Строение эукариотической клетки. Цитоплазма живой клетки

Цитоплазма - содержимое клетки за пределами ядра, заключенное в плазматическую мембрану. Она имеет прозрачный цвет и гелеподобную консистенцию. Цитоплазма состоит в основном из воды, а также содержит ферменты, соли, и различные органические молекулы.

Функция цитоплазмы

Цитоплазма функционирует для поддержки и суспендирования органелл и клеточных молекул. Многие клеточные процессы также происходят в цитоплазме.

Некоторые из этих процессов включают синтез белка, первую стадию , известную как гликолиз, и . Кроме того, цитоплазма помогает перемещать вещества, такие как гормоны, вокруг клетки, а также растворяет клеточные отходы.

Компоненты цитоплазмы

Органеллы

Органеллы - это крошечные клеточные структуры, которые выполняют определенные функции внутри клетки. Примеры органелл включают: , и .

Также внутри цитоплазмы находится , сеть волокон, которые помогают клетке поддерживать свою форму и обеспечивают поддержку органелл.

Цитоплазматические включения

Цитоплазматические включения представляют собой частицы, временно суспендированные в цитоплазме. Включения состоят из макромолекул и гранул.

Три типа включений, встречающихся в цитоплазме, представляют собой секреторные и питательные включения, а также пигментные гранулы. Примерами секреторных включений являются белки, ферменты и кислоты. Гликоген (хранилище молекул глюкозы) и липиды являются примерами питательных включений. Меланин, присутствующий в клетках кожи, является примером включения пигментных гранул.

Цитоплазматические отделы

Цитоплазму можно разделить на две основные части: эндоплазму и эктоплазму. Эндоплазма представляет собой центральную область цитоплазмы, которая содержит органеллы. Эктоплазма представляет собой более гелеподобную периферическую часть цитоплазмы клетки.

Клеточная мембрана

Клеточная или плазматическая мембрана - это структура, предотвращающая пролитие цитоплазмы из клетки. Эта мембрана состоит из фосфолипидов, образующих липидный бислой, который отделяет содержимое клетки от внеклеточной жидкости. Липидный бислой является полупроницаемым, а это означает, что только некоторые молекулы способны диффундировать через мембрану для входа или выхода из клетки. Внеклеточная жидкость, белки, липиды и другие молекулы могут быть добавлены в цитоплазму клетки при помощи . В этом процессе молекулы и внеклеточная жидкость интернализуются, когда мембрана образует везикулу.

Везикула отделяет жидкость, молекулы и почки от клеточной мембраны, образуя эндосому. Эндосома перемещается внутри клетки, чтобы доставить ее содержимое в соответствующие пункты назначения. Вещества удаляются из цитоплазмы путем . В этом процессе везикулы, почкованные из тел Гольджи, сливаются с клеточной мембраной, вытесняя их содержимое из клетки. Плазматическая мембрана также обеспечивает структурную поддержку клетки, выступая в качестве стабильной платформы для прикрепления цитоскелета и .

Внутри клетки содержится цитоплазма – вещество, которое занимает почти весь объем клетки и состоит из гиалоплазмы, органоидов и включений. Основными функциями цитоплазмы являются объединение всех компонентов клетки в единую систему, создание среды для биохимических и физиологических процессов, а также для существования органоидов.

Состав цитоплазмы

В основу химического состава цитоплазмы входит вода – 60-90%, органические и неорганические соединения. Цитоплазма находится в щелочной реакции. Особенностью этого вещества является постоянное перемещение или циклоз, что становится необходимым условием жизни клетки. В гиалоплазме, бесцветном, густом коллоидном растворе происходят процессы обмена веществ. Благодаря гиалоплазме осуществляется взаимосвязь ядра и органоидов.

В состав гиалоплазмы входит эндоплазматическая сеть или ретикулум, это разветвленная система трубочек, каналов и полостей, которые разграничены одиночной мембраной. Форму бобовых имеют митохондрии, особые энергетические станции клетки. Рибосомы – органоиды, в которых содержится РНК. Еще одним органоидом цитоплазмы является комплекс Гольджи, названный так по имени итальянского биолога Гольджи. Мелкие органоиды в форме сфер – это лизосомы. В растительных клетках содержатся пластиды. Полости с клеточным соком называют вакуоли. Их много в клетках плодов растений. Выростами цитоплазмы являются многие органоиды движения – жгуты, реснички, ложноножки.

Функции составляющих цитоплазмы

Ретикулум обеспечивает создание «каркаса» для механической прочности и придания клетке формы, то есть несет формообразующую функцию. На его стенках находятся ферменты и фермент-субстратные комплексы, от которых зависит осуществление биохимической реакции. По каналам ретикулума осуществляется перенос химических соединений, таким образом, он выполняет транспортную функцию.

Митохондрии помогают расщепить сложные органические вещества. При этом происходит высвобождение энергии, которая нужна клетке для поддержания физиологических процессов.

Рибосомы отвечают за синтез белковых молекул.

Комплекс или аппарат Гольджи выполняет секреторную функцию в клетках животных, регулирует обмен веществ. У растений комплекс играет роль центра синтеза полисахаридов, которые находятся в стенках клеток.

Пластиды могут быть трех видов. Хлоропласты или зеленые пластиды участвуют в фотосинтезе. Клетка растений может вмещать до 50 хлоропластов. Хромопласты содержат пигменты – антоциан, каротиноид. Эти пластиды отвечают за окрас растений в целях привлечения животных, защиты. Лейкопласты обеспечивают накопление питательных веществ, они же могут образовывать хромопласты и хлоропласты.

Вакуоли – это место накопления питательных веществ. Также они обеспечивают формообразующую функцию клетки, создавая внутреннее давление.

Различные включения твердого и жидкого состояния представляют собой запасные вещества и вещества для выделения.

Органоиды движения обеспечивают передвижение клеток в пространстве. Они представляют собой выросты цитоплазмы, имеются у одноклеточных организмов, половых клеток, у фагоцитов.


Внимание, только СЕГОДНЯ!

Все интересное

Вакуоли-мембранные пузырьки в цитоплазме клетки, заполненные клеточным соком. В растительных клетках вакуоли занимают до 90% объема. Животные клетки имеют временные вакуоли, которые занимают не более 5% их объема. Функции вакуолей зависят от того, в…

Строение клеток всех эукариотических организмов имеет немало общих черт, однако в ходе эволюции каждое царство сделало свои компоненты наиболее приспособленными для своего образа жизни. Поэтому клетки грибов обладают рядом особенностей, отличающих…

Все живые организмы состоят из клеток. Они могут быть одноклеточными и многоклеточными, эукариотами или безъядерными прокариотами. Вне клетки жизни нет, и даже вирусы – неклеточная форма жизни – проявляют свойства живого, лишь находясь в чужой…

Растительные и животные клетки имеют общий план строения. Они состоят из мембраны, цитоплазмы, ядра и различных органоидов. Процессы клеточного обмена веществ и энергии, химический состав клеток, запись наследственной информации сходны. В то же…

Цитоплазма - очень важная клеточная составляющая. В ее полужидкой внутренней среде расположены органеллы, отвечающие за жизненно важные функции клетки. Подвижность цитоплазмы способствует взаимодействию органелл между собой. Это дает возможность…

Клетки всех живых организмов имеют схожую структуру. Все они состоят из плазматической мембраны, оболочки вокруг нее (гликокаликса у животных или клеточной стенки: у грибов - из хитина, у растений - из целлюлозы), цитоплазмы (в ней расположены…

Все живые организмы в зависимости от наличия ядра можно условно подразделить на две большие категории: прокариоты и эукариоты. Оба эти термина ведут свое происхождение от греческого «karion» - ядро. Те организмы, которые не имеют ядра,…

Клетка - это уровень организации живой материи, самостоятельная биосистема, которая обладает основными свойствами всего живого. Так, она может развиваться, размножаться, двигаться, адаптироваться и изменяться. Кроме этого, любым клеткам присущ обмен…

Клетка - это единица жизни на нашей планете, вне клетки жизни нет. Именно поэтому все особенности жизнедеятельности организмов определяются, исходя из характеристик клетки, которые определяют органоиды клетки и их функции. Из множества свойств…

Все клетки живых организмов состоят из плазматической мембраны, ядра и цитоплазмы. В последней находятся органоиды и включения. Органоиды - это постоянные образования в клетке, каждое из которых исполняет определенные функции. Включения - это…

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль ) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны . Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

  1. отделение клеточного содержимого от внешней среды,
  2. регуляция обмена веществ между клеткой и средой,
  3. деление клетки на компартаменты («отсеки»),
  4. место локализации «ферментативных конвейеров»,
  5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6. распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ . Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na + , K + , Ca 2+ , Cl -); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na + /К + -насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Работа Na + /К + -насоса . Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К + и Na + в цитоплазме и во внешней среде. Концентрация К + внутри клетки должна быть значительно выше, чем за ее пределами, а Na + — наоборот. Следует отметить, что Na + и К + могут свободно диффундировать через мембранные поры. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na + из клетки, а K + в клетку. Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K + , так и Na + . Цикл работы Na + /К + -насоса можно разделить на следующие фазы: 1) присоединение Na + с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na + во внеклеточном пространстве, 4) присоединение K + с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K + во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na + и закачивает 2К + .

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

    Перейти к лекции №7 «Эукариотическая клетка: строение и функции органоидов»

1. Приведите примеры живых существ, клетки которых способны сохранять постоянную форму.

Ответ. Постоянную форму сохраняют клетки растений, грибов, то есть тех, кто имеет клеточную стенку.

2. Каковы функции рибосом?

Ответ. Рибосо́ма - важнейший немембранный органоид живой клетки, служащий для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).

3. Что такое цитоплазма?

Ответ. Внутренняя среда клетки - цитоплазма - сложно организованная система, включающая ядро, мембранные и немембранные органеллы, включения, которые находятся во взвешенном состоянии в гиалоплазме. Последняя представляет собой гель с изменяющейся в зависимости от функционального состояния клетки степенью вязкости.

Вопросы после §15

1. Какие функции выполняет цитоскелет?

Ответ. У всех эукариот в цитоплазме имеется сложная опорная система – цитоскелет. Он состоит из трёх элементов: микротрубочек, промежуточных филаментов и микрофиламентов.

Микротрубочки пронизывают всю цитоплазму и представляют собой полые трубки диаметром 20–30 нм. Их стенки образованы специально закрученными нитями, построенными из белка тубулина. Сборка микротрубочек из тубулина происходит в клеточном центре. Микротрубочки прочны и образуют опорную основу цитоскелета. Часто они располагаются таким образом, чтобы противодействовать растяжению и сжатию клетки. Кроме механической функции, микротрубочки выполняют также и транспортную функцию, участвуя в переносе по цитоплазме различных веществ.

Промежуточные филаменты имеют толщину около 10 нм и также имеют белковую природу. Их функции в настоящий момент изучены недостаточно.

Микрофиламенты – белковые нити диаметром всего 4 нм. Их основа – белок актин. Иногда нити актина группируются в пучки. Микрофиламенты чаще всего располагаются вблизи от плазматической мембраны и способны менять её форму, что очень важно, например, для процессов фагоцитоза и пиноцитоза.

Таким образом, цитоплазма пронизана структурами цитоскелета, поддерживающими форму клетки и обеспечивающими внутриклеточный транспорт. Цитоскелет может быстро «разбираться» и «собираться». Когда он собран, то по его структурам с помощью специальных белков могут перемещаться органоиды, попадая в те места клетки, где они нужны в данный момент.

2. Из чего состоит клеточный центр?

Ответ. Клеточный центр (центросома). Он расположен в цитоплазме вблизи от ядра и образован двумя центриолями – цилиндрами, расположенными перпендикулярно друг к другу. Диаметр каждой центриоли 150–250 нм, а длина – 300–500 нм. Стенка каждой центриоли состоит из девяти комплексов микротрубочек, а каждый комплекс (или триплет), в свою очередь, построен из трёх микротрубочек. Триплеты центриоли соединены между собой рядом связок. Основной белок, образующий центриоли, – тубулин. В область клеточного центра по цитоплазме транспортируется тубулин. Здесь из этого белка собираются элементы цитоскелета. Уже в собранном виде они направляются в различные участки цитоплазмы, где и выполняют свои функции.

Центриоли необходимы также для образования базальных телец ресничек и жгутиков. Перед делением клетки центриоли удваиваются. В процессе деления клетки они попарно расходятся к противоположным полюсам клетки и участвуют в образовании нитей веретена деления.

В клетках высших растений клеточный центр устроен по-другому и центриолей не содержит

3. Какой процесс осуществляется в рибосомах?

Ответ. Органоиды, необходимые клетке для синтеза белка, – это рибосомы. Их размер составляет примерно 20 х 30 нм; в клетке их насчитывается несколько миллионов. Рибосомы состоят из двух субъединиц – большой и малой. Каждая субъединица является комплексом рРНК с белками. Рибосомы формируются в области ядрышек ядра, а затем через ядерные поры выходят в цитоплазму. Они осуществляют синтез белков, а именно – сборку молекул белков из аминокислот, доставляемых к рибосоме тРНК. Между субъединицами рибосомы имеется щель, в которой располагается молекула иРНК, а на большой субъединице имеется бороздка, по которой сползает синтезируемая молекула белка. Таким образом, в рибосомах осуществляется процесс трансляции генетической информации, т. е. её перевода с «языка нуклеотидов» на «язык аминокислот».

Рибосомы могут находиться в цитоплазме во взвешенном состоянии, но чаще они располагаются группами на поверхности эндоплазматической сети клетки. Считается, что свободные рибосомы синтезируют белки, необходимые для нужд самой клетки, а рибосомы, прикреплённые к ЭПС, изготовляют белки «на экспорт», т. е. такие белки, которые предназначены для использования во внеклеточном пространстве или в других клетках организма.

Наряду с именно цитоплазма является одной из главных частей клетки, этого строительного материала всякой органической материи. Цитоплазма играет в жизни клетки очень важную роль, она объединяет собой все клеточные структуры, способствует их взаимодействию друг с другом. Также в цитоплазме располагается ядро клетки и все . Если говорить простыми словами, то цитоплазма представляет собой такое вещество, в котором находятся все другие составные части клетки.

Строение цитоплазмы

В состав цитоплазмы входят различные химические соединения, которые представляют собой не однородное химическое вещество, а сложную физико-химическую систему, она к тому же постоянно меняется и развивается и имеет в себе большое содержание воды. Важным компонентом цитоплазмы является белковая смесь в коллоидном состоянии в сочетании с нуклеиновыми кислотами, жирами и углеводами.

Также цитоплазма разделяется на две составные части:

  • эндоплазму,
  • экзоплазму.

Эндоплазма располагается в центре клетки и имеет более текучую структуру. Именно в ней находятся все самые важные органоиды клетки. Экзоплазма располагается по периметру клетки, где граничит с ее мембраной, она более вязкая и плотная по консистенции. Она играет связующую роль клетки с окружающей средой.

Рисунок цитоплазмы.

Функции цитоплазмы

Какую функцию выполняет цитоплазма? Очень важную – в цитоплазме проходят все процессы клеточного метаболизма, за исключением синтеза нуклеиновых кислот (он осуществляется в ядре клетки). Помимо этой, самой важной функции, цитоплазма играет такие полезные роли:

  • заполняет клеточную полость,
  • является связующим звеном для клеточных компонентов,
  • определяет положение органоидов,
  • является проводником для физических и химических процессов на внутриклеточном и межклеточном уровнях,
  • поддерживает внутреннее давление клетки, ее объем, упругость и т. д.

Движение цитоплазмы

Способность цитоплазмы к движению является важным ее свойством, благодаря этому обеспечивается связь органоидов клетки. В биологии движение цитоплазмы называется циклозом, оно является постоянным процессом. Движение цитоплазмы в клетке может иметь струйчатый, колебательный или круговой характер.

Деление цитоплазмы

Еще одним свойством цитоплазмы является ее деление, без которого было бы попросту невозможно само деление клетки. Деление цитоплазмы осуществляется посредством

Поделиться: