Как расширяется вселенная? Расширяющаяся вселенная.

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил - он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера–Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150–1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923–1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера–Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.

Хаббл не знал, как эти закономерности связаны друг с другом, но что об этом говорит сегодняшняя наука?

Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера–Физо справедлива только для небольших смещений спектра.

А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V = Hd ), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V - вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить, только если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H 0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.

Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z , покинул ее, когда все космологические дистанции были в 1 + z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна-де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А если сделать распространенную ошибку и просто уравнять V /c и z , то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат - 450 000 парсек - был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую - голландский астроном Виллем де Ситтер.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по-ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной положительной кривизны. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?

Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной.

В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.

Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями.

Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.

По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию - в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера–Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).

Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H 0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается - не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!


Если, любопытствуя, мы возьмем в руки справочник или какое-нибудь научно-популярное пособие, то непременно наткнемся в них на одну из версий теории происхождения Вселенной – так называемой теории «большого взрыва». В кратком виде эту теорию можно изложить так: первоначально вся материя была сжата в одну «точку», имевшую необычайно высокую температуру, а затем эта «точка» взорвалась с огромной силой. В результате взрыва из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц постепенно образовывались атомы, вещества, планеты, звезды, галактики и, наконец, жизнь. При этом расширение Вселенной продолжается, и неизвестно, как долго будет продолжаться: возможно, когда-нибудь оно достигнет своих границ.

Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. Как любая наука, космология в своей структуре кроме эмпирического и теоретического уровней имеет также уровень философских предпосылок, философских оснований.

Так, в основании современной космологии лежит предположение о том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счете - на всю Вселенную. Это предположение об устойчивости законов природы в пространстве и времени относится к уровню философских оснований современной космологии.

Возникновение современной космологии связано с созданием релятивистской теории тяготения - общей теории относительности Эйнштейном (1916). Из уравнений Эйнштейна общей теории относительности следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии).

Применив общую теорию относительности ко Вселенной в целом, Эйншейн обнаружил, что такого решения уравнений, которому бы соответствовала не меняющаяся со временем Вселенная, не существует. Однако Эйнштейн представлял себе Вселенную как стационарную. Поэтому он ввел в полученные уравнения дополнительное слагаемое, обеспечивающее стационарность Вселенной.

В начале 20-х годов советский математик А.А.Фридман впервые решил уравнения общей теории относительности применительно ко всей Вселенной, не накладывая условия стационарности.

Он показал, что Вселенная, заполненная тяготеющим веществом, должна расширяться или сжиматься. Полученные Фридманом уравнения лежат в основе современной космологии.

В 1929 году американский астроном Э.Хаббл опубликовал статью "Связь между расстоянием и лучевой скоростью внегалактических туманностей", в которой пришел к выводу: "Далекие галактики уходят от нас со скоростью, пропорциональной удаленности от нас. Чем дальше галактика, тем больше ее скорость" (коэффициент пропорциональности получил название постоянной Хаббла).

Этот вывод Хаббл получил на основе эмпирического установления определенного физического эффекта - красного смещения, т.е. увеличения длин волн линий в спектре источника (смещения линий в сторону красной части спектра) по сравнению с линиями эталонных спектров, обусловленного эффектом Допплера, в спектрах галактик.

Открытие Хабблом эффекта красного смещения, разбегания галактик лежит в основе концепции расширяющейся Вселенной.

В соответствии с современными космологическими концепциями, Вселенная расширяется, но центр расширения отсутствует: из любой точки Вселенной картина расширения будет представляться той же самой, а именно, все галактики будут иметь красное смещение, пропорциональные расстоянию до них. Само пространство как бы раздувается.

Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем из-за сил гравитации.

Одна из самых больших проблем, стоящих перед сторонниками теории «большого взрыва», как раз состоит в том, что ни один из предлагаемых ими сценариев возникновения Вселенной невозможно описать математически или физически. Согласно базовым теориям «большого взрыва», первоначальным состоянием Вселенной была точка бесконечно малых размеров с бесконечно большой плотностью и бесконечно высокой температурой. Однако такое состояние выходит за пределы математической логики и не поддается формальному описанию. Так что в действительности о первоначальном состоянии Вселенной ничего определенного сказать нельзя, и расчеты тут подводят. Поэтому это состояние получило в среде ученых название «феномена».

Так как этот барьер до сих пор не преодолен, то в научно-популярных изданиях для широкой публики тема «феномена» обычно опускается вообще, а в специализированных научных публикациях и изданиях, авторы которых пытаются как-то справиться с этой математической проблемой, о «феномене» говорят как о вещи, недопустимой с научной точки зрения, Стивен Хоукинг, профессор математики из Кембриджского университета, и Дж.Ф.Р. Эллис, профессор математики университета в Кейптауне, в своей книге «Длинная шкала структуры пространство-время» указывают: «Достигнутые нами результаты подтверждают концепцию, что Вселенная возникла конечное число лет назад. Однако отправной пункт теории возникновения Вселенной – так называемый «феномен» – находится за гранью известных законов физики». Тогда приходится признать, что во имя обоснования «феномена», этого краеугольного камня теории «большого взрыва», необходимо допустить возможность использования методов исследований, выходящих за рамки современной физики.

«Феномен», как и любой другой отправной пункт «начала Вселенной», включающий в себя что-то, что невозможно описать научными категориями, остается открытым вопросом. Однако возникает следующий вопрос: откуда появился сам «феномен», как он образовался? Ведь проблема «феномена» – это только часть гораздо большей проблемы, проблемы самого источника начального состояния Вселенной. Иными словами – если первоначально Вселенная была сжата в точку, то что привело ее в это состояние? И если мы даже откажемся от вызывающего теоретические трудности «феномена», то все равно останется вопрос: как образовалась Вселенная?

В попытках обойти эту трудность, некоторые ученые предлагают так называемую теорию «пульсирующей Вселенной». По их мнению, Вселенная бесконечно, раз за разом, то сжимается в точку, то расширяется до каких-то границ. Такая Вселенная не имеет ни начала, ни конца, существуют только цикл расширения и цикл сжатия. При этом авторы гипотезы утверждают, что Вселенная существовала всегда, тем самым вроде бы полностью снимая вопрос о «начале мира».

Но дело в том, что никто до сих пор не представил удовлетворительного объяснения механизма пульсации. Почему происходит пульсация Вселенной? Какими причинами она вызвана? Физик Стивен Вайнберг в своей книге «Первые три минуты» указывает, что при каждой очередной пульсации во Вселенной неизбежно должна возрастать величина соотношения количества фотонов к количеству нуклеонов, что ведет к угасанию новых пульсаций. Вайнберг делает вывод, что таким образом количество циклов пульсации Вселенной конечно, а значит, в какой-то момент они должны прекратиться. Следовательно, «пульсирующая Вселенная» имеет конец, а значит, имеет и начало.

В 2011 году нобелевская премия по физике была присуждена участнику проекта Supernova Cosmology Саулу Перлмуттеру из Национальной лаборатории Лоренса Беркли, а также членам исследовательской группы High-z Supernova Брайану П. Шмидту из Австралийского национального университета и Адаму Г. Риссу из Университета Джонса Хопкинса.

Трое ученых разделили премию за открытие ускорения расширения Вселенной путем наблюдения далеких сверхновых звезд. Они изучали особый вид сверхновых типа Ia. Это взорвавшиеся старые компактные звезды тяжелее Солнца, но размером с Землю. Одна такая сверхновая может излучать столько света, сколько целая звездная плеяда. Двум группам исследователей удалось обнаружить более 50 далеких сверхновых Ia, чей свет оказался слабее, чем ожидалось. Это было доказательством того, что расширение Вселенной ускоряется. Исследование неоднократно натыкалось на загадки и сложные проблемы, однако, в конце концов, обе команды ученых пришли к одинаковым заключениям об ускорении расширения Вселенной.

Это открытие на самом деле удивительно. Нам уже известно, что после Большого взрыва около 14 миллиардов лет назад Вселенная начала расширяться. Тем не менее, открытие того, что это расширение ускоряется, поразило самих первооткрывателей.

Причину загадочного ускорения приписывают гипотетической темной энергии, которая составляет по расчетам примерно три четверти Вселенной, но до сих пор остается самой большой загадкой современной физики.

Видео: Александр Фридман и Теория Расширяющейся Вселенной



Если посмотреть на небо ясной безлунной ночью, то самыми яркими объектами, скорее всего, окажутся планеты Венера, Марс, Юпитер и Сатурн. А еще вы увидите целую россыпь звезд, похожих на наше Солнце, но расположенных намного дальше от нас. Некоторые из этих неподвижных звезд в действительности едва заметно смещаются друг относительно друга при движении Земли вокруг Солнца. Они вовсе не неподвижны! Это происходит, потому что такие звезды находятся сравнительно близко к нам. Вследствие движения Земли вокруг Солнца мы видим эти более близкие звезды на фоне более далеких из различных положений. Тот же самый эффект наблюдается, когда вы едете на машине, а деревья у дороги словно бы изменяют свое положение на фоне ландшафта, уходящего к горизонту (рис. 14). Чем ближе деревья, тем заметнее их видимое движение. Такое изменение относительного положения называется параллаксом. В случае со звездами это настоящая удача для человечества, потому что параллакс позволяет нам непосредственно измерить расстояние до них.

Рис. 14. Звездный параллакс.

Движетесь ли вы по дороге или в космосе, относительное положение ближних и дальних тел изменяется по мере вашего движения. Величина этих изменений может быть использована для определения расстояния между телами.

Самая близкая звезда, Проксима Центавра, удалена от нас примерно на четыре световых года или сорок миллионов миллионов километров. Большинство других звезд, видимых невооруженным глазом, находятся в пределах нескольких сотен световых лет от нас. Для сравнения: от Земли до Солнца всего восемь световых минут! Звезды разбросаны по всему ночному небу, но особенно густо рассыпаны они в полосе, которую мы называем Млечным Путем. Уже в 1750 г. некоторые астрономы высказывали предположение, что вид Млечного Пути можно объяснить, если считать, что большинство видимых звезд собраны в дискообразную конфигурацию, наподобие тех, что мы теперь называем спиральными галактиками. Только через несколько десятилетий английский астроном Уильям Гершель подтвердил справедливость этой идеи, кропотливо подсчитывая число звезд, видимых в телескоп на разных участках неба. Тем не менее полное признание эта идея получила лишь в двадцатом столетии. Теперь мы знаем, что Млечный Путь - наша Галактика - раскинулся от края до края приблизительно на сто тысяч световых лет и медленно вращается; звезды в его спиральных рукавах совершают один оборот вокруг центра Галактики за несколько сотен миллионов лет. Наше Солнце - самая обычная желтая звезда средних размеров - находится у внутреннего края одного из спиральных рукавов. Определенно, мы проделали длинный путь со времен Аристотеля и Птолемея, когда люди считали Землю центром Вселенной.

Современная картина Вселенной начала прорисовываться в 1924 г., когда американский астроном Эдвин Хаббл доказал, что Млечный Путь не единственная галактика. Он открыл, что существует множество других звездных систем, разделенных обширными пустыми пространствами. Чтобы подтвердить это, Хаббл должен был определить расстояние от Земли до других галактик. Но галактики находятся так далеко, что, в отличие от ближайших звезд, действительно выглядят неподвижными. Не имея возможности использовать параллакс для измерения расстояний до галактик, Хаббл вынужден был применить косвенные методы оценки расстояний. Очевидной мерой расстояния до звезды является ее яркость. Но видимая яркость зависит не только от расстояния до звезды, но также и от светимости звезды - количества испускаемого ею света. Тусклая, но близкая к нам звезда затмит самое яркое светило из отдаленной галактики. Поэтому, чтобы использовать видимую яркость в качестве меры расстояния, мы должны знать светимость звезды.

Светимость ближайших звезд можно рассчитать по их видимой яркости, поскольку благодаря параллаксу мы знаем расстояние до них. Хаббл заметил, что близкие звезды можно классифицировать по характеру испускаемого ими света. Звезды одного класса всегда имеют одинаковую светимость. Далее он предположил, что если мы обнаружим звезды этих классов в далекой галактике, то им можно приписать ту же светимость, какую имеют подобные звезды поблизости от нас. Располагая такой информацией, несложно вычислить расстояние до галактики. Если вычисления, проделанные для множества звезд в одной и той же галактике, дают одно и то же расстояние, то можно быть уверенным в правильности нашей оценки. Таким способом Эдвин Хаббл вычислил расстояния до девяти различных галактик.

Сегодня мы знаем, что звезды, видимые невооруженным глазом, составляют ничтожную долю всех звезд. Мы видим на небе примерно 5000 звезд - всего лишь около 0,0001% от числа всех звезд нашей Галактики, Млечного Пути. А Млечный Путь - лишь одна из более чем сотни миллиардов галактик, которые можно наблюдать в современные телескопы. И каждая галактика содержит порядка сотни миллиардов звезд. Если бы звезда была крупинкой соли, все звезды, видимые невооруженным глазом, уместились бы в чайной ложке, однако звезды всей Вселенной составили бы шар диаметром более тринадцати километров.

Звезды настолько далеки от нас, что кажутся светящимися точками. Мы не можем различить их размер или форму. Но, как заметил Хаббл, есть много различных типов звезд, и мы можем различать их по цвету испускаемого ими излучения. Ньютон обнаружил, что, если солнечный свет пропустить через трехгранную стеклянную призму, он разложится на составляющие цвета, подобно радуге (рис. 15). Относительная интенсивность различных цветов в излучении, испускаемом неким источником света, называется его спектром. Фокусируя телескоп на отдельной звезде или галактике, можно исследовать спектр испускаемого ими света.


Рис. 15. Звездный спектр.

Анализируя спектр излучения звезды, можно определить как ее температуру, так и состав атмосферы.

В числе прочего излучение тела позволяет судить о его температуре. В 1860 г. немецкий физик Густав Кирхгоф установил, что любое материальное тело, например звезда, будучи нагретым, испускает свет или другое излучение, подобно тому как светятся раскаленные угли. Свечение нагретых тел обусловлено тепловым движением атомов внутри них. Это называется излучением черного тела (несмотря на то что сами нагретые тела не являются черными). Спектр чернотельного излучения трудно с чем нибудь перепутать: он имеет характерный вид, который изменяется с температурой тела (рис. 16). Поэтому излучение нагретого тела подобно показаниям термометра. Наблюдаемый нами спектр излучения различных звезд всегда похож на излучение черного тела, это своего рода извещение о температуре звезды.


Рис. 16. Спектр излучения черного тела.

Все тела - а не только звезды - испускают излучение вследствие теплового движения составляющих их микроскопических частиц. Распределение излучения по частоте характеризует температуру тела.

Если внимательно изучить звездный свет, он сообщит нам еще больше информации. Мы обнаружим отсутствие некоторых строго определенных цветов, причем у разных звезд они будут разными. И поскольку мы знаем, что каждый химический элемент поглощает характерный для него набор цветов, то, сравнивая эти цвета с теми, что отсутствуют в спектре звезды, мы сможем точно определить, какие элементы присутствуют в ее атмосфере.

В 1920 е гг., когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.

Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.

Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота - выше (рис. 17). И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота - ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.


Рис. 17. Эффект Доплера.

Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается. При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.

Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала. Свет представляет собой колебания, или волны, электромагнитного поля. Как мы отмечали в гл. 5, длина волны видимого света чрезвычайно мала - от сорока до восьмидесяти миллионных долей метра.

Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую - относящиеся к синему концу. Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.

Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров. В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение - почти все звездные системы удаляются от нас! Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 г.: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее. В действительности она расширяется: расстояние между галактиками постоянно растет.

Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию. Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.

Здесь просматривается отдаленное сходство с ракетой, поднимающейся с поверхности Земли. При относительно низкой скорости тяготение в конце концов остановит ракету и она начнет падать на Землю. С другой стороны, если скорость ракеты выше критической (больше 11,2 километра в секунду), тяготение не может удержать ее и она навсегда покидает Землю.

Исходя из теории тяготения Ньютона такое поведение Вселенной могло быть предсказано в любой момент в девятнадцатом или восемнадцатом веке и даже в конце семнадцатого столетия. Однако вера в статическую Вселенную была столь сильна, что заблуждение сохраняло власть над умами до начала двадцатого столетия. Даже Эйнштейн был настолько уверен в статичности Вселенной, что в 1915 г. внес специальную поправку в общую теорию относительности, искусственно добавив в уравнения особый член, получивший название космологической постоянной, который обеспечивал статичность Вселенной.
Космологическая постоянная проявлялась как действие некой новой силы - «антигравитации», которая, в отличие от других сил, не имела никакого определенного источника, а просто была неотъемлемым свойством, присущим самой ткани пространства времени. Под влиянием этой силы пространство время обнаруживало врожденную тенденцию к расширению. Подбирая величину космологической постоянной, Эйнштейн мог варьировать силу данной тенденции. С ее помощью он сумел в точности уравновесить взаимное притяжение всей существующей материи и получить в результате статическую Вселенную.
Позже Эйнштейн отверг идею космологической постоянной, признав ее своей «самой большой ошибкой». Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог все же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьез. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.

Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим. Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 г., за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!

Предположение, что Вселенная выглядит одинаково в любом направлении, не совсем соответствует действительности. Например, как мы уже знаем, звезды нашей Галактики формируют на ночном небе отчетливую светлую полосу - Млечный Путь. Но если мы посмотрим на отдаленные галактики, похоже, их число будет более или менее равным во всех частях неба. Так что Вселенная выглядит примерно одинаково в любом направлении, если наблюдать ее в крупном масштабе по сравнению с расстояниями между галактиками и игнорировать различия в малых масштабах.

Представьте себе, что вы в лесу, где деревья растут беспорядочно. Посмотрев в одном направлении, вы увидите ближайшее дерево в метре от себя. В другом направлении самое близкое дерево обнаружится на расстоянии трех метров. В третьем вы увидите сразу несколько деревьев в одном, двух и трех метрах от себя. Непохоже, будто лес выглядит одинаково в любом направлении. Но если принять во внимание все деревья в радиусе километра, такого рода различия усреднятся и вы увидите, что лес одинаков по всем направлениям (рис. 18).


Рис. 18. Изотропный лес.

Даже если распределение деревьев в лесу в целом равномерно, при ближайшем рассмотрении может оказаться, что они местами растут гуще. Так же и Вселенная не выглядит одинаковой в ближайшем к нам космическом пространстве, тогда как при увеличении масштаба мы наблюдаем одинаковую картину, в каком бы направлении ни вели наблюдение.

Долгое время однородное распределение звезд служило достаточным основанием для принятия фридмановской модели в качестве первого приближения к реальной картине Вселенной. Но позднее счастливый случай обнаружил еще одно подтверждение того, что предположение Фридмана удивительно точно описывает Вселенную. В 1965 г. два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью Джерси, отлаживали очень чувствительный микроволновый приемник. (Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приемник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помет и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Так как движение Земли направляло приемник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из за пределов Солнечной системы и даже из за пределов Галактики. Казалось, он шел в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приемник, этот шум остается постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример, подкрепляющий первую гипотезу Фридмана о том, что Вселенная одинакова во всех направлениях.

Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приемнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами. Они изучали предположение Георгия (Джорджа) Гамова (в прошлом студента Александра Фридмана) о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскаленной. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далеких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещен в красный конец спектра, что превратится из видимого излучения в микроволновое. Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его. За эту находку Пензиас и Вильсон были в 1978 г. удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).

На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной. Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики. Если помните, именно в этом и состояло второе предположение Фридмана.

Мы не располагаем никакими научными аргументами за или против второй гипотезы Фридмана. Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

Во фридмановской модели Вселенной все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду (рис. 19). Точно так же в модели Фридмана скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым модель предсказывает, что красное смещение галактики должно быть прямо пропорционально ее удаленности от нас - это та самая зависимость, которую позднее обнаружил Хаббл. Хотя Фридману удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 г. аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.


Рис. 19. Расширяющаяся Вселенная воздушного шара.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Фридман предложил только одну модель Вселенной. Но при сделанных им предположениях уравнения Эйнштейна допускают три класса решений, то есть существует три разных типа фридмановских моделей и три различных сценария развития Вселенной.

Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его. После этого галактики начинают сближаться, а Вселенная - сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана - то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности. - Перев.). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей - наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства). Чем выше текущая скорость расширения, тем б о льшая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно - как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не все. Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик. Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

(В одном из новых нейтринных экспериментов используется подземный резервуар, заполненный 50 тысячами тонн воды.) Считается, что нейтрино невесомы и поэтому не вызывают гравитационного притяжения.

Однако исследования нескольких последних лет свидетельствуют, что нейтрино все же обладает ничтожно малой массой, которую ранее не удавалось зафиксировать. Если нейтрино имеют массу, они могли бы быть одной из форм темной материи. Тем не менее, даже с учетом такой темной материи, во Вселенной, похоже, гораздо меньше вещества, чем необходимо для остановки ее расширения. До недавнего времени большинство физиков сходилось на том, что ближе всего к реальности вторая модель Фридмана.

Но затем появились новые наблюдения. За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции - темной энергии.

И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, аускоряется. Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества - высокой или низкой плотности - может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения - это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

С развитием новых технологий и появлением превосходных космических телескопов мы стали то и дело узнавать о Вселенной удивительные вещи. И вот хорошая новость: теперь нам известно, что Вселенная продолжит в ближайшее время расширяться с постоянно возрастающей скоростью, а время обещает длиться вечно, по крайней мере для тех, кому хватит благоразумия не угодить в черную дыру. Но что же было в самые первые мгновения? Как начиналась Вселенная, и что заставило ее расширяться?

Когда мы смотрим на далекую Вселенную, мы всюду видим галактики - во всех направлениях, на миллионы и даже миллиарды световых лет. Поскольку есть два триллиона галактик, которые мы могли бы наблюдать, сумма всего, что за ними, больше и круче самых смелых наших представлений. Один из самых интересных фактов состоит в том, что все галактики, которые мы когда-либо наблюдали, подчиняются (в среднем) одним и тем же правилам: чем они дальше от нас, тем быстрее они от нас и удаляются. Это открытие, сделанное Эдвином Хабблом и его коллегами еще в 1920-х годах, привело нас к картине расширяющейся Вселенной. Но что с того, что она расширяется? Наука знает, а теперь и вы узнаете.

На первый взгляд этот вопрос может показаться здравым. Потому что все, что расширяется, обычно состоит из вещества и существует в пространстве и времени Вселенной. Но сама Вселенная - это пространство и время, содержащее материю и энергию в себе. Когда мы говорим, что «Вселенная расширяется», мы имеем в виду расширение самого пространства, в результате которого отдельные галактики и скопления галактик удаляются друг от друга. Проще всего было бы представить шарик теста с изюмом внутри, который выпекается в печи, считает Этан Зигель.

Модель расширяющейся «булочки» Вселенной, в которой относительные расстояния увеличиваются по мере расширения пространства

Это тесто - ткань пространства, а изюминки - связанные структуры (вроде галактик или скоплений галактик). С точки зрения любой изюминки, все остальные изюмы будут от нее отходить, и чем они дальше - тем быстрее. Только в случае Вселенной печи и воздуха за пределами теста не существует, есть только тесто (пространство) и изюм (вещество).

Красное смещение создают не просто удаляющиеся галактики, а скорее пространство между нами

Откуда мы знаем, что это пространство расширяется, а не галактики удаляются?

Если вы видите, что во всех направлениях от вас удаляются объекты, есть только одна причина, способная это объяснить: расширяется пространство между вами и этими объектами. Также можно было бы предположить, что вы находитесь возле центра взрыва, и многие объекты просто находятся дальше и удаляются быстрее, потому что получили больше энергии взрыва. Если бы это было так, мы могли бы доказать это двумя способами:

  • На больших расстояниях и высоких скоростях будет меньше галактик, поскольку со временем они сильно распространились бы в пространстве
  • Отношение красного смещения и расстояния будет принимать конкретную форму на больших расстояниях, которая будет отличаться от формы, если бы расширялась ткань пространства

Когда мы смотрим на большие расстояния, мы находим, что дальше во Вселенной плотность галактик выше, чем ближе к нам. Это согласуется с картиной, в которой пространство расширяется, потому что смотреть дальше - то же самое, что смотреть в прошлое, где произошло меньше расширения. Мы также обнаруживаем, что отдаленные галактики имеют отношение красного смещения и расстояния, соответствующее расширению пространства, и совсем нет - если бы галактики просто быстро удалялись от нас. Наука может ответить на этот вопрос двумя разными способами, и оба ответа поддерживают расширение Вселенной.

Всегда ли Вселенная расширялась с одной скоростью?

Мы называем ее постоянной Хаббла, но она является постоянной только в пространстве, а не во времени. Вселенная в настоящий момент расширяется медленнее, чем в прошлом. Когда мы говорим о скорости расширения, мы говорим о скорости на единицу расстояния: около 70 км/c/Мпк сегодня. (Мпк - это мегапарсек, примерно 3 260 000 световых лет). Но скорость расширения зависит от плотностей всех разных вещей во Вселенной, включая материю и излучение. По мере расширения Вселенной материя и излучение в ней становятся менее плотными, а вместе с падением плотности падает и скорость расширения. Вселенная расширялась быстрее в прошлом и замедляется со времен Большого Взрыва. Постоянная Хаббла - это неверное название, ее стоило бы назвать параметром Хаббла.

Далекие судьбы Вселенной предлагают разные возможности, но если темная энергия действительно постоянна, как показывают данные, мы будем следовать красной кривой

Будет ли Вселенная расширяться вечно или когда-нибудь остановится?

Несколько поколений астрофизики и космологи ломали голову над этим вопросом, и ответить на него можно, только определив скорость расширения Вселенной и все типы (и количества) энергии, присутствующие в ней. Мы уже успешно измерили, сколько имеется обычной материи, излучения, нейтрино, темной материи и темной энергии, а также скорость расширения Вселенной. Основываясь на законах физики и произошедшем в прошлом, складывается впечатление, что Вселенная будет расширяться вечно. Хотя вероятность этого не 100%; если нечто вроде темной энергии будет вести себя иначе в будущем по сравнению с прошлым и настоящим, все наши выводы придется пересмотреть.

Галактики движутся быстрее скорости света? Разве это не запрещено?

С нашей точки зрения, расширяется пространство между нами и удаленной точкой. Чем дальше она от нас, тем быстрее, как нам кажется, она удаляется. Даже если скорость расширения была бы крошечной, далекий объект однажды пересек бы порог любой предельной скорости, потому что скорость расширения (скорость на единицу расстояния) многократно умножилась бы при достаточном расстоянии. ОТО одобряет такой сценарий. Закон того, что ничто не может двигаться быстрее скорости света, применяется только к движению объекта через пространство, а не к самому расширению пространства. В реальности сами галактики движутся на скорости всего в несколько тысяч километров в секунду, что намного ниже предела в 300 000 км/с, установленного скоростью света. Именно расширение Вселенной вызывает рецессию и красное смещение, а не истинное движение галактики.

В пределах наблюдаемой Вселенной (желтый круг) находится приблизительно 2 триллиона галактик. Галактики, которые находятся ближе, чем на треть пути до этой границы, мы никогда уже не сможем догнать из-за расширения Вселенной. Для освоения силами людей открыто всего 3% объема Вселенной

Расширение Вселенной является необходимым следствием того, что материя и энергия наполняют пространство-время, которое подчиняется законам общей теории относительности. Пока есть материя, есть и гравитационное притяжение, так что либо гравитация победит и все снова сожмется, либо гравитация проиграет и победит расширение. Нет никакого центра расширения и нет ничего вне пространства, которое расширяется; именно сама ткань Вселенной расширяется. Что самое интересное, даже если бы мы покинули Землю на скорости света сегодня, мы смогли бы посетить всего 3% галактик в наблюдаемой Вселенной; 97% из них уже вне зоны нашей досягаемости. Вселенная сложна.

Как расширяется Вселенная


Юрий Ефремов, доктор физико-математических наук

Российские ученые показали, что расширением Вселенной управляет физический вакуум, обнаруженный в 1998 г. по астрономическим наблюдениям. Это неожиданное открытие открывает новые пути для развития естествознания и понимания самых глубоких закономерностей окружающего нас Мира.

Решает ли фундаментальная наука стоящие перед человечеством проблемы или же приводит только к новым опасностям? - ответ на этот вопрос зависит от того, насколько далеко вперед способен заглянуть человек. Все блага цивилизации мы принимаем как данность, но все они, как и успехи медицины, явились итогом многих десятилетий и веков работы ученых, занимавшихся пустячными на взгляд обывателя занятиями, вроде наблюдений за звездами или за жизнью каких-то козявок. Применение результатов науки, неконтролируемое учеными, принесло и много тяжелых проблем, но теперь лишь дальнейшее развитие науки способно нас от них избавить, равно как и дать новые источники энерги и, спасти от вызовов будущего, - таких, как новые эпидемии или природные катаклизмы.

Развитие естествознания, рано или поздно приносящее плоды, необходимые для дальнейшего существования нашей цивилизации, возможно только если равномерно развиваются все его отрасли, сколь далекими они не казались бы от теперешних человеческих нужд. Исследования ядер атомов казались до 1939 г. никчемной тратой денег; немногочисленные исследователи занимались этой проблемой только потому, что хотели знать, как устроен мир. Эта любознательность остается движущей силой науки; проблемы, которые встают перед ней, определяются внутренней логикой ее развития.

Астрономия, казалось бы, относится к самым отвлеченным от жизни занятиям, особенно теперь, когда уже ни летчики, ни моряки не нуждаются в ее услугах. Однако напомним слова Эйнштейна: "Интеллектуальные орудия, без которых было бы невозможно развитие современной техники, пришли в основном от наблюдения звезд". В последние годы развитие теор етической физики (которая в ХХ веке одарила нас не только бомбой, но и лазерами и всевозможной электроникой...) стало еще более тесно связано с успехами астрономии. А в этой науке в самом конце ХХ века началась настоящая революция, о которой еще мало знает широкая публика. (О ней расказывается в двух вышедших недавно книгах сотрудников ГАИШ МГУ: Ю.Н.Ефремов, "Вглубь Вселенной", М., УРСС, 2003; А.М.Черепащук, А.Д.Чернин, "Вселенная, жизнь, черные дыры", М., Век-II, 2003).

Когда-нибудь - может быть через несколько лет, а может быть лишь через многие десятилетия - и эта революция принесет человечеству плоды, об истоках которых к тому времени позабудут, как забыты почти всеми истоки нашего нынешнего городского комфорта. Впрочем, у человека существуют ведь и духовные потребности. Давно сказано, что он отличается от некоторых животных и тем, что способен иногда поднимать голову к небу и обращать взор на звезды...

В этой статье мы расскажем о вкладе российских ученых в развитие космологии последних лет, которое привело к радикальному изменению наших представлений о Вселенной. Космология, наука о Вселенной в целом, стоящая на стыке физики

и астрономии, родилась одновременно с общей теор ией относительности. Из ее уравнений, написанных Альбертом Эйнштейном в 1916 г. первоначально следовало, что Вселенная не может быть статичной, она должна расширяться или сжиматься.

Однако испокон веков философы были уверены в том, что Космос, Вселенная в целом, вечен и неизменен. Не было и никаких наблюдательных данных, которые позволяли бы в 1916 г. говорить о расширении Вселенной - да собственно говоря и Вселенная еще не была открыта. Эйнштейн считал, что она населена звездами, и наша система Млечного пути охватывает всю Вселенную. Больших скоростей движения звезд не наблюдалось, и это давало ему и эмпирическ ие основания добавить в свои уравнения еще один член - космологическую постоянную, которая должна сделать Вселенную статичной.

Однако уже в 1925 г. стало окончательно ясно, что наша звездная система является лишь одной из бесчисленных таких систем - галактик, населяющих огромную Вселенную (Рис. 1). Высокие скорости движения по лучу зрения у галактик уже были известны - линии в спектрах далеких галактик были неизменно сдвинуты в красную сторону. Это было следствием эффекта Допплера, который вызывает смещение спектральных линий в длинноволновую (красную) сторону при удалении от нас наблюдаемых объектов, и в синюю сторону - при их приближении.

К 1929 г. благодаря работам Эдвина Хаббла и Милтона Хьюмасона на величайшем тогда в мире 2,5-м телескопе на горе Вилсон в Калифорнии стало окончательно ясно, что существует пропорциональность между скоростями удаления галактик и их расстояниями от нас (на самом деле увеличиваются, конечно, все расстояния между всеми галактиками) - Вселенная расширяется (Рис. 2). Необходимость в космологической постоянной, какзалось бы, отпала - Вселенная действительно оказалась нестатичной. Расстояния галактик R представляются формулой R = Ht, где t - время и H - константа, названная позднее постоянной Хаббла.

После этого открытия Эйнштейн назвал введение космологической постоянной своей самой грубой ошибкой. И вплоть до конца ХХ века крупнейшие физики были убеждены в том, что в этой постоянной нет необходимости - она равна нулю. Только теперь мы начинаем понимать, что ошибочным у Эйнштейна было лишь придание космологической постоянной значения, необходимого именно для статичности Вселенной. Существование некоей силы, наряду с обычным тяготением управляющей динамикой Вселенной, было недавно доказано. После открытия расширения Вселенной (в 1929 г.) и реликтового излучения, оставшегося от первых тысячелетий расширения Вселенной (в 1965 г.), это крупнейшее достижение в наблюдательной астрономии и космологии. Сравнить с ним можно только доказательство наличия сверхмассивных черных дыр в ядрах галактик.

Выбор между космологическими моделями, описывающими Вселенную в целом можно сделать при сравнении с наблюдениями теор етических зависимостей между красным смещением и расстояниями далеких объектов с известной светимостью: при больших красных смещениях должны появиться особенности, которые должны сказать - ускоренно, равномерно или замедленно идет расширение Вселенной. И это в принципе может дать величину космологической постоянной.

Основная трудность в применении этого способа связана с необходимостью иметь надежные данные о максимально далеких объектах с известной светимостью - и в определении этой светимости и тем самым расстояний. Долгое время единственными объектами, вроде бы удовлетворяющими этим требованиям оставались ярчайшие галактики в богатых скоплениях, светимость которых можно считать примерно одинаковой. Однако оставались серьезные проблемы, связанные в частности с тем, что наиболее далекие галактики мы видим на миллиарды лет более молодыми, чем галактики наших окрестностей (Рис. 3).

Конечно, еще более серьезной оставалась проблема начала расширения - экстрапол яция его назад приводит к выводу, что миллиарды лет назад все вещество Вселенной было сосредоточено в точечном объеме. Сам Хаббл испугался этого непреложного вывода из своего открытия и считал возможным старение фотонов - уменьшение их энерги и (и стало быть увеличение длины волны) на их пути из глубин Вселенной. Однако это предположение влечет ряд следствий, которые не согласуются ни с теор ией, ни с наблюдениями.

На фоне этой сверхпроблемы долгое время оставалась незамеченной другая. Согласно существовавшей теор ии, космологическое расширение в однородном и изотропном мире происходит по линейному закону, если мы мы уходим на расстояния, на которых скорость этого расширения пространства превышает скорости галактик, обусловленные их движением при гравитационном взаимодействием с соседними галактиками. Хаббл располагал данными лишь до расстояний (в современной шкале) около 20 Мегапарсек (~60 тысяч световых лет), самые далекие его галактики были членами скопления галактик в созвездии Девы. Тем не менее Хаббл нашел, что скорости удаления галактик линейно зависят от расстояния, хотя мы знаем теперь, что однородность распределения галактик в пространстве и изотропность их скоростей наступают лишь на масштабах 100 - 300 Мегапарсек. И вот оказывается, что и на этих расстояниях постоянная Хаббла имеет ту же величину, что и на расстояниях в 2 - 20 Мегапарсек.

Лишь в 1972 г. парадоксальность этого обстоятельства отметил крупнейший американский астроном Аллан Сендидж, ученик Хаббла. Он подчеркнул также необходимость объяснения другой странности - наличие скоплений галактик, внутри которых они быстро двигаются, не вызывает большого разброса в положении галактик вокруг средней линии зависимости красного смещения от расстояния. В статье, опубликованной в 1999 г., Сендидж нашел, что локальное и глобальное значения постоянной Хаббла совпадают с точностью не хуже 10%.

Аналогичные результаты по еще более точным данным были получены недавно И.Д.Караченцевым и его группой с помощью наблюдений на 6-м телескопе Специальной астрофизической обсерватории РАН и на Космическом телескопе им. Хаббла (Рис. 4). Измеренная Караченцевым и соавторами постоянная Хаббла по данным о галактиках на расстояниях до 8 Мегапарсек оказалась такой же, как и по данным для самых далеких галактик. Объяснить этот парадокс Сендидж не мог и заключил, что "мы так и остаемся с этой тайной". Правда, уже в 1972 г. он подозревал, что постоянство расширения Вселенной на всех масштабах обусловлены глубокими космологическими причинами. И это было правильной догадкой.

В 90-ые годы стало выясняться, что гораздо лучшими, чем ярчайшие галактик в скоплениях, "стандартными свечами" могут служить Сверхновые типа Ia. Это звезды, вспыхивающие на несколько дней или недель столь ярко, что становятся сравнимыми по блеску с целой галактикой. Явление сверхновых типа Ia происходит в тесных системах, состоящих из двух плотных звезд - белых карликов при обмене веществом между компонентами системы (Рис. 5).

Попытки использовать сверхновые этого типа для целей космологии начались довольно давно, но наблюдательных данных нехватало. Проблема состояла в трудности получения наблюдательного времени на больших телескопах. Комитеты, распределяющие время этих телескопов, раньше терпеть не могли заявки на работы типа поисков, слежения, обзоров; большие телескопы ведь предназначены для изучения уникальных объектов...

Успех пришел к 1997 г. одновременно к двум командам. Одна из них была сформирована в 1988 г. в Национальной лаборатории им. Лоуренса в США и состояла в основном из физиков, ее возглавил С.Перлмуттер; другую команду, из астрономов, возглавил в 1994 г. Б.Шмидт, работавший на Обсерваториях Маунт Стромло и Сайдинг Спринг в Австралии. Эти команды получили доступ к 4-м телескопам на этой обсерватории и на Серро Тололо, а позднее и к Хаббловскому Космическому телескопу и 10-м телескопу Кека на Гавайских островах; на последнем получались спектральные данные (которые, между прочим, показали, что у далеких сверхновых аналогичные спектральные изменения свершаются медленнее, чем у более близких, - еще одно доказательство допплеровской природы красного смещения).

Результаты казались - и некоторым кажутся и сейчас - невероятными. Далекие сверхновые оказались систематически более слабыми, чем требовал линейный закон Хаббла и это означало, что Вселенная расширяется с ускорением и космологическая постоянная не равна нулю, а имеет положительный знак (Рис. 6). С.Перлмуттер рассказывает, что после одного из его первых выступлений с сообщением об открытии, один знаменитый физик - теор етик заметил, что эти наблюдательные результаты должны быть ошибочными, поскольку космологическая постоянная должна быть очень близкой к нулю.

Однако о надежности результатов говорила близость независимых выводов двух команд, тщательно рассмотревших все возможные источники ошибок. Небольшие различия в максимальной светимости сверхновых оказалось возможным учесть на основе работ, выполненных еще в 1970-ых годах Ю.П.Псковским (ГАИШ МГУ) - эти различия зависят от скорости падения блеска звезды.

В октябре 2003 года большая международная команда астрономов подтвердила вывод об ускоренном расширении Вселенной. Они получили данные о 23 сверхновых, среди которых 7 очень далеких, и это позволяет уверенно говорить о том, что ускорение расширения Вселенной не является кажущимся, и что характеристики сверхновых Ia не зависят от их расстояний и возрастов.

Ускоренное расширение Вселенной заставляет некоторых физиков вводить новую сущность, "квинтэссенцию", новое физическое поле, для которого эффективная гравитационная плотность отрицательна и которое, следовательно, способно создать антигравитацию, ведущую к ускорению расширения Вселенной. Однако классики науки учат нас не вводить новые сущности без крайней необходимости. Таким же свойством отрицательного давления обладает космический вакуум, который присутствует повсюду. Он фигурирует и в физике микромира, представляя собой наинизшее энергетическое состояние квантовых полей. Именно в нем происходят взаимодействия элементарных частиц; реальность физического вакуума бесспорно установлена в нескольких экспериментах.

Теперь есть все основания считать, что космологический член в уравнениях Эйнштейна описывает именно плотность энерги и вакуума. Эта плотность постояна во времени и в пространстве, причем в любой системе отсчета, и она имеет положительное значение.

Давление вакуума равно плотности со знаком минус, умноженной на квадрат скорости света, и следовательно, оно отрицательно, - что и вызывает ускоренное расширение Вселенной, обнаруженное теперь по данным о далеких сверхновых.

Свойства вакуума и позволяют объяснить парадокс Сендиджа. Он и его соавторы (Astrophys. J., V. 590, P. 256, 2003) отмечают, что первыми этом сделали в 2001 г. Российские и Финские астрономы. Согласно А.Д.Чернину (ГАИШ МГУ), П.Теерикорпи (Обсерватория Турку) и Ю.В.Барышеву (АИ СПбГУ) - см. обзорную статью Чернина, (Успехи физ. наук, т. 171, #11, с. 1153, 2001) - парадоксальные результаты Сендиджа и Караченцева объясняется тем, что именно вакуум определяет динамику Вселенной. Крупномасштабная кинематика галактик - расширение Вселенной - является однородной, регулярной, хотя их пространственное распределение весьма иррегулярно в тех же объемах. Это означает, что крупномасштабная динамика галактик управляется вакуумом, плотность которого начинает превышать плотность вещества уже с расстояний порядка 1,5 - 2 кпк от нас. Плотность его одинакова везде и именно она и задает темп расширения - постоянную Хаббла. Динамический эффект вакуума не зависит ни от движений, ни от распределения галактик в пространстве. Таким образом, исходя из объяснения ускоренного расширения Вселенной наличием космического вакуума, А.Чернин и его коллеги нашли и естественное объяснение парадокса Сендиджа. Концепция же квинтэссенции остается пока придуманной ad hoc - она предложена лишь потому, что даваемое астрономическими наблюдениями значение плотности энерги и вакуума несовместимо с убеждениями многих физиков.

Итак, все сходится к тому, что астрономы сумели измерить величину, о знании которой давно мечтали физики - плотность энерги и вакуума. Результат оказался неожиданным. Ожидалось, что такая фундаментальная величина должна иметь какое-то выделенное значение, либо нулевое, либо же определяемое планковской плотностью - комбинацией из постоянной тяготения, скорости света и постоянной Планка, имеющей размерность плотности и составляющей 5 х 1093 г/см3. Однако наблюденное астрономами значение плотности вакуума меньше планковского на 122 порядка - и все же оно отнюдь не нулевое! Плотность энерги и вакуума составляет около 70% плотности всего вещества Вселенной. Этот результат следует и из спутниковых измерений флуктуаций фона реликтового излучения. Он означает, что Вселенная будет расширяться вечно...

Все это ставит трудные проблемы перед фундаментальной физикой. В обзорной статье в УФН А.Д.Чернин приводит аргументы в пользу предположения, что природа вакуума должна быть как-то связана с физикой электрослабых процессов при возрасте мира около 10-12 секунды. В эпоху, когда температура расширяющегося космоса упала до соответствующего этим процессам значения, возможно и произошел последний по времени скачок (фазовый переход) в состоянии первичного вакуума, который и обусловил современное значение плотности космического физического вакуума.

Первичный вакуум - это теор етическое понятие того же уровня фундаментальности, что и понятия времени и пространства. Предполагается, что его плотность должна быть близка к планковской плотности. Никаких наблюдательных данных, подтверждающих его существование, пока нет, но именно флуктуации первичного вакуума, по мнению многих теор етиков, дают начало множеству вселенных с самыми разными значениями физических констант в них. Та из этих вселенных, параметры которой (на современном этапе!) совместимы с жизнью, является Нашей Вселенной...

Итак, Вселенная состоит на 70% из вакуума, - и лишь 4% приходится на барионы, из которых состоят звезды и газ. Это также результат последних лет. Остальные 26% плотности энерги и Вселенной дает "холодное темное вещество", обнаружимое (пока?) лишь по его гравитационному полю. Носителями этой скрытой массы являются скорее всего еще неизвестные физике слабо взаимодействующие элементарные частицы. Их усиленно разыскивают с приборами, расположенными глубоко под землей. Но об этом уже нет места рассказывать.

Могут сказать, что астрономы в итоге XX века оказались у разбитого корыта? Но нет, мы взобрались на очередную вершину знания - и увидели с нее новые пики. Состав Вселенной мы сумели определить, наблюдая звезды, масса которых составляет лишь около 1% ее полной массы (рис. 7). Это очередной триумф науки - и доказательство того, что конца науки не будет, если человечество будет ее поддерживать. И тогда нам не будут страшны никакие вызовы будущего!

Поделиться: