Общая формула кислот химия. Основные формулы кислот

Названия некоторых неорганических кислот и солей

Формулы кислот Названия кислот Названия соответствующих солей
HClO 4 хлорная перхлораты
HClO 3 хлорноватая хлораты
HClO 2 хлористая хлориты
HClO хлорноватистая гипохлориты
H 5 IO 6 иодная периодаты
HIO 3 иодноватая иодаты
H 2 SO 4 серная сульфаты
H 2 SO 3 сернистая сульфиты
H 2 S 2 O 3 тиосерная тиосульфаты
H 2 S 4 O 6 тетратионовая тетратионаты
H NO 3 азотная нитраты
H NO 2 азотистая нитриты
H 3 PO 4 ортофосфорная ортофосфаты
H PO 3 метафосфорная метафосфаты
H 3 PO 3 фосфористая фосфиты
H 3 PO 2 фосфорноватистая гипофосфиты
H 2 CO 3 угольная карбонаты
H 2 SiO 3 кремниевая силикаты
HMnO 4 марганцовая перманганаты
H 2 MnO 4 марганцовистая манганаты
H 2 CrO 4 хромовая хроматы
H 2 Cr 2 O 7 дихромовая дихроматы
HF фтороводородная (плавиковая) фториды
HCl хлороводородная (соляная) хлориды
HBr бромоводородная бромиды
HI иодоводородная иодиды
H 2 S сероводородная сульфиды
HCN циановодородная цианиды
HOCN циановая цианаты

Напомню кратко на конкретных примерах, как следует правильно называть соли.


Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.

Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.

Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!

Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.

Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.

В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.

Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H 2 SO 4 серная кислота, H 2 SO 3 сернистая кислота, HNO 3 азотная кислота, H 3 PO 4 фосфорная кислота, H 2 CO 3 угольная кислота, H 2 SiO 3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H 2 S сероводородная кислота).

В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO 3 одноосновная, так как в молекуле её один атом водорода, серная кислота H 2 SO 4 двухосновная и т.д.

Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO 3, -PO 4, -SiO 3) – это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Слово ангидрид означает безводный, то есть кислота без воды. Например,

H 2 SO 4 – H 2 O → SO 3 . Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H 2 SO 4 – серная; H 2 SO 3 – угольная; H 2 SiO 3 – кремниевая и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO 3 – азотная, HNO 2 – азотистая.

Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

H 2 + Cl 2 → 2 HCl;

H 2 + S → H 2 S.

Растворы полученных газообразных веществ HCl и H 2 S и являются кислотами.

При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

Химические свойства кислот

Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.

Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах - они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.

Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Взаимодействуют с металлами. Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H +).

При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Остались вопросы? Хотите знать больше о кислотах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим наиболее часто встречающиеся в учебной литературе формулы кислот:

Легко заметить, что объединяет все формулы кислот наличие атомов водорода (H), стоящего на первом месте в формуле.

Определение валентности кислотного остатка

Из приведённого списка видно, что количество этих атомов может отличаться. Кислоты, в составе которых есть всего один атом водорода, называют одноосновными (азотная, соляная и другие). Серная, угольная, кремниевая кислоты — двухосновные, так как в их формулах по два атома H. Молекула трёхосновной фосфорной кислоты содержит три водородных атома.

Таким образом, количество H в формуле характеризует основность кислоты.

Тот атом, или группа атомов, которые записаны после водорода, называют кислотными остатками. Например, в сероводородной кислоте остаток состоит из одного атома — S, а в фосфорной, сернистой и многих других — из двух, причём один из них обязательно кислород (O). По этому признаку все кислоты делят на кислородсодержащие и бескислородные.

Каждый кислотный остаток обладает определённой валентностью. Она равна количеству атомов Н в молекуле этой кислоты. Валентность остатка HCl равна единице, так как это одноосновная кислота. Такую же валентность имеют остатки азотной, хлорной, азотистой кислот. Валентность остатка серной кислоты (SO 4) равна двум, так как атомов водорода в ее формуле два. Трехвалентен остаток фосфорной кислоты.

Кислотные остатки — анионы

Помимо валентности, кислотные остатки обладают зарядами и являются анионами. Их заряды указаны в таблице растворимости: CO 3 2− , S 2− , Cl − и так далее. Обратите внимание: заряд кислотного остатка численно совпадает с его валентностью. Например, в кремниевой кислоте, формула которой H 2 SiO 3 , кислотный остаток SiO 3 имеет валентность, равную II, и заряд 2-. Таким образом, зная заряд кислотного остатка, легко определить его валентность и наоборот.

Подведём итог. Кислотами — соединения, образованные атомами водорода и кислотными остатками. С точки зрения теории электролитической диссоциации можно дать другое определение: кислоты — электролиты, в растворах и расплавах которых присутствуют катионы водорода и анионы кислотных остатков.

Подсказки

Химические формулы кислот, как правило, заучивают наизусть, как и их названия. Если вы забыли, сколько атомов водорода в той или иной формуле, но знаете, как выглядит ее кислотный остаток, на помощь вам придёт таблица растворимости. Заряд остатка совпадает по модулю с валентностью, а та — с количеством H. К примеру, вы помните, что остаток угольной кислоты — CO 3 . По таблице растворимости определяете, что его заряд 2-, значит, он двухвалентен, то есть угольная кислота имеет формулу H 2 CO 3 .

Часто возникает путаница с формулами серной и сернистой, а также азотной и азотистой кислот. Здесь тоже есть один момент, облегчающий запоминание: название той кислоты из пары, в которой атомов кислорода больше, заканчивается на -ная (серная, азотная). Кислота с меньшим количеством атомов кислорода в формуле, имеет название, заканчивающееся на -истая (сернистая, азотистая).

Однако эти подсказки помогут лишь в том случае, если формулы кислот вам знакомы. Повторим их ещё раз.

Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.

Классификация

Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

  • кислородные, содержащие кислород;
  • бескислородные, состоящие только из водорода и неметалла.

Основной список неорганических кислот в соответствии с типом представлен в таблице.

Тип

Название

Формула

Кислородные

Азотистая

Дихромовая

Йодноватая

Кремниевые - метакремниевая и ортокремниевая

H 2 SiO 3 и H 4 SiO 4

Марганцовая

Марганцовистая

Метафосфорная

Мышьяковая

Ортофосфорная

Сернистая

Тиосерная

Тетратионовая

Угольная

Фосфористая

Фосфорноватистая

Хлорноватая

Хлористая

Хлорноватистая

Хромовая

Циановая

Бескислородные

Фтороводородная (плавиковая)

Хлороводородная (соляная)

Бромоводородная

Йодоводородная

Сероводородная

Циановодородная

Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

  • растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
  • летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
  • степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).

Рис. 1. Схема классификации кислот.

Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

Получение

Основные методы получения кислот представлены в таблице.

Свойства

Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

Рис. 2. Хромовая кислота.

Кислоты - активные вещества, реагирующие:

  • с металлами:

    Ca + 2HCl = CaCl 2 + H 2 ;

  • с оксидами:

    CaO + 2HCl = CaCl 2 + H 2 O;

  • с основанием:

    H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;

  • с солями:

    Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.

Все реакции сопровождаются образованием солей.

Возможна качественная реакция с изменением цвета индикатора:

  • лакмус окрашивается в красный;
  • метил оранж - в розовый;
  • фенолфталеин не меняется.

Рис. 3. Цвета индикаторов при взаимодействии кислоты.

Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

Что мы узнали?

Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 120.

Бескислородные: Основность Название соли
HCl - хлористоводородная (соляная) одноосновная хлорид
HBr - бромистоводородная одноосновная бромид
HI - йодистоводородная одноосновная йодид
HF - фтористоводородная (плавиковая) одноосновная фторид
H 2 S - сероводородная двухосновная сульфид
Кислородсодержащие:
HNO 3 – азотная одноосновная нитрат
H 2 SO 3 - сернистая двухосновная сульфит
H 2 SO 4 – серная двухосновная сульфат
H 2 CO 3 - угольная двухосновная карбонат
H 2 SiO 3 - кремниевая двухосновная силикат
H 3 PO 4 - ортофосфорная трёхосновная ортофосфат

Соли – сложные вещества, которые состоят из атомов металла и кислотных остатков. Это наиболее многочисленный класс неорганических соединений.

Классификация. По составу и свойствам: средние, кислые, основные, двойные, смешанные, комплексные

Средние соли являются продуктами полного замещения атомов водорода многоосновной кислоты на атомы металла.

При диссоциации дают только катионы металла (или NH 4 +). Например:

Na 2 SO 4 ® 2Na + +SO

CaCl 2 ® Ca 2+ + 2Cl -

Кислые соли являются продуктами неполного замещения атомов водорода многоосновной кислоты на атомы металла.

При диссоциации дают катионы металла (NH 4 +), ионы водорода и анионы кислотного остатка, например:

NaHCO 3 ® Na + + HCO « H + +CO .

Основные соли являются продуктами неполного замещения групп OH - соответствующего основания на кислотные остатки.

При диссоциации дают катионы металла, анионы гидроксила и кислотного остатка.

Zn(OH)Cl ® + + Cl - « Zn 2+ + OH - + Cl - .

Двойные соли содержат два катиона металла и при диссоциации дают два катиона и один анион.

KAl(SO 4) 2 ® K + + Al 3+ + 2SO

Комплексны соли содержат комплексные катионы или анионы.

Br ® + + Br - « Ag + +2 NH 3 + Br -

Na ® Na + + - « Na + + Ag + + 2 CN -

Генетическая связь между различными классами соединений

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование и посуда : штатив с пробирками, промывалка, спиртовка.

Реактивы и материалы : красный фосфор,оксид цинка, гранулы Zn, порошок гашеной извести Ca(OH) 2 , 1 моль/дм 3 растворы NaOH, ZnSO 4 , СuSO 4 , AlCl 3 , FeCl 3 , HСl, H 2 SO 4 , универсальная индикаторная бумага, раствор фенолфталеина, метилоранжа, дистиллированная вода.

Порядок выполнения работы

1. Оксид цинка насыпать в две пробирки; в одну добавить раствор кислоты (HCl или H 2 SO 4) в другую раствор щелочи (NaOH или KOH) и слегка нагреть на спиртовке.

Наблюдения: Происходит ли растворение оксида цинка в растворе кислоты и щелочи?

Написать уравнения

Выводы: 1.К какому типу оксидов относится ZnO?

2. Какими свойствами обладают амфотерные оксиды?

Получение и свойства гидроксидов

2.1. В раствор щелочи (NaOH или KOH) опустить кончик универсальной индикаторной полоски. Сравнить полученный цвет индикаторной полоски со стандартной цветовой шкалой.

Наблюдения: Записать значение рН раствора.

2.2. Взять четыре пробирки, налить в первую 1 мл раствора ZnSO 4 , во вторую - СuSO 4 , в третью - AlCl 3 , в четвертую - FeCl 3 . В каждую пробирку добавить 1мл раствора NaOH. Написать наблюдения и уравнения происходящих реакций.

Наблюдения: Происходит ли выпадение осадка при добавлении щелочи к раствору соли? Укажите цвет осадка.

Написать уравнения происходящих реакций (в молекулярном и ионном виде).

Выводы: Какими способами могут быть получены гидроксиды металлов?

2.3. Половину осадков, полученных в опыте 2.2., перенести в другие пробирки. На одну часть осадка подействовать раствором H 2 SO 4 на другую – раствором NaOH.

Наблюдения: Происходит ли растворение осадков при добавлении щелочи и кислоты к осадкам?

Написать уравнения происходящих реакций (в молекулярном и ионном виде).

Выводы: 1.К какому типу гидроксидов относятся Zn(OH) 2 , Al(OH) 3 , Сu(OH) 2 , Fe(OH) 3 ?

2. Какими свойствами обладают амфотерные гидроксиды?

Получение солей.

3.1. В пробирку налить 2 мл раствора CuSO 4 и опустить в этот раствор очищенный гвоздь. (Реакция идет медленно, изменения на поверхности гвоздя появляются через 5-10 мин).

Наблюдения: Происходят ли какие-то изменения с поверхностью гвоздя? Что осаждается?

Написать уравнение окислительно-восстановительной реакции.

Выводы: Принимая во внимание ряд напряжений металлов, укажите способ получения солей.

3.2. В пробирку поместить одну гранулу цинка и прилить раствор HCl.

Наблюдения: Происходят ли выделение газа?

Написать уравнение

Выводы: Объясните данный способ получения солей?

3.3. В пробирку насыпать немного порошка гашеной извести Ca(OH) 2 и прилить раствор HСl.

Наблюдения: Происходит ли выделение газа?

Написать уравнение происходящей реакции (в молекулярном и ионном виде).

Вывод: 1. К какому типу относится реакция взаимодействия гидроксида и кислоты?

2.Какие вещества являются продуктами этой реакции?

3.5. В две пробирки налейте по 1 мл растворов солей: в первую – сульфата меди, во вторую – хлорида кобальта. Добавьте в обе пробирки по каплям раствор гидроксида натрия до образования осадков. Затем добавьте в обе пробирки избыток щелочи.

Наблюдения: Укажите изменения цвета осадков в реакциях.

Написать уравнение происходящей реакции (в молекулярном и ионном виде).

Вывод: 1. В результате каких реакций образуются основные соли?

2. Как можно перевести основные соли в средние?

Контрольные задания:

1. Из перечисленных веществ выписать формулы солей, оснований, кислот: Ca(OH) 2, Ca(NO 3) 2, FeCl 3, HCl, H 2 O, ZnS, H 2 SO 4, CuSO 4, KOH
Zn(OH) 2, NH 3, Na 2 CO 3, K 3 PO 4 .

2. Укажите формулы оксидов, соответствующие перечисленным веществам H 2 SO 4 , H 3 AsO 3 , Bi(OH) 3 , H 2 MnO 4 , Sn(OH) 2 , KOH, H 3 PO 4 , H 2 SiO 3 , Ge(OH) 4 .

3. Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.

4. Какие из указанных соединений будут попарно взаимодействовать: P 2 O 5 , NaOH, ZnO, AgNO 3 , Na 2 CO 3 , Cr(OH) 3 , H 2 SO 4 . Составьте уравнения возможных реакций.


Лабораторная работа № 2 (4 ч.)

Тема: Качественный анализ катионов и анионов

Цель: освоить технику проведения качественных и групповых реак­ций на катионы и анионы.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основной задачей качественного анализа является установление химического состава веществ, находящихся в разнообразных объектах (биологических материалах, лекарственных препаратах, продуктах питания, объектах окружающей среды). В настоящей работе рассматривается качественный анализ неорганических веществ, являющихся электролитами, т. е. по сути качественный анализ ионов. Из всей совокупности встречающихся ионов выбраны наиболее важные в медико-биологическом отношении: (Fе 3+ , Fе 2+ , Zn 2+ , Са 2+ , Na + , К + , Мg 2+ , Сl - , РО , СО и др.). Многие из этих ионов входят в состав различных лекарственных препаратов и продуктов питания.

В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.

Существуют два принципиально разных подхода к качественному анализу: дробный и систематический . В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.

Например, в растворе имеются ионы А1 3+ , Fе 3+ и Ni 2+ . Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН) 3 и Ni(ОН) 2 , а в растворе остаются ионы [А1(ОН) 4 ] - . Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор 2+ . Таким образом, с помощью двух реагентов - щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН) 4 ] - , в другом - ионы 2+ и осадок Fе(ОН) 3 . С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.

Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, од­нако преимущество его заключается в легкой формализации всех дейст­вий, укладывающихся в четкую схему (методику).

Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпаде­ние нежелательных осадков и т. д.). Во избежание этого в дробном ана­лизе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные усло­вия, в частности, рН. Очень часто в дробном анализе приходится прибе­гать к маскировке, т. е. к переводу ионов в соединения, не способные да­вать аналитический эффект с выбранным реактивом. Например, для об­наружения иона никеля используется диметилглиоксим. Сходный анали­тический эффект с этим реагентом дает и ион Fе 2+ . Для обнаружения Ni 2+ ион Fе 2+ переводят в прочный фторидный комплекс 4- или же окис­ляют до Fе 3+ , например, пероксидом водорода.

Дробный анализ используют для обнаружения ионов в более про­стых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций, так как учесть в одной конкретной ме­тодике все возможные случаи взаимного влияния ионов на характер на­блюдаемых аналитических эффектов достаточно сложно.

В аналитической практике часто применяют так называемый дроб­но-систематический метод. При таком подходе используется минималь­ное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах, который затем осуществляется дробным методом.

По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделени­ем газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.

При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости про­водят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.

Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.

В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.

В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А1 3+ , купрон на ион Сu 2+ и др. Для усиления окраски иногда применяют экс­тракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.

Поделиться: