Меры защиты от поражения эл током разновидности. Средства защиты от поражения электрическим током

Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.

Основные способы и средства электрозащиты:

Изоляция токопроводящих частей и ее непрерывный кон-троль;

Установка оградительных устройств;

Предупредительная сигнализация и блокировка;

Использование знаков безопасности и предупреждающих плакатов;

Использование малых напряжений;

Электрическое разделение сетей;

Защитное заземление;

Выравнивание потенциалов;

Зануление;

Защитное отключение;

Средства индивидуальной электрозащиты.

Изоляция токопроводящих частей - одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5- 10 МОм. Различают рабочую, двойную и усиленную рабочую изоляцию.

Рабочей называется изоляция, обеспечивающая нор-мальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, со-стоящая из рабочей и дополнительной, используется в тех слу-чаях, когда требуется обеспечить повышенную электробезопас-ность оборудования (например, ручного электроинструмента, бытовых электрических приборов и т.д.).

Сопротивление двой-ной изоляции должно быть не менее 5 МОм, что в 10 раз пре-вышает сопротивление обычной рабочей. В ряде случаев рабо-чую изоляцию выполняют настолько надежно, что ее электросо-противление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двой-ная. Такую изоляцию называют усиленной рабочей изоляцией.

При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряже-ния, достаточные для поражения людей или возникновения по-жара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным за-землением, занулением и защитным отключением.

Защитное заземление - это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих час-тей электрооборудования, которые в обычном состоянии не на-ходятся под напряжением, но могут оказаться под ним при слу-чайном соединении их с токоведущими частями.


Рассмотрим схему действия защитного заземления на приме-ре трехфазной сети с изолированной нейтралью (рис. 9.2).

Рисунок 9.2 - Схема работы защитного заземления:

R из - сопротивление изоляции каждой из фаз относительно земли

Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по формуле

U пр =a 1 I з R з , (9.10)

где a 1 - коэффициент напряжения прикосновения или просто коэффи-циент прикосновения (a 1 < 1 и зависит от вида заземлителя);

I з - ток замыкания, А;

R з - сопротивление защитного заземления, Ом.

Ток, проходящий через тело человека, попавшего под на-пряжение прикосновения (, А), составит

где R с - сопротивление растеканию тока в земле, зависящее от удельного со-противления земли и сопротивления подошвы обуви человека, Ом.

Если человек находится в условиях высокой влажности (R c ® 0), предыдущую формулу можно упростить

Рассчитаем для случая, если I 3 = 4 А, R з = 4 Ом и a пр = 0,4 (контурный заземлитель):

Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).

Таким образом, принцип действия защитного заземления за-ключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.

Защитному заземлению (занулению) подвергают металличе-ские части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металличе-ские трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников. Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности за-земляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.

Заземляющее устройство - это совокупность заземлителя - металлических проводников, соприкасающихся с землей, и зазем-ляющих проводников, соединяющих заземляемые части электро-установки с заземлителем. В зависимости от взаимного располо-жения заземлителей и заземляемого оборудования различают вы-носные (рис.9.3) и контурные (рис.9.4) заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы пло-щадки, на которой размещено заземляемое оборудование, или со-средоточены на некоторой части этой площадки.

Контурное заземляющее устройство, заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.

Рисунок 9.3 - Схема выносного заземления:

1 - заземлители; 2 - заземляющие проводники; 3 - заземляемое оборудование; 4 - производственные здания

Рисунок 9.4 - Схема контурного заземления:

1 - заземлители; 2 - заземляющие проводники; 3 - заземляемое оборудование; 4 - производственное здание

Заземлители бывают искусственные , которые используются только для целей заземления, и естественные , в качестве кото-рых используют находящиеся в земле трубопроводы (за исклю-чением трубопроводов горючих жидкостей или газов), метал-лические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосо-вой ткани.

Требования к сопротивлению защитного заземления регла-ментируются ПУЭ. В любое время года это сопротивление не должно превышать:

4 Ом - в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ×А и менее, то сопротивление заземляющего устройства мо-жет достигать 10 Ом;

0,5 Ом - в установках, работающих под напряжением вы-ше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R ,Ом) не должно быть более 250/I 3 (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для ус-тановок напряжением до 1000 В, R не должно быть более 125/I 3 (но не более 4 или 10 Ом соответственно). В этих формулах I 3 - ток замыкания на землю, А.

Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, рабо-тающих под напряжением до 1000 В, так как в этих сетях ис-пользование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.

Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напря-жением до 1000 В с заземленной нейтралью (рис. 9.5).

Рисунок 9.5 - Схема трехфазной трехпроводной сети до 1000 В с заземленной нейтралью

Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (I 3 , А), протекающего в сети, определится из следующей зависимости

где U Ф - фазное напряжение, В;

R 0 - сопротивление заземления нейтрали, Ом;

R 3 - сопротивление корпуса электроустановки, Ом.

При этом на корпусе электроустановки возникает напряже-ние относительно земли (U к ), определяемое следующей форму-лой

Рассчитаем величину тока короткого замыкания (I 3 , А) для значений U ф = 220В и R 0 = R 3 = 4 Ом:

Ток короткого замыкания I 3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отклю-читься. Корпус электроустановки находится под опасным на-пряжением. Если человек случайно прикоснется к корпусу элек-троустановки, находящейся под этим напряжением, то ток, про-текающий через тело человека, составит

где a пр - коэффициент напряжения прикосновения.

Если a пр = 1 и U к = 110 В, то I чел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому яв-ляется смертельно опасным. Таким образом, защитное заземле-ние в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.

Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предо-хранители, автоматы и др.). Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напря-жением (рис. 9.6).

Проводник (1), который соединяет зануляемые части элек-троустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I - II- III - IV - V), чтобы данный ток был достаточен для быстрого отключения по-вреждения от сети. Это достигается срабатыванием элемента за-щиты сети от тока короткого замыкания (на рисунке этот эле-мент обозначен цифрой 2).

Цепь зануления I - II - III - IV - V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замы-кания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатыва-ние элементов защиты.

Рисунок 9.6 - Схема работы зануления:

1 - нулевой защитный проводник; 2 - срабатываемый элемент защиты; 3 - повторное заземление нулевого провода

Для устранения опасности обрыва нулевого провода устраи-вают его повторное многократное рабочее заземление через ка-ждые 250 м.

Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия I кз ³ k I ном, где I ном - номинальное значение тока, при котором происходит сраба-тывание элемента защиты; k - коэффициент, характеризующий кратность тока короткого за-мыкания относительно номинального значения тока, при ко-тором срабатывает элемент защиты.

Время срабатывания элементов защиты зависит от силы то-ка. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3 - 0,2 с. Электромагнитный автоматический выключа-тель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2- 3, а во взрывоопасных помещениях k = 1,4- 6.

Еще одна система защиты - защитное отключение - это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.

Основная характеристика этой системы - быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рисунке 9.7.

В передвижных установках напряжением до 1000 В;

Для отключения электрооборудования, удаленного от ис-точника питания, как дополнение к занулению;

В электрифицированном инструменте как дополнение к защитному заземлению или занулению;

В скальных и мерзлых фунтах при невозможности выпол-нять необходимое заземление.

Рисунок 9.7 - Схема защитного отключения:

1 - корпус электроустановки; 2 - автоматический выключатель; 3 - отключающая катушка; 4 - сердечник катушки; 5 - реле максимального напряжения; R 3 - сопротивление защитного заземления; I 3 - ток замыкания; I р - ток, протекающий через реле; R в - сопротивление вспомогательного заземления

К организационным мероприятиям, обеспечи-вающим безопасную эксплуатацию электроустановок отно-сятся оформление соответствующих работ нарядом или распо-ряжением, допуск к работе, надзор за проведением работ, стро-гое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.

Нарядом для проведения работы в электроустановках назы-вают составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.

Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы вы-полняют по распоряжению.

К организационным мероприятиям также относятся обуче-ние персонала правильным приемам работы с присвоением ра-ботникам, обслуживающим электроустановки, соответствующих квалификационных групп.

Важным вопросом электробезопасности является защита от удара молний, или молниезащита . Молниезащита - это система защитных устройств и меро-приятий, применяемых в промышленных и гражданских соору-жениях для защиты их от аварии, пожаров при попадании в них молнии. Молния - особый вид прохождения электрического тока через огромные воздушные промежутки, источник которого - атмосферный заряд, накопленный грозовым облаком.

Различают три типа воздействия тока молнии: прямой удар, вторичное воздействие заряда молнии и занос высоких потен-циалов (напряжения) в здания. При прямом разряде молнии в здание или сооружение может произойти его механическое или термическое разрушение. Последнее проявляется в виде плавле-ния или даже испарения материалов конструкции.

Вторичное воздействие разряда молнии заключается в наведении в замкну-тых токопроводящих контурах (трубопроводах, электропровод-ках и др.), расположенных внутри зданий, электрических токов. Эти токи могут вызвать искрение или нагрев металлических конструкций, что может стать причиной возникновения пожара или взрыва в помещениях, где используются горючие или взры-воопасные вещества. К этим же последствиям может привести и занос высоких потенциалов (напряжения) по любым металло-конструкциям, находящимся внутри зданий и сооружений под действием молнии.

Для защиты от действия молнии устраивают молниеот-воды (громоотводы). Это заземленные металлические конст-рукции, которые воспринимают удар молнии и отводят ее ток в землю. Различают стержневые и тросовые молниеотводы. Их защитное действие основано на свойстве молний поражать наибо-лее высокие и хорошо заземленные металлические конструкции.

Молниеотводы характеризуются зоной защиты, которая оп-ределяется как часть пространства, защищенного от удара мол-нии с определенной степенью надежности. В зависимости от степени надежности зоны защиты могут быть двух типов — А и Б. Тип зоны защиты выбирают в зависимости от ожидаемого количества поражений молнией зданий и сооружений в год (N ). Если величина N > 1, то принимают зону защиты типа А (сте-пень надежности защиты в этом случае составляет не менее 99,5%). При N £ 1 принимают зону защиты типа В (степень на-дежности этой защиты - 95% и выше).

Поражение человека электрическим током происходит в случаях:

    Прикосновения к токоведущим частям электроустановок, находящихся под напряжением.

    Приближения человека на опасное расстояние к токоведущим незащищенным изоляцией частям электроустановок.

    Прикосновения человека к нетоковедущим частям электроустановок, оказавшимся под напряжением (из-за замыкания на их корпус).

    Ошибочного принятия находящегося под напряжением оборудования как отключенного.

    Повреждения изоляции.

    Удара молнии.

    Действия электрической дуги.

    Освобождения другого человека, находящегося под напряжением.

    В результате возникновения токового напряжения на поверхности земли из-за замыкания фазного провода на землю, что привело к растеканию тока по земле. Оказавшийся в зоне поражения человек попадает под шаговое напряжение, которое по мере приближения к проводу принимает опасные значения. Шаговое напряжение зависит от расстояния между точками соприкосновения человека с землей. Уходить от упавшего провода следует мелкими шажками. На расстоянии более 20 м от провода напряжение уменьшается до нуля.

К основным мерам защиты относятся:

    Средства коллективной защиты.

    Защитное заземление, зануление, отключение.

    Использование малых напряжений.

    Применение изоляции.

Средства коллективной защиты, заключающиеся в обеспечении недоступности токоведущих частей, находящихся под напряжением. Это применение оградительных, блокировочных, сигнализирующих устройств, знаков безопасности. Для исключения опасности прикосновения к токоведущим частям электрооборудования необходимо обеспечить их недоступность. Это достигается посредством ограждения и расположения токоведущих частей на недоступной высоте или в недоступном месте.

Защитное заземление – это преднамеренное соединение металлических нетоковедущих частей электроустановки с землей. Электрическое сопротивление такого соединения должно быть минимальным (не более 4 Ом для сетей с напряжением до 1000 В. и не более 10 Ом для остальных сетей). Различают 2 типа заземления: выносное и контурное . Выносное заземление характеризуется тем, что его заземлитель (элемент заземляющего устройства, непосредственно контактирующий с землей) вынесен за пределы площадки, на которой установлено оборудование. Контурное заземление состоит из нескольких соединенных заземлителей, размещенных по контуру площадки с защищаемым оборудованием. Такой тип заземления применяют в установках выше 1000 В. В электроустановках до 1000 В сечение заземляющего проводника должно быть не менее 4 мм². Заземлять электрические приборы строго запрещено на батареи отопления и водопроводные трубы, поскольку при контакте с ними ничего не подозревающий человек получит травму. На рис. 1 приведена принципиальная схема защитного заземления:

Рис. 1. Принципиальная схема защитного заземления:

1 - заземляемое оборудование, 2 - заземлитель защитного заземления, 3 - заземлитель рабочего заземления, R 3 - сопротивление защитного заземления, R O - сопротивление рабочего заземления.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно считается основным средством обеспечения электробезопасности в трехфазных сетях. Смысл зануления состоит в том, что оно превращает замыкание фазы на корпус в однофазное короткое замыкание, в результате которого срабатывает защита (перегорает предохранитель), отключая поврежденный участок сети. Принципиальная схема зануления приведена на рис. 2:

Рис. 2. Принципиальная схема зануления:

1 - корпус однофазного приемника тока; 2 - корпус трехфазного приемника тока; 3 - предохранители; 4 - заземлители; I к - ток однофазного короткого замыкания; Ф - фазный провод; U ф - фазное напряжение; HР - нулевой рабочий проводник; HЗ - нулевой защитный проводник; КЗ - короткое замыкание

К устройствам защитного отключения относятся приборы, обеспечивающие автоматическое отключение электроустановок при возникновении опасности поражения током. Они состоят из датчиков, преобразователей и исполнительных органов.

Малое напряжение - это напряжение не более 42 В., применяемое в цепях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжениях до 10 В. В производстве чаще используют сети напряжением 12 В. и 36 В. Для создания таких напряжений используют понижающие трансформаторы.

Изоляция – это слой диэлектрика, которым покрывают поверхность токоведущих элементов, или конструкция из непроводящего материала, с помощью которых токоведущие части отделяются от остальных частей электрооборудования. Выделяют следующие виды изоляции:

- рабочая . Это электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током.

- дополнительная. Это электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

- двойная. Это изоляция, состоящая из рабочей и дополнительной изоляции.

- усиленная. Это улучшенная рабочая изоляция, которая обеспечивает такую же защиту от поражения электрическим током, как и двойная изоляция.

Основными изолирующими средствами защиты служат: изолирующие штанги, изолирующие измерительные клещи, указатели напряжения, диэлектрические перчатки, диэлектрические галоши, коврики и т.д. К общим мерам защиты от статического электричества можно отнести общее и местное увлажнение воздуха.

Для защиты людей от поражения электрическим током при повреждении изоляции должна быть применена одна из следующих мер:

· Заземление - заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.

· Зануление - в электроустановках до 1000В называется преднамеренное соединение частей электроустановки, нормально не- находящейся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источником однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.

· Защитное отключение - в электроустановках до 1кВ это автоматическое отключение всех фаз (полюсов) участка сети, обеспечивающее безопасное для человека сочетание тока и времени его прохождения при замыкании на корпус или снижении уровня изоляции ниже определенного значения.

· Разделительный трансформатор - трансформатор, предназначенный для отделения сети, питающей электроприемник, от первичной электрической сети, а также от сети заземления или зануления.

· Малое напряжение - номинальное напряжение не более 50В (42В, 36В, 24В, 12В) между фазами и по отношению к земле, применяемое в электрических установках для обеспечения электробезопасности.

· Двойная изоляция - совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению части электроприемника не приобретают опасного напряжения при повреждении только рабочей или только защитной изоляции.

  • Выравнивание потенциалов - метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым можно одновременно прикасаться или на которых может одновременно стоять человек. Практически для этого устраивают контурное заземление, т.е. располагают заземлители по контуру вокруг заземлённого оборудования.
  • Применение блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям для предотвращения ошибочных операций и доступа к токоведущим частям.

Ограждающие устройства, предотвращающие прикосновение или приближение на опасные расстояния к токоведущим частям в случаях, когда провода или токоведущие части электрооборудования не могут иметь изоляции (например, троллейные провода), размещают на расстоянии, недоступном для прикосновения с ними человека (например, вверху); применяют также ограждения, изготовленные из трудногорючих или негорючих материалов. Для исключения ошибочных соединений и лучшей ориентации в электрических цепях электроустановок провода, шины и кабели имеют маркировку в виде цифровых и буквенных обозначений и отличительную окраску. Блокирующие устройства защищают от электротравматизма путём автоматического разрыва электрической цепи перед тем, как рабочий может оказаться под напряжением. Так, при снятии защитного ограждения или открывании дверей установки, находящейся под напряжением, контакты разъединяются, отключая установку.

· применение предупреждающей сигнализации, надписей и плакатов.

Звуковой сигнал и красный свет лампы предупреждают о появлении опасности, напряжения в электроустановках, зелёный свет оповещает о снятии этого напряжения.

Плакаты и знаки делятся на:

Предупреждающие - для предупреждения об опасности поражения электрическим током "Осторожно! Электрическое напряжение», «Стой напряжение», «Испытание. Опасно для жизни», «Не влезай. Убьет!»


Запрещающие - для запрещения подачи напряжения на рабочее место, на линию, на которой работают люди: «Не включать! Работают люди», "Не включать! Работа на линии", "Не открывать! Работают люди"

Предписывающие - для указания рабочего места, для указания безопасного пути подъемами рабочему месту, расположенному на высоте: «Влезать здесь», «Работать здесь»

Указательный - для указания о недопустимости подачи напряжения на заземленный участок электроустановки: «Заземлено».

· применение устройств сигнализирующих напряженность электрических полей.

· использование средств защиты и приспособлений, в том числе для защиты от воздействия электрического поля в электроустановках, в которых его напряженность превышает допустимые нормы 5 кВ/м.

Средства защиты работающего - средство, предназначенное для предотвращения или уменьшения воздействия на работающего опасных и (или) вредных производственных факторов.

Электрозащитное средство - средство защиты, предназначенное для обеспечения электробезопасности.

. К электрозащитным средствам относятся:

Изолирующие штанги всех видов (оперативные, измерительные, для наложения заземления);

Указатели напряжения всех видов и классов напряжений (с газоразрядной лампой, бесконтактные, импульсного типа, с лампой накаливания и др.);

Бесконтактные сигнализаторы наличия напряжения;

Изолированный инструмент;

Диэлектрические перчатки, боты и галоши, ковры, изолирующие подставки;

Защитные ограждения (щиты, ширмы, изолирующие накладки, колпаки);

Переносные заземления;

Устройства и приспособления для обеспечения безопасности труда при проведении испытаний и измерений в электроустановках (указатели напряжения для проверки совпадения фаз, устройства для прокола кабеля, устройство определения разности напряжений в транзите, указатели повреждения кабелей и т.п.);

Плакаты и знаки безопасности;

Прочие средства защиты, изолирующие устройства и приспособления для ремонтных работ под напряжением в электроустановках напряжением 110 кВ и выше, а также в электросетях до 1000 В (полимерные и гибкие изоляторы; изолирующие лестницы, канаты, вставки телескопических вышек и подъемников; штанги для переноса и выравнивания потенциала; гибкие изолирующие покрытия и накладки и т.п.).

Основное электрозащитное средство - изолирующее электрозащитное средство, изоляция которого длительно выдерживает рабочее напряжение электроустановки и которое позволяет работать на токоведущих частях, находящихся под напряжением.

К основным выше 1000 В относятся:

Изолирующие штанги всех видов;

Изолирующие и электроизмерительные клещи;

Указатели напряжения;

Устройства и приспособления для обеспечения безопасности труда при проведении испытаний и измерений в электроустановках (указатели напряжения для проверки совпадения фаз, устройства для прокола кабеля, указатели повреждения кабелей и т.п.);

Прочие средства защиты, изолирующие устройства и приспособления для ремонтных работ под напряжением в электроустановках напряжением 110 кВ и выше (полимерные изоляторы, изолирующие лестницы и т.п.).

К основным электрозащитным средствам в электроустановках напряжением до 1000 В относятся:

Изолирующие штанги;

Изолирующие и электроизмерительные клещи;

Указатели напряжения;

Диэлектрические перчатки;

Изолированный инструмент.

Дополнительное электрозащитное средство - изолирующее электрозащитное средство, которое само по себе не может при данном напряжении обеспечить защиту от поражения электрическим током, но дополняет основное средство защиты, а так же служит для защиты от напряжения прикосновения и напряжения шага.

К дополнительным электрозащитным средствам в электроустановках напряжением выше 1000 В относятся:

Диэлектрические перчатки;

Диэлектрические боты;

Диэлектрические ковры;

Изолирующие колпаки;

Штанги для переноса и выравнивания потенциала.

К дополнительным электрозащитным средствам для работы в электроустановках напряжением до 1000 В относятся.:

Диэлектрические галоши;

Диэлектрические ковры;

Изолирующие подставки и накладки;

Изолирующие колпаки.

применение надлежащей изоляции, а в отдельных случаях – повышенной.

· соблюдение соответствующих расстояний до токоведущих частей или путем закрытия ограждения токоведущих частей.


Похожая информация.


Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.

Основные способы и средства электрозащиты:

Изоляция токопроводящих частей и ее непрерывный контроль;

Установка оградительных устройств;

Предупредительная сигнализация и блокировки;

Использование знаков безопасности и предупреждающих плакатов;

Использование малых напряжений;

Электрическое разделение сетей;

Защитное заземление;

Выравнивание потенциалов;

Зануление;

Защитное отключение;

Средства индивидуальной электрозащиты.

Изоляция токопроводящих частей - одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5-10 МОм 1 . Различают рабочую, двойную и усиленную рабочую изоляцию.

Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента бытовых электрических приборов и т.д.). Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз пре вышает сопротивление обычной рабочей. В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.

Существуют основные и дополнительные изолирующие средства. Основными называют такие электрозащитные средства, изоляция которых надежно выдерживает рабочее напряжение. Дополнительные электрозащитные средства усиливают изоляцию человека от токопроводящих частей и земли. В табл. 20.2 приведены основные сведения об изолирующих электрозащитных средствах.

Неизолированные токопроводящие части электроустановок, работающих под любым напряжением, должны быть надежно ограждены или расположены на недоступной высоте, чтобы исключить случайное прикосновение к ним человека. Конструктивно ограждения изготавливают из сплошных металлических листов или металлических сеток.

Для предупреждения об опасности поражения электрическим током используют различные звуковые, световые и цветовые сигнализаторы, устанавливаемые в зонах видимости и слышимости персонала. Кроме того, в конструкциях электроустановок предусмотрены блокировки - автоматические устройства, с помощью которых преграждается путь в опасную зону или предотвращаются неправильные, опасные для человека действия. Блокировки могут быть механические (стопоры, защелки, фигурные вырезы), электрические или электромагнитные. Для информации персонала об опасности служат предупредительные плакаты, которые в соответствии с назначением делятся на предостерегающие, запрещающие, разрешающие и напоминающие. Части оборудования, представляющие опасность для людей, окрашивают в сигнальные цвета и на них наносят знак безопасности (в соответствии с ГОСТом 12.4.026-76 «Цвета сигнальные и знаки безопасности»). Красным цветом окрашивают кнопки и рычаги аварийного отключения электроустановок.

Таблица 2. Классификация изолирующих электрозащитных средств

Для уменьшения опасности поражения током людей, работающих с переносным электроинструментом и осветительными лампами, используют малое напряжение, не превышающее 42 В. В ряде случаев, например, при работе в металлическом резервуаре, для питания ручных переносных ламп используют напряжение 12 В.

Для повышения безопасности проводят электрическое разделение сетей на отдельные короткие электрически не связанные между собой участки с помощью разделяющих трансформаторов. Такие разделенные сети обладают малой емкостью и высоким сопротивлением изоляции. Раздельное питание используют при работе с переносными электрическими приборами, на строительных площадках, при ремонтах на электростанциях и др.

При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.

Защитное заземление - это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.

Если произошло замыкание и корпус электроустановки оказался под напряжением, то прикоснувшийся к нему человек попадает под напряжение прикосновения пр ), которое определяется выражением:

(9)

где V 3 - полное напряжение на корпусе электроустановки, В;

- потенциал поверхности земли или пола, В.

Таким образом, напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно может коснуться человек.

Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 3).

Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по Формуле:

где а пр - коэффициент напряжения прикосновения или просто коэффициент прикосновения (а пр < 1 и зависит от вида заземлителя);

Iз - ток замыкания, А;

Rз - сопротивление защитного заземления, Ом.

Ток, проходящий через тело человека, попавшего под напряжение прикосновения (I А чел, А), составит:

где Rс - сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека, Ом.

Если человек находится в условиях высокой влажности (Rс -> 0), предыдущую формулу можно упростить:

Рассчитаем I А чел для случая, если Iз= 4 А, Rз = 4 Ом и апр = 0,4 (контурный заземлитель):

Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).

Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.

Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников.

Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.

Заземляющее устройство - это совокупность заземлителей - металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 4).

Контурное заземляющее устройство (рис. 5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.

Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.

Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:

4 Ом - в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ*А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;

0,5 Ом - в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R , Ом) не должно быть более 250/ Iз (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для ус­тановок напряжением до 1000 В, R не должно быть более 125/ Iз (но не более 4 или 10 Ом соответственно). В этих формулах Iз - ток замыкания на землю, А.

Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.

Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 6).

Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (Iз, А), протекающего в сети, определится из следующей зависимости:

(14)

где Vф - фазное напряжение, В;

Ro - сопротивление заземления нейтрали, Ом;

- сопротивление корпуса электроустановки, Ом.

При этом на корпусе электроустановки возникает напряжение относительно земли (Vк), определяемое следующей формулой:

(15)

Рассчитаем величину тока короткого замыкания (1к, А) для значений V ф = 220 В и R 0 = = 4 Ом:

Ток короткого замыкания / 3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит:

(17)

где а пр - коэффициент напряжения прикосновения.

Если а пр = 1 и V K = 110 В, то I чел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.

Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление - это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 7).

Проводник (1), который соединяет зануляемые части элекроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I - II - III - IV - V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).

Цепь зануления I - II - III - IV - V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывние элементов защиты.

Для устранения опасности обрыва нулевого провода устраи­вают его повторное многократное рабочее заземление через ка­ждые 250 м.

Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия:

I K з >k I HOM , (18)

где Iном - номинальное значение тока, при котором происходит срабатывание элемента защиты;

k - коэффициент, характеризующий кратность тока короткого за­мыкания относительно номинального значения тока, при котором срабатывает элемент защиты.

Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3-0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2-3, а во взрывоопасных помещениях - k = 1,4-6.

Еще одна система защиты - защитное отключение - это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.

Основная характеристика этой системы - быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рис. 20.8.

При замыкании фазного провода на заземленный или зануленный корпус электроустановки на нем возникает напряжение корпуса V K . Если оно превышает заранее установленное предельно допустимое напряжение V K доп (т. е. если V K > У к доп), срабатывает защитное отключающее устройство. Схема работает следующим образом.

Вследствие разности потенциалов между корпусом электроустановки 1 и землей возникает ток I р, который, проходя через реле 5, замыкает его контакты, подавая питание на отключающую катушку 3. Под влиянием возникшего электромагнитного поля внутрь нее втягивается сердечник 4, вызывая отключение автоматического выключателя 2, и установка обесточивается.

В передвижных установках напряжением до 1000 В;

Для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;

В электрифицированном инструменте как дополнение к| защитному заземлению или занулению;

В скальных и мерзлых грунтах при невозможности выполнить необходимое заземление.

1 - корпус электроустановки; 2 - автоматический выключатель; 3 - отключающая катушка; 4 - сердечник катушки; 5 - реле максимального

напряжения; R з - сопротивление защитного заземления; I 3 - ток замыкания; I p - ток, протекающий через реле; R 1 - сопротивление вспомогательного заземления

Рис. 8. Схема защитного отключения

Рассмотрим кратко организационные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок. К ним относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.

Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.

Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.

К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп. Сведения о квалификационных груп­пах персонала представлены в табл. 3.

В ряде случаев существенную опасность для человека представляет статическое электричество, под которым понимают совокупность явлений, связанных с возникновением, сохране­нием и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт. Воздействие статического электричества на организм человека проявляется в виде слабого длительно протекающего тока либо в форме кратковременного разряда через тело человека, в результате чего может произойти несчастный случай.

Вредное воздействие на организм человека оказывает и электрическое поле повышенной напряженности. Оно вызывает функциональные изменения центральной нервной, сердечнососудистой и некоторых других систем организма.

Защиту от статического электричества осуществляют по двум основным направлениям: уменьшение генерации электрических зарядов и устранение зарядов статического электричества. Для реализации первого направления необходимо правильно подбирать конструкционные материалы, из которых изготавливаются машины, агрегаты и прочее технологическое оборудование. Эти материалы должны быть слабо электризующимися или неэлектризующимися. Например, синтетический материал, состоящий на 40% из нейлона и 60% дакрона, не электризуется при трении о хромированную поверхность.

Таблица 3. Квалификационные группы персонала, обслуживающего электроустановки

Для снятия зарядов статического электричества с поверхности технологического оборудования его обязательно заземляют.

Кроме перечисленных способов защиты от статического электричества большое значение имеет снижение удельного поверхностного электрического сопротивления перерабатываемых материалов. Это достигается повышением относительной влажности в помещении, где производится обработка поглощающих воду материалов (древесины, бумага, хлопчатобумажной ткани и др.), до 65-70%, нанесением на их поверхность специальных антистатических составов, введением в состав твердых диэлектриков электропроводящих материалов (графита, углеродных волокон, алюминиевой пудры и т.д.). Существуют и другие методы защиты от статического электричества.

Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства:

1.защитное заземление, зануление;

2.защитное отключение;

3.выравнивание потенциалов;

4.малое напряжение;

5.изоляцию токоведущих частей;

6.электрическое разделение сети;

7.оградительные устройства;

8.блокировка;

9.предупредительную сигнализацию;

10.знаки безопасности;

11.предупредительные плакаты;

12.электрозащитные средства.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании на корпус и по другим причинам.

Зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам. Задача зануления состоит в устранении опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим частям электрической установки, оказавшейся под напряжением вследствие замыкания на корпус. Решается эта задача быстрым отключением поврежденной электроустановки от сети. Принцип действия зануления состоит в превращении замыкания на корпус в однофазное короткое замыкание с целью вызвать большой ток, способный вызвать срабатывание защиты.

Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. При применении этого вида защиты безопасность обеспечивается отключением аварийного участка в течение 0,1-0,2 секунды.

Выравнивание потенциалов – это метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек. Для выравнивания потенциала в землю укладывают стальные полосы в виде сетки по всей площади, занятой оборудованием.

Малое напряжение – это номинальное напряжение не более 42 В, примененное в цепях для уменьшения опасности поражения электрическим током.

Для изоляции токоведущих частей применяют следующие изоляции:

Рабочую – это электрическая изоляция токоведущих частей электрооборудования, обеспечивающая его нормальную работу и защиту от его поражения электрическим током;

Дополнительную – предусматривается дополнительно к рабочей в случае ее повреждения (пластмассовый корпус);

Двойную – это электрическая изоляция, состоящая из рабочей и дополнительной;

Усиленную – это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от повреждения электрическим током, как и двойная изоляция.

Электрическое разделение сети – разделение сети на отдельные, электрически несвязанные между собой участки с помощью разделяющего трансформатора. Разделяющий трансформатор изолирует электрические приемники от первичной сети и сети заземления. Вторичная обмотка трансформатора и корпус электрического приемника не должны иметь ни заземления, ни связи с сетью зануления.

Предупредительная сигнализация выполняется световой или звуковой. Для световых сигналов применяются следующие цвета: красный – запрещающие и аварийные сигналы; желтый – для привлечения внимания, сигнализирует о достижении предельных значений, о переходе на автоматическую работу; зеленый – для сигнализации безопасности, сообщает о нормальном режиме работы, разрешение о начале действия; белый – для обозначения включенного состояния, используется когда нерационально использование красного, желтого и зеленого цветов; синий – используется в специальных случаях, когда не могут быть применены остальные цвета.

Поделиться: