Рассмотрим луч SB , падающий на зеркало из точки S , расположенной в главном фокусе (рис. 3.28). Луч SB составляет с главной оптической осью угол 90°. В прямоугольном DSBO катет SO = R /2, а гипотенуза ОВ = R , следовательно, ÐSBO = a лежит против катета, который в 2 раза меньше гипотенузы, а значит, a = 30°. Тогда, как видно из рис. 3.28, отраженный луч ВО вовсе не параллелен главной оптической оси, а пересекает ее под углом BS 1 О = 90° – 2×30° = 30°.

Читатель : Из формулы (3.3) следует, что , значит, если d < F , то и , т.е. f < 0. Что бы это значило?

Для удобства дальнейших расчетов договоримся, что величину f в формуле (3.3) будем считать алгебраической. Если f > 0, то изображение действительное, а если f < 0 – изображение мнимое.

Задача 3.6. Вогнутое зеркало с радиусом кривизны R = 1,0 м дает мнимое изображение предмета, расположенное на расстоянии 3,0 м от зеркала. На каком расстоянии d от зеркала находится предмет?

Ответ : 0,43 м.

СТОП! Решите самостоятельно: А7, А8, В9, С4, С5, D1.

Читатель : А как быть, если зеркало выпуклое? Ведь формула (3.3) получена для вогнутого зеркала?

Рис. 3.29

Автор : Когда зеркало выпуклое, то главный фокус расположен за зеркалом (рис. 3.29). Можно показать (мы это делать не будем), что формула сферического зеркала в этом случае также будет справедлива, если величину F в формуле (3.3) взять со знаком «минус». А это значит, что величину F в формуле (3.3) тоже следует рассматривать как величину алгебраическую:

1) если зеркало вогнутое, то ;

2) если зеркало выпуклое, то .

Задача 3.7. Радиус кривизны выпуклого зеркала R = 1,6 м. На каком расстоянии d перед зеркалом должен находиться предмет, чтобы его изображение получилось в п = 1,5 раза ближе к зеркалу, чем сам предмет?

чи , а с учетом того, что f < 0, получаем

. (1)

Формула зеркала в данном случае имеет вид

Подставим (1) в (2):

м.

Ответ : м.

СТОП! Решите самостоятельно: А9, А10, В10, С6, D2.

Мнимый источник

Рис. 3.30

Читатель : Допустим, в вогнутом зеркале 1 получено действительное изображение (рис. 3.30). Если мы поставим второе сферическое зеркало (выпуклое или вогнутое) на пути сходящихся лучей, то, наверное, эти лучи, отразившись от второго зеркала, дадут изображение (действительное или мнимое). Как нам тогда узнать, где находится это изображение?

Поделиться: