Топим отработкой бесплатно — как сделать, оборудование и процесс. Отработанные масла в качестве энергоресурса Горение отработки

© При использовании материалов сайта (цитат, изображений) указание источника обязательно.

Печь на отработке (отработанном моторном масле) – тема активно обсуждаемая, но не новая. Даровое отопление своими руками в РФ и СНГ имеет довольно давнюю историю. Сейчас мы наблюдаем его второе рождение.

Как она родилась?

Никита Сергеевич Хрущев, как и весь СССР, весьма неоднозначен, и не только в геополитическом смысле. При нем простым гражданам возможно стало обзавестись личным авторанспортом, создавались гаражные кооперативы, вовсю раздавались дачные участки. Интенсивно механизировалось сельское хозяйство. И тогда же, в 60-е, пробились первые ростки экологического мышления.

Гаражи и дачные домики нужно было отапливать. Топливо (по-нынешнему – энергоносители) стоило копейки – в буквальном смысле, литр 66-го бензина 2 коп, а 76-го 7 коп. – но и копейки нужно было экономить, зарплаты были маленькие. А за слив отработки штрафовали, и много, до трети зарплаты за раз выходило. И уголь возить на дачу накладно было, а баллонный газ был вообще экзотикой. За самовольную порубку леса на дрова можно было и в тюрьму угодить вполне по-советски – без лишних разговоров и долгих разбирательств. В результате и появилась печь на отработанном масле.

Над принципом действия народным умельцам долго голову ломать не пришлось – самым обиходным на дачах и в частных домах был тогда керогаз. Испарившийся керосин в нем дожигался в специальной камере, в отличие от примуса или паяльной лампы, где горят уже сильно нагретые пары топлива. Поэтому керогаз был сравнительно безопасен в эксплуатации, а нарушение режима горения сигнализировало о себе вонью и копотью задолго до того, как развивалось в аварию. Печь на отработке работает по тому же принципу, нужно было только придумать, как до конца сжигать сильно загрязненное вязкое топливо простыми домашними способами.

Керогаз “Ленинград” с внешней камерой

Вторыми прародителями масляной печки были газогенераторные установки, широко применявшиеся во время войны, когда высококачественное топливо шло на фронт. Взрослым людям 60-х они были хорошо знакомы, так что общая схема работы печки вырисовывалась ясно:

  • Первичный небольшой запас энергии химически ленивого топлива пустить на его же разложение до фракций полегче и поактивнее, как в газогенераторе.
  • То, что получится – сжечь в 2 или 3 стадии, как в керогазе.

Экодовески наших дней

Сегодняшние печи на отработке не повторяют конструкции тех дней, кроме , о которой речь пойдет отдельно. И тому есть веские причины.

В 60-х сгорание до углекислого газа и водяных паров считалось абсолютно чистым и безопасным. В наши дни и то, и другое, увы, парниковые газы, действие которых уже вполне ощутимо на собственной шкуре в буквальном смысле. Дожечь еще глубже невозможно, но экономичность печи приобретает особо важное значение.

Не было тогда и синтетических моторных масел, и хитроумных присадок к ним. Они позволяют вдвое и более сократить литровый расход топлива ДВС по сравнению с тогдашним, но при неполном сгорании дают канцерогены, токсины, мутагены и бог весть что еще. А люди тогда были в целом здоровее и выносливее. Опять ничего не поделаешь – чуть более чем за полвека население Земли увеличилось в 2,5 раза и продолжает расти. Применительно к печке – дожигать нужно на 100% и никак не менее.

Наконец, тогдашнее машинное масло – натуральный нефтяной ректификат из насыщенных углеводородов – не могло развивать очень высокую температуру при горении. Поэтому очень вредные и опасные окислы азота в тогдашних печках образовывались разве что отдельными молекулами. А нынешняя простая печка на отработке может выбрасывать их в ощутимых для здоровья количествах. Так что на оксидах азота стоит остановиться подробнее.

Окислы азота

Все оксиды азота опасны для человека. В медицине для наркоза применяется самый легкий из них – закись азота, веселящий газ, но строго по дозировке под наблюдением анестезиолога. Чем больше азота соединяется с кислородом, тем опаснее результат. Окислительные баки боевых ракет заправляют тетраокисью азота N2O4 – достойной по едкости и ядовитости «сестрицей» горючего – гептила (несимметричного диметилгидразина), который она окисляет. Адская начинка современных машин массового уничтожения таится не только в боеголовках.

Как может окисел окислять? Дело в том, что оксиды азота – соединения эндотермические, на их образование нужно затратить энергию; азот с кислородом «не любят» друг друга, разность их электрохимических потенциалов и квантовые свойства электронных оболочек не позволяют им сильно связываться. При взаимодействии с соединениями, обладающими восстановительными свойствами (легко соединяющимися с кислородом, галогенами и их родственниками по таблице Менделеева) оксиды азота так же легко отдают кислород, что и есть окисление с выделением энергии, т.е. горение. Применительно к ракетам – тяжелое по молекулярной массе горючее с тяжелым окислителем дает большую массу выхлопа и сильную реактивную тягу.

Что касается печей, то здесь нужно знать следующее:

  1. При температуре от 900 градусов окислы азота образуются в заметных количествах.
  2. Если в газовоздушной смеси есть избыток кислорода, то при высокой температуре он «перехватывает» частицы топлива, и окислы азота уходят дальше по дымовому тракту.
  3. При примерно 600 градусах окислительная активность оксидов азота становится выше, чем у кислорода, и окислять еще не сгоревшие частицы топлива начинают они; в результате получается совершенно безвредный во всех смыслах азот, углекислый газ и пары воды.
  4. Если температура упала ниже 400 градусов, то окислы азота попадают во вторую «яму стабильности» своей фазовой диаграммы; тяжелую органику окислить они уже не могут (кислород – тоже) и уходят с дымовыми газами наружу.

Цена топлива

Масло из двигателя не каждый день сливают, а топить зимой нужно регулярно. Пожертвования доброхотов регулярными быть не могут. Если топливо для печи придется докупать, во что оно обойдется?

Продажная цена отработанного масла по РФ колеблется от 5 до 14 руб./л. самовывозом, это еще около 5 руб./км на легковушке с прицепом. И купить совсем не просто: отработка считается опасным отходом, нужна лицензия на переработку. Причем оптовые скупщики продают неохотно и уж не ведерно-канистровыми нормами. Они перерабатывают масло в темное печное топливо. Рентабельность высока, и кто же отдаст ценное сырье задешево?

Но тут есть интересный ход. Свежее машинное масло предприятия частенько покупают в общем потоке ГСМ, т.к. строгий учет его закупок не обязателен. Отработку нужно учитывать, но кто тогда узнает, сколько ее вышло? Смысл пускаться в такие махинации есть – меньше хлопот с экологией, а доход от продажи отработки в масштабах производства мизерный. Поэтому предприятия нередко отдают отработанное машинное масло задаром или за копейки, лишь бы вывезли. То есть, умеешь договориться – топить будет чем.

Два принципа в одном принципе

Самодельная печь на отработке на вид может быть не намного сложнее кастрюли, но происходящие в ней процессы очень и очень непросты. Иначе полного сгорания с высоким КПД и безвредного выхлопа не добиться. Для полного их понимания и выбора подходящей конструкции для выполнения, или прототипа для собственной, необходимо сначала вспомнить о силе Кориолиса.

Сила Кориолиса

Кориолисова сила, как известно, возникает вследствие вращения Земли; это яркий пример того, как огромное и медленное проявляется в малом и быстро. Именно сила Кориолиса закручивает стекающую из ванны воду. Поскольку скорость тока воды в трубе много меньше звуковой в ней же (скорость потока дымовых газов в дымоходе – тоже), кориолисова закрутка – она возникает только в вертикальных участках трубы – передается обратно, и образование вихря зависит от длины вертикальной части отводной трубы.

Убедиться в этом просто: берем обычную воронку, затыкаем лейку пальцем, наполняем водой и палец отпускаем. Вода вытекает ровно. Теперь надеваем на лейку кусок шланга от метра и более, оставляем его висящим вниз и делаем то же самое. Вода закрутилась.

Величина кориолисовой силы зависит еще от отношения плотности среды к ее вязкости, поэтому закрутить «по-кориолису» газ труднее. Кроме того, газы сжимаемы, поэтому проявляют себя еще число Рейнольдса и другие факторы. Высокая труба котельной может испускать ровный столб пара.

Но зачем закручивать дымовые газы? Без этого невозможно добиться качественного, полного и безопасного, сгорания топлива. Чтобы тепло от первоначального сгорания легких фракций пошло на расщепление тяжелых, которые потом дадут основную массу тепла, смесь нужно все время хорошенько перемешивать. Закручивать можно разными насадками, наддувом и т.п., но такие конструкции (мы их тоже рассмотрим) рядовому самодельщику сделать трудно. А вот силу Кориолиса использовать проще; далее увидим, как.

Вывод по силе Кориолиса: при повторении конструкций печей нужно точно выдерживать указанные размеры и пропорции. От несоблюдения – чад, прожорливость, отрава.

Главный принцип

Масляная печь – отопительный прибор на тяжелом, плохо горящем и сильно загрязненном топливе сложного состава. Чтобы оно сгорело полностью, его тяжелые компоненты нужно расщепить на более легкие; окислить все, что есть в масле, кислороду не по зубам. Дожечь полностью то, что уже расщепилось – задача попроще.

Процесс расщепления называется пиролизом, или пламенным расщеплением. В конечном итоге для пиролиза используется теплота сгорания самого топлива; это процесс самоподдерживающийся и саморегулирующийся, и это очень хорошо. Но для начала пиролиза топливо нужно испарить, а пары нагреть но некой стартовой температуры (300-400 градусов), после которой пиролиз пойдет по нарастающей, и сгорит все. Добиться этого в домашних условиях можно двумя способами.

Принцип первый

По первому способу масло в резервуаре просто поджигают. Оно разогревается и начинает испаряться, а дальше все происходит в простой вертикальной трубе с расширениями и, возможно, с изгибами. Принципиальная схема устройства такой печи показана на рисунке.

Воздух в резервуар с горящим маслом поступает через его горловину с дроссельной заслонкой; с ее помощью регулируют силу горения, т.е. тепловую мощность печи, не нарушая режима сгорания. Чтобы это было возможно, газовоздушная смесь должна непрерывно, по ходу трубы, перемешиваться. Тут и приходит на помощь сила Кориолиса, при правильно выбранных сообразно свойствам топлива, длине вертикального дымохода и его диаметре.

Также в камеру сгорания, в которую переходит резервуар, необходим практически свободный приток воздуха – печь нормально работает при избытке кислорода. Поэтому камера сгорания дырчатая. Колпак к камере дожигания (расширение над камерой сгорания) не обязательно должен быть колпаком, как на схеме. Это может быть и неполная перегородка при разносе выхода камеры сгорания с дымоходом по горизонтали. Но разделить зону кислородного дожигания и окисно-азотного, и организовать соответствующий скачок температур между ними, совершенно необходимо, иначе еще слишком горячий кислород отнимет «пищу» у окислов азота, а те тем временем остынут до ямы на фазовой диаграмме и уйдут в трубу во всей своей вредоносности.

Чертежи печи на отработке такого типа приведены на большом рис. ниже, ее внешний вид и сборочный чертеж – на рис. выше. Это хорошо известная самодельщикам и отлично себя зарекомендовавшая конструкция. Разжигают ее небольшим факелом через полностью открытое дроссельное отверстие. Высота дымохода (прямого!) – не менее 4 м.

Мини

Здесь на рисунке – также весьма популярная среди самодельщиков мини-печь на отработке и нефтешламе. Толщина материала, обычной конструкционной стали, от 4 мм. Печь весит около 10 кг против 27-30 у предыдущей, а ее размеры в плане определяются таковыми резервуара. Автор конструкции для него рекомендует донышко и верхушку стандартного газового баллона. Вполне разумно, буде таковой имеется в наличии – очень прочно, и всего один сварной шов. Но для резервуара подойдет и любая другая емкость указанных размеров плюс/минус 20 мм.

Эта печка имеет ряд особенностей:

  • Зона перемешивания топливовоздушной смеси – нижняя воронка камеры сгорания. Вследствие ее расширения смесь здесь задерживается и месится долго.
  • Длина вертикальной части дымохода ограничена примерно 3,5 м. Иначе тяга высосет смесь наружу, прежде чем та успеет сгореть.
  • Зона дожигания не разделена и представляет собой верхнюю воронку камеры сгорания. Перед сужением в дымоход дымовые газы снова задерживаются и хорошо догорают, но опять же – при умеренной тяге.

Вследствие этого тепловая мощность печи ограничена 5-6 кВт; «раскочегаривать» эту печь сверх меры просто опасно. Но зато и расход топлива – около 0,5 л/ч, и печь сравнительно легко чистится. Конструкция разборная, стыки камеры сгорания с резервуаром и дымоходом стягиваются хомутами. В разобранном виде эту печь можно возить с собой в багажнике – на дачу, в охотничий домик и т.п.

Дозаправка

Допустим, вам не лень соорудить пристройку для печи и подавать от нее в дом горячую воду. Первая задача, которую нужно решить – подкормка печи хотя бы на ночь. Увеличивать резервуар нельзя: масло не прогреется и печка не разгорится как надо. Но решение давно известно: непрерывная дозаправка по принципу сообщающихся сосудов.

Требования к такой подпитке ясны из рисунка; дроссель на резервуаре условно не показан, но, разумеется, все равно необходим. Из его функций остается только регулировка горения, и это большой плюс по пожарной безопасности. Иначе ведь пришлось бы лить горючую жидкость в огонь или раскаленный сосуд, или ждать, пока печь остынет. Вставлять в топливопровод фитиль, как в паяльной лампе, бесполезно: на отработке сразу засорится.

Наддув

А как насчет печи на отработке с наддувом? Известно ведь, что он увеличивает КПД и тепловую мощность печей. Да, но в печку на саможоге наддув просто так не встроишь. Дуть в топку, т.е. резервуар, бесполезно – мы только разбалансируем саморегулирующуюся систему горения. Печь быстро разгорится, а потом, когда легкие фракции топлива выгорят, погаснет: поток воздуха отберет тепло, необходимое для испарения тяжелых. Параметры масляной печи на саможоге поддувом в топку, увы, не улучшишь.

Но поддув (точнее, выдув) можно использовать для другой цели. Искусственно усилив тягу, можно сделать дымоход с изломами: от дымника (горловины камеры сгорания) – длинная, во всю стену, горизонтальная труба, а уж потом вертикальный дымоход. Это улучшит отопление помещения с минимальными дополнительными затратами, не нарушая режима горения в печи.

Для усиления тяги можно использовать два способа наддува в дымоход: инжекционный (поз. А на рис.) и эжекторный, поз. Б. Первый очень прост и совершенно безопасен: при прекращении наддува кое-какая тяга сохраняется. Печь будет просто хуже греть и потреблять больше топлива. Но нужен источник сжатого воздуха. И тонкая (1-3 мм просвет) трубка, дюритовый шланг и регулировочный вентиль.

Для эжекторного наддува достаточно любого маломощного вентилятора: компьютерного на 12 В 120-150 мм диаметром, кухонного вытяжного, промышленного ВН-2 или ему подобного. Требуемая производительность – не менее 1500 л/ч, а диаметр входной горловины эжектора – на 20-50% больше диаметра дымохода.

Однако, если эжекторный поддув прекратится, дымовые газы пойдут в помещение, поэтому между вентилятором и эжектором необходим клапан-хлопушка со слабой возвратной (захлопывающей) пружиной. Учитывая еще, что сопряжение дымохода с эжектором выглядит просто только на схеме (как и вся техника вообще), конструкция выходит довольно сложной.

Видео: печь на отработке с наддувом и дозаправкой

Воздушное отопление

Масляная печь – компактный (сосредоточенный) источник тепла, и прогрев помещения от нее будет неравномерным, особенно если оно не утепленное и с тонкими стенами. Можно встретить рекомендации превратить первую из описанных печей в более эффективный воздушный обогреватель, наварив на камеру дожигания (набалдашник) металлические ребра. Но дожигатель от этого остынет более допустимого, и режим работы печи нарушится.

А теперь вспомним: любой жадина собирает больше, чем ему нужно. И у печи на масле есть запас устойчивости режима, выражающийся во вполне конкретных киловаттах тепла. Точнее – 15-20% от тепловой мощности, т.е. отобрать можно до 2-3 кВт. Только брать нужно осторожно и понемногу равномерно отовсюду, чтобы жадина не спохватился.

Простейший способ для этого – обычный комнатный вентилятор, напольный или настольный, обдувающий печь с расстояния 1,5-2 м. Вся печка от него немного остынет, но температурного скачка по ходу газов, способного сбить режим, не образуется. А поток теплого воздуха быстро и равномерно прогреет помещение. – оптимальный вариант.

Мини-водогрейка

Теперь посмотрим, как организовать ГВС или водяное отопление от печи на саможоге. Громоздить на дожигатель водяной бак – значит опять же, сбить режим горения. Поэтому теперь тепло возьмем там, где самой печи оно уже не нужно. Как это сделать – показано на рисунке справа. Для первой из описанных печей поглотитель тепла нужно будет встроить в конструкцию при ее сборке, иначе дожигатель помешает.

Вместо змеевика можно сварить водяную рубашку, тогда не нужен теплоотражающий экран из оцинковки, жести или алюминия. Но в любом случае между поглотителем тепла и внешней стенкой камеры сгорания должен быть зазор не менее 50-70 мм для свободного доступа воздуха, и не менее 120-150 мм внизу, если есть желание сделать рубашку повыше. Но смысла особого в этом нет, примерно 75% теплового излучения исходит от верхней трети камеры сгорания и прилежащей области дожигателя.

Всего же такой отопитель способен отдать до трети своей тепловой мощности, с принудительной циркуляцией теплоносителя. Вполне достаточно . Для дачи хватит и 20%, тогда циркуляцию в системе можно оставить термосифонной.

Примечание : расширительный бак в обоих случаях нужен низкий и широкий, не менее 50 л, и обязательно атмосферный, не мембранный, и с аварийным сливом на случай вскипания. Альтернатива сложна: автоматика, регулирующая дроссель по температуре воды в системе. Второй альтернативный вариант не проще, но еще дороже – заправка системы высококипящим антифризом. Нужна тщательная герметизация стыков о особый дренаж в расширительном баке, что обойдется не дешевле автоматики.

Недостатки саможога

У всех печей на саможоге есть и серьезные недостатки. Во-первых, это приборы с отрытым пламенем и доступными для прикосновения раскаленными частями – зона сгорания «на полном газу» раскаляется докрасна. Поэтому ставить их в жилых помещениях недопустимо, а использование как отопительных приборов – 100% не страховой случай. Нужно ставить в отдельной несгораемой пристройке и устроить отбор и отвод тепла, хотя бы как описано выше.

Во-вторых, рассчитывать получить тепловую мощность более 15 кВт увеличением размеров нет смысла. Нужной для этого интенсивности испарения масла саможогом не добиться; пойдет только чад и сажа.

В-третьих, погасить разгоревшуюся печь можно разве что углекислотным огнетушителем. Порошковым – ни упаси боже, попав на раскаленный металл, порошок тут же взорвется! При полностью зарытом дросселе через отверстия в камере сгорания пройдет достаточно воздуха, чтобы пламя теплилось, как свечка в стакане. Устраивать вьюшку в любом месте бесполезно – мгновенно чад и угар. Если уж раскочегарилась, то горючее должно выгореть полностью.

Примечание: вьюшка между резервуаром и камерой сгорания особо опасна. Пары масла – плотные; давление их высоко, а кипение мгновенно не прекратится. Горящее масло может выплеснуться наружу, а если еще и дроссель закрыт, то печь может и взорваться.

В-четвертых, отбор тепла для отопления или ГВС хотя и возможен, но затруднен. Чрезмерное остывание внешних поверхностей нарушает температурный режим внутри печи, что приводит в лучшем случае к ухудшению КПД и осаждению сажи. Печь на масле – печка-жадина. Просто так она свой тепловой капитал не отдаст.

В-пятых, при заправке сильно обводненным топливом возможно бурное мгновенное вскипание сразу во всем объеме резервуара. Попросту говоря – взрыв печки.

Наконец, хотя печка и экономична (не более 1,5 л/час масла), самые тяжелые фракции топлива испариться не могут и оседают в шлам в резервуаре. 5-6 топок, и нужно выгребать, а это непросто. Резервуар – обязательно цельный сварной. Разборный любой мыслимой самодельщику конструкции не удержит в себе кипящее полыхающее масло. Последствия – очевидны.

Принцип второй

Возможно ли сделать печь на отработанном масле, свободную от указанных недостатков? Такую, чтобы ее можно было поставить в кухне, и пусть себе греет? Да, возможно, но потрудиться придется посерьезнее, и применить все свое мастерство.

Если приглядеться повнимательнее, то ясно видно, что источник всех опасностей печей на саможоге – резервуар с горящим маслом. Чтобы избавиться от него, нужно испарять и распылять топливо каким-то иным способом. Зоны пиролиза, сгорания и дожигания лучше всего совместить в факеле пламени, чтобы отбор тепла от дымовых газов не нарушал работы печи. И весьма желательно, чтобы печь могла работать на обводненном горючем. Говоря технически, нужна горелка.

В промышленных условиях практически любое топливо сжигают дочиста в форсунках, верхняя поз на рис. Чтобы полное сгорание происходило в факеле, используют двух- и трехступенчатое образование топливовоздушной смеси: сжатый воздух тянет за собой атмосферный, а диафрагма разделяет и завихряет воздушный поток. В форсунке сгорает все, вплоть до льяльных вод судов.

Примечание: льяльные воды – собирающийся на самом исподе трюма коктейль из протечек забортной воды, топлива, бытовых стоков, груза. Собирается в льяльную магистраль. Канализационный коллектор в большом городе по сравнению с льяльной водой – пляж на Канарах.

Для нормальной работы форсунки необходима не только высокая точность изготовления и специальные материалы. Нужен еще целый небольшой цех подготовки топлива: гомогенизатор содержимого топливных танков, его диспергатор в трубопроводах, насосы, фильтры, система подогрева топлива и управляющая всем этим автоматика.

Но для отработки и этого оказывается недостаточно. Виной тому – все те же тяжелые битуминозные составляющие. Форсунку для отработки приходится дополнять жаровым кожухом и камерой дожигания с теплоизоляцией, нижняя поз на рис.

И тем не менее, горелка на отработке, доступная для самостоятельного изготовления, существует. И даже в нескольких ипостасях.

Пламенная чаша

Принцип работы прост – топливо капает в раскаленную чашу, взрывообразно испаряется, вспыхивает и сгорает (поз. А на рис). Сюда же поступает, с наддувом от маломощного вентилятора, атмосферный воздух; при использовании центробежного вентилятора-улитки его необходимо закрутить, для чего в устье воздуховода может быть установлена неподвижная крыльчатка.

Для первоначального разогрева чаши необходим розжиг горелки, поэтому в промышленных условиях пламенная чаша используется редко, но самодельщики с успехом ее применяют. Конструкция обеспечивает почти полное сгорание в непосредственной близости от чаши, поэтому котел на отработке с пламенной чашей получается самым непринужденным образом, что также отмечено на рис. 3/4 оборота отходящих газов указано для наглядности. На самом деле нужно, чтобы газовая смесь прокрутилась внутри побдольше, тогда и КПД будет выше. Но при слишком сильной закрутке сгорание получается неполным. Конструирование пламенной чаши с нуля требует очень серьезных знаний и опыта.

Пиролиз в пламенной чаше происходит своеобразно: разложение тяжелых фракций обеспечивается не только высокой температурой, но и сложными физико-химическими процессами во взрывающейся капле, существенно отличными от таковых в большом массиве вещества. Собственно, это уже не совсем пиролиз, и чаша в раскаленном состоянии поддерживается не только горением, но и освобождающейся при распаде молекул энергией.

При использовании в качестве топлива отработанного масла все-таки требуется и дожигание вне чаши, для чего в воздуховоде делают отверстия и прорези. Получается нечто вроде камеры сгорания простых печей на отработке, вывернутой наизнанку. Чертеж печи такого типа мощностью около 15 кВт при расходе топлива 1-1,5 л/час, в зависимости от его качества, приведен ниже.

Поз. Б на рис. выше – маломощная (до 5 кВт) чаша с пористым огнестойким наполнителем 2. Ее ставят прямо на колосники 1 любой печки, хоть буржуйки. Подача топлива регулируется вентилем 3, а воздух поступает через штатное поддувало 4. Об этой конструкции мы далее поговорим подробнее.

На поз. В высокоэффективное, но сложное в исполнении устройство для полного сжигания любых видов жидкого топлива – горелка Бабингтона, или горелка ББ, или просто горелка Б. Ее основа – полая раскаленная металлическая сфера 1 с отверстиями диаметром 0,2-0,5 мм. По трубке 2 в сферу вдувается воздух, а из топливопровода 6 на нее капает топливо. Выходящий из отверстий воздух распыляет его, и оно сгорает. Не сгоревшие остатки собираются в сборник 3, и шестеренчатым топливным насосом 4 через перепускной вентиль 5 подаются опять в топливопровод.

Примечание: для отработки насос нужен именно шестеренчатый. Другой скоро выйдет из строя от загрязнений.

У горелки Бабингтона не одна изюминка, как принято считать, а две. Во-первых, так как воздух выдувается из отверстий, горелка ББ устойчиво работает на самом загрязненном горючем. Во-вторых, топливо за счет поверхностного натяжения обволакивает сферу тонкой пленкой, а физхимия в пленках совсем иная, чем в агрегатах вещества. Есть отдельные науки – физика и химия тонких пленок. Науки сложные, но суть проста: горелка ББ – совершенно бездымная, и ее экологическая чистота практически не зависит ни от состава топлива, ни от режима горения. Поэтому горелку ББ можно безо всякого встраивать в любую печь. Для розжига используют небольшую порцию печного топлива в кольцевом поддончике под сферой.

Примечание: сборник топлива прямо под горелкой показан условно. В действительности ради пожарной безопасности капли недожога падают в воронку и по узкой трубочке стекают в сборник. Пока дотекут, погаснут.

О водяных печах

Водяная печь – это совсем не печь с водогрейным контуром. Это печь на тяжелом топливе с форсункой, в факел пламени которой падают капли воды. Мгновенно испаряясь от жара, они разбрызгивают горючее, которое и сгорает.

Люди старшего поколения помнят битумные котлы с водяными форсунками, которые возили с собой дорожники и строители. Топливом служил тот же битум, куски которого клали в плавильную камеру. Ныне водяные печи почти вышли из употребления, а в некоторых странах и запрещены по экологическим соображения. Выхлоп они дают прозрачный, но очень вредный. Причина – образование в пламени свободного водорода, сильного восстановителя. Он связывается с атмосферным азотом, и вместе они активно реагируют с насыщенными углеводородами топлива, давая вредную органику.

Из истории попутно. Впрыск воды (позже – водо-метаноловой смеси) изобрели в БМВ, тогда выпускавшей авиамоторы для люфтваффе, в 1937 г, для кратковременного повышения мощности двигателя. Поначалу новшество оставалось втуне – дорогущий движок в таком режиме вырабатывал ресурс за 20 мин. Но в 1944 г. Bf-109G3 с впрыском воды появились на Восточном фронте. Вопреки распространенному убеждению, боевых качеств «Мессеров» кратковременный «взвизг» с 1900 до 2300 л.с. не улучшал – маневренность машины «на визге» терялась полностью, и лететь можно было только по прямой. Но со скроростью 710 км/ч. Дело в том, что опытные немецкие пилоты на востоке к тому времени были почти выбиты, а удрать от Як-3, Ла 5/7 или «Аэрокобры» без «визга» было невозможно.

На западном фронте «Мессеров» было мало, их берегли для востока. Основу парка составляли тяжелые, но высотные FW-190. Если же «Мессеры» попадали за запад, то «визг» уже частях снимали ради облегчения: маневренных «собачьих свалок» над окопами здесь было меньше, а «Спитфайр» MkVIII и «Мустанг» P-51D (оба – с английским мотором «Роллс-Ройс Гриффон XII» в 2200 л.с. штатных) справлялись и с реактивными Me-262.

История одной буржуйки

У родителей автора была дача с буржуйкой, и на него («Ты уже большой, из лесу не вылазишь) была возложена заготовка топлива. Поскольку дачное товарищество раскинулось на площади около 400 га, при участках от 6 до 20 соток, окрестности были вечно обобраны не то что до щепки – до сухой травинки, и частенько на обед приходилось жевать сухомятину, сдобренную родительскими попреками.

И тут пацану попалась книга Реймонда Пристли «Антарктическая одиссея». История невероятная – 6 человек, северная партия экспедиции Роберта Скотта, оказались заброшены в Антарктике в преддверии зимы. Без теплой одежды, без надежного убежища, почти без продовольствия и топлива.

От холода и бешеных антарктических ветров – близзардов – спаслись, вырыв пещеру в снегу. Матросскими ножами и ледорубами удалось забить тюленей достаточно, чтобы не умереть от голода до весны. Но в пещере нужно было поддерживать температуру чуть ниже нуля, при –60 и ниже снаружи, иначе не выжить, даже лежа все время в спальниках. А жирники на ворвани более коптили, чем грели и светили.

И тут один из членов партии, простой матрос Гарри Дикасон, сделал изобретение, спасшее всех. В поддон из жестяной сухарной банки он налил ворвань, набросал туда же обломков тюленьих костей, и поджег. Расплавленный тюлений жир, проходя сквозь поры горячей кости, испарялся и сгорал сильным ярким пламенем почти без дыма. Полярники теперь могли не только не бояться замерзнуть, но и готовить горячее. И даже жарили по праздникам пингвинятину.

К весне они походили на головешки с колтунами на голове и еле держались на ногах. Но все-таки все шестеро смогли преодолеть несколько сот километров по льдам и вернулись на базу, где их давно уже считали погибшими.

Вернувшись, эти люди, всю дальнейшую жизнь оказывавшиеся признавать себя героями, узнали, что отлично снаряженная главная партия во главе с самим капитаном Скоттом, дошла до Южного полюса после Амундсена, а на обратном пути вся погибла.

Идея родилась сразу – перевести печку на нефтешлам. На нефтебазе его давали сколько хочешь даром. А эксперименты проводились на отработке от соседей-автомобилистов.

Для чаши дачный сторож пожертвовал плошку из нержавейки. Его верный соратник волкодав Прокурор признавал только фаянсовую тарелку. Тюленьи кости заменил битый кирпич; для капельницы нашлась медная трубка и кусок резиновой. На топливный бак пошел негодный умывальный бачок с ввернутым внизу вместо штока обычным водопроводным краном. Это была самая затратная и хлопотная часть работы: отверстие с трубной резьбой обошлось в советский халтурный стандарт – пузырь. Да еще выжига-слесарь ни в какую не соглашался на «Московскую особую» по 2.87, а требовал непременно «Столичную» за 4.12. Не считая объяснений родителям, для чего 13-летнему мальчишке понадобилась бутылка водки.

Разжигалась буржуйка на отработке просто – в чашу подпускалось масло, пока не показывалось над кирпичом. Тогда в топку совалась смятая газета. Через минуту-другую она видимо промасливалась, тогда поджигалась. Еще через 3-4 мин. пламя резко усиливалось и светлело, как в керосиновой лампе; это был знак, что пора пускать капель. 5-литрового умывальника отработки весной и осенью хватало на день обогрева и готовки. Через 3-4 топки приходилось выбивать из чаши спекшуюся со шламом в монолит кирпичную крошку, но выхлоп был чистый, хоть нюхай.

Печка исправно проработала 4 года, пока родители не собрались переезжать в другой город, и также в полной исправности была передана новому владельцу. Что с ней сталось дальше – неизвестно.

Готовые печи

Отработанное масло – дешевый и доступный вид топлива. И получаемое из нее печное тоже не кусается по цене. Печка же на отработке – очень экономичный и фактически универсальный отопительный прибор. А мастерить, и довольно ответственные конструкции, не все умеют. Не выпускаются ли такие печи серийно? И если да, то сколько стоит заводская печь на отработке?

Выпускаются, и пользуются постоянным спросом. Мировые лидеры производства – Турция и Италия. Цены, учитывая востребованность продукции, не маленькие: печка лишь немного попригляднее первой из описанных, стоит около $1000, а работающие по принципу: «Заправил, кнопку нажал и забыл», с водогрейным контуром – от $8000.

В продаже есть и отечественные бытовые печи на тяжелых нефтепродуктах и нефтяном шламе – КЧМ, Индигирка, Тунгуска и другие. Но наибольшим спросом пользуется газогенераторный водогрейный котел «ГеККОН» конструкции Курлыкова, он выпускается серийно, и отработанное машинное масло входит в список рекомендованных изготовителем топлив.

Устройство котла «ГеККОН» показано на рисунке; позиции следующие:

  1. Крышка с взрывным клапаном;
  2. Газоход;
  3. Теплоизоляция;
  4. Камера дожигания;
  5. Теплоноситель;
  6. Декоративная панель;
  7. Нагнетатель воздуха;
  8. Воздушный ресивер;
  9. Топливопровод;
  10. Регулируемые ножки;
  11. Испаритель;
  12. Шлакосборник;
  13. Зольник;
  14. Завихритель газовоздушного потока;
  15. Камера пиролиза;
  16. Жаровый корпус.

Котел Курлыкова работает по принципу пламенной чаши с дожиганием в трубчатой камере. Автоматика розжига не предусмотрена, но зато высота дымохода не регламентируется, и в «ГеККОН’е» действительно полностью сгорает самый распоследний «отстой». Выпускаются «ГеККОН’ы» на мощность от 15 до 100 кВт; цена производителя, соответственно, от 44 000 до 116 000 руб.

Примечание: котел Курлыкова запатентован. Самостоятельное его изготовление на продажу будет нарушением авторского права.

В заключение

Жечь отработку – вообще говоря, паллиатив. Мало ли что там в этом масле накопилось за время эксплуатации. Но в целом по экологии сжигание отработанных моторных масел пока предпочтительнее их переработки, поэтому в развитых странах на сжигание идет от 4% до 12% отработки; в России – 5% учтенных.

Печь на отработке имеет смысл завести еще и потому, что технология получения из той же отработки и нефтешлама печного топлива совершенствуется и цена его медленно, но верно падает. А если печь ест отработку, то и скормить ей топливо получше можно без проблем.

Развитие же автономного отопления – серьезное направление в мировой экологической политике. В тепломагистралях теряется до 30% тепла, и общий КПД теплоцентралей редко превышает 60%, а печь дает до 80%. Это не говоря об экономии на трубах и землеройной технике, а металлургия – не из чистых отраслей производства.

О негативном влиянии на состояние окружающей среды добычи и транспортировки сырой нефти говорится постоянно. Они приводят к деградации почв, загрязнению атмосферы и водных ресурсов. Эти проблемы очень обсуждаемы и отчасти предпринимаются некоторые шаги по их решению, однако при этом зачастую упускают из виду судьбу обычных моторных масел и смазочных материалов, в то время как люди ежедневно производят тысячи литров отработанного масла.

К отработанным маслам относятся минеральные масла , произведенные из сырой нефти, или синтетические масла , загрязненные физическими и/или химическими примесями. В зависимости от применения и операционной среды, масло загрязняется или ухудшает свои свойства, после чего становится непригодным для последующего использования.
Источников отработанного масла множество - к ним, в том числе, относятся простые потребители, автомастерские, различные производства и электростанции.

По мировым стандартам к отработанным маслам, подлежащим переработке, относятся (данный список не является полным):

Отработанные моторные масла и смазки в транспортных средствах

  • автомобильные трансмиссионные масла в легковых и грузовых автомобилях, морских судах и авиационном транспорте, которые не используются в качестве топлива;
  • трансмиссионные масла в дизельных двигателях в легковых и грузовых автомобилях, автобусах, морских судах, тяжелом оборудовании и локомотивах, которые не используются в качестве топлива;
  • моторные масла в двигателях, работающих на природном газе;
  • масла в двигателях, работающих на альтернативном топливе;
  • трансмиссионные жидкости;
  • тормозные жидкости;
  • гидравлические жидкости.

Отработанные индустриальные масла

  • компрессорные, турбинные и подшипниковые масла;
  • гидравлические масла или жидкости;
  • масла или масляные эмульсии для металлообработки, в том числе для резки, шлифовки, обработки, прокатки, штамповки, тушения и нанесения покрытий;
  • электроизоляционные масла;
  • масла в холодильниках/блоках кондиционирования;
  • кабельные масла;
  • смазки;
  • теплоносители.

В России также действует ГОСТ 21046-86, в котором определяются общие технические условия отработанных нефтепродуктов.

Что не относится к отработанным маслам?

Материалы, перечисленные ниже, не относятся к отработанным маслам:

  • использованные животные или растительные жиры (они считаются пищевыми отходами);
  • твердые отходы, загрязненные отработанными маслами (например, абсорбенты и металлолом);
  • отходы очистки дна резервуаров с природным нефтетопливом;
  • природное нефтетопливо, добытое из разлива;
  • другие неиспользованные нефтяные отходы;
  • растворители (например лаковый бензин, уайт-спирит, петролейный эфир, ацетон, топливные присадки, спирты, растворители для краски и других чистящие средства);
  • отработанный антифриз, керосин;
  • вещества, которые не могут быть переработаны таким же образом, как отработанное масло.

Факты об использовании смазочных масел

Мировое годовое потребление смазочных масел в 2010 году составило в 42 млн. тонн. Ожидается, что к 2015 году оно составит около 45 миллионов тонн в год.

Оценивается, что в связи с неконтролируемым сливом, сжиганием и другими некорректными методами утилизации доступное для переработки масло в мире составляет около 16 миллионов тонн в год.

Только около 50% (то есть около 20 миллионов тонн) отработанного масла собирается систематически во всем мире.

Опасно ли отработанное масло?

Отработанное масло классифицируется как опасные отходы класса 2 или 3 (высокоопасные или умеренноопасные) и контролируются Базельской конвенцией о контроле за трансграничной перевозкой опасных отходов и их удалением.

Отработанное масло несет в себе серьезную угрозу для окружающей среды и здоровья людей. Оно опаснее, чем сырая нефть, поскольку в нем содержатся измененные в ходе эксплуатации добавки, полиолефины, смолы, асфальтены, карбены, механические примеси и другие загрязнители.
Отработанное масло:

  • Загрязняет водные ресурсы и почву;
  • Обладает канцерогенным, мутагенным действием и влияет на репродуктивные функции.

Что происходит с обычным отработанным маслом после использования?

Некоторая часть масла (в том числе часть нефти, попавшей в океан вследствие аварий) просто сжигается. Часть утилизируется как опасные отходы. И большая доля отработанного масла просто сливается в канализацию, дренажные системы или водоемы, загрязняя воду, которую мы пьем, и землю, на которой выращиваем продукты.

Некоторая часть отработанного масла перерабатывается. Если оно было слито должным образом, то его можно собрать, переработать и затем повторно использовать. В России, к сожалению, перерабатывается очень малый процент отработанных масел. По некоторым оценкам он составляет от 3% до 20%.

Переработка отработанного масла

Когда маленький ребенок играет в грязи, он пачкается, его одежда измазывается в земле, удобрениях, пестицидах и всем, что в ней содержится. Таким же образом регулярное использование масла приводит к его загрязнению, в него попадает вода, различные химические вещества, металлическая стружка и всяческие примеси. Переработка масла – это как стирка или принятие ванны. При помощи различных процессов из отработанного масла удаляются загрязнители, так что его можно повторно использовать снова и снова. Ведь масло не изнашивается, оно просто становится грязным в процессе эксплуатации.

Технологии переработки

Идея переработки отработанных смазочных масел появилась еще в 1930 году. Однако отработанные масла стали перерабатываться около четырех десятилетий назад. Первоначально их сжигали для получения энергии, затем после очистки их стали добавлять в свежие масла. Под переработкой масла понимается множество способов очистки.

Сжигание отработанного масла без предварительной обработки. При сжигании неочищенного отработанного масла продукты его сгорания могут быть очень опасными для человека и окружающей среды. Данный тип переработки допустим только в том случае, когда отработанное масло и оборудование, на котором выполняется утилизация, соответствует требованиям технических нормативных правовых актов. В этом случае может понадобиться получение специальных лицензий, забор проб и производство замеров для определения состава выбросов в атмосферу.

Переработка с получением топлива. Состоит в производстве готового жидкого топлива с низким содержанием основного осадка и низким содержанием воды, которое не будет забивать горелки, трубы или приводить к накоплению осадка в резервуарах. Таким образом, этот процесс требует фильтрации и удаления грубых твердых частиц, которые могут представлять опасность для окружающей среды или приводить к проблемам при использовании. Типы обработки включают в основном физические процессы, такие как отстаивание и фильтрацию. К сожалению, сами по себе эти процессы не являются достаточными, чтобы удалить все химические загрязнители из масла, необходимо использовать другие типы очистки, такие как очистка отбеливающей глиной и дистилляция.

Восстановление на месте использования. В этом случае применяют систему фильтрации для удаления примесей непосредственно на месте использования масла, таким образом продлевается срок его службы. Этот метод полезен для заводов или других крупных предприятий, которые производят большое количество отработанного масла.

Переработка на нефтеперерабатывающем заводе. Отработанное масло используется в процессе переработки нефти для производства бензина.

Регенерация с получением нового смазочного материала. Разработано множество способов регенерации масла для повторного использования. Процесс регенерации обычно включает в себя (но не ограничивается) предварительную обработку теплом или фильтрацию с последующей вакуумной перегонкой и химической обработкой с гидроочисткой. Полученный продукт практически не отличается от продуктов полученных из сырой нефти. Регенерация продлевает срок службы масла на неопределенный срок, что делает этот процесс наиболее предпочтительным с экологической и экономической точки зрения. Поскольку на регенерацию масла требуется на 70 % меньше энергии, чем на производство его из сырой нефти.

Что делать с отработанным маслом

  1. Определите, подлежит ли переработке отработанное масло.
  2. Храните отработанное масло в контейнерах или цистернах, находящихся в хорошем состоянии, которые не протекают и не имеют ржавчины, и четко маркируйте емкости, чтобы было понятно их содержимое.
  3. Хранить емкости с отработанным маслом надо в защищенном от непогоды месте.
  4. Будьте готовы к удалению разливов отработанного масла на землю или поверхность воды.
  5. По возможности повторно используйте емкости из-под масла.
  6. Сдавайте отработанное масло на переработку.
  7. Самостоятельно занимайте переработкой отработанного масла, если имеются необходимое оборудование и требуемые лицензии.

Что нельзя делать с отработанным маслом

  1. Не сливайте отработанное масло на землю, в водоемы, в канализацию, не выливайте его на дорогах и т.д. Почему нет? Потому что это загрязнение земли, на которой мы живем, и эти тяжелые металлы и добавки когда-нибудь попадут в наши организмы или организмы наших детей.
  2. Не смешивайте отработанное масло с другими жидкостями, такими как антифриз, жидкость для чистки тормозов, карбюратора, растворителями и т.д. Соединение отработанного масла с любой из этих жидкостей может сделать отработанное масло непригодным для переработки.
  3. При утилизации отработанного масла не используйте контейнеры, в которых находились опасные химические вещества, которые могут загрязнить отработанное масло (например, отбеливатели или растворители, используемые в качестве чистящих средств).

Являетесь ли вы просто владельцем автомобиля, автомехаником, владельцем малого бизнеса или большой компании, учитывайте то, что переработка отработанного масла является благом для окружающей среды и несет в себе значительные экономические преимущества. Отработанное масло – это не отходы, это ценный ресурс, который надо использовать.

К. Калейников

Утилизация отработанных масел (ОМ) - актуальная проблема. Ведь возникают большие расходы по содержанию пунктов сбора, хранения, транспортировки и переработки. С другой стороны отработанные масла являются источником тепловой энергии, пригодной для отопления общественных и производственных помещений, поскольку при их сжигании выделяется до 35 МДж/л тепловой энергии. В данной статье рассматривается способ отопления с использованием теплоты при сжигании отработанных моторных масел в потоке пиролизного газа

На сегодняшний день в мире существует много патентованных способов и оборудования для утилизации низкосортного топлива: SU 1548601, A1, 07.03.1990; RU 2079051, C1, 10.05.1997; RU 2227251, C2, 20.04.2004; US 4291636, 29.09.1981, UA 59465, С2, 15.09.2003. На рынке представлено достаточно эффективных горелок (рис. 1), печей и котлов (рис. 2) длясжигания предварительно фильтрованного ОМ, однако стоимость оборудования высока, в результате часть масла сжигается в неприспособленных котельных и печах.

Рис. 1. Горелка для сжигания отработанного моторного масла

Вопросы экологии

Производители оборудования умалчивают о проблемах защиты окружающей среды в процессе сжигания ОМ: происходит выброс в атмосферу вредных веществ. По мировым требованиям природоохранных стандартов содержание в газовых выбросах вредных веществ должно быть: пыли - не более 10 мг/м 3 , SO 2 - 50, HСl - 10, HF - 1, CO - 50, NO х - 200, диоксинов - 0,1 нг/м 3 . Содержание оксидов тяжелых металлов не должно превышать 3 мг/м 3 , в том числе кадмия, ртути, свинца - 0,1 мг/м 3 .

Анализ современных технологий сжигания ОМ выявляет ряд эколого-экономических недостатков. В частности, при этом в атмосферу выбрасывается высокодисперсная пыль (1-2 кг/м 3 ОМ) и вредные газы. В состав высокодисперсной летучей золы входят минеральные частицы и несгоревшие остатки органических веществ. Газообразные выбросы состоят из: диоксида углерода (СО 2) и водяного пара, соединений тяжелых металлов, продуктов неполного сгорания, а именно полиароматические и галоидсодержащие углеводороды. До 7% от массы сжигаемых отработанных моторных масел составляет зола, загрязненная тяжелыми металлами.

Таким образом, при утилизации ОМ следует учитывать следующие моменты:

  • сжигание - это высоко технологичный сложный процесс, требующий многоуровневого очистного оборудования из-за повышенных санитарных норм;
  • необходимость предварительного отстаивания после транспортировки, отделения осадка, воды и антифриза;
  • большие капитальные и эксплуатационные затраты на котельное оборудование и системы воздухоочистки.

При сжигании 1 т ОМ образуется около 7 тыс. м 3 дымовых газов, в которых содержатся оксиды азота и серы, хлористый водород, полиароматические углеводороды, хлорбензол и тяжелые металлы. Последние сорбируются частицами летучей золы и в среднем содержат: алюминия - 3,1 мг/м 3 ; цинка - 2,7; свинца - 1,6; меди - 0,15; хрома - 1,4.

Методы пиролиза

В последнее время в мировой практике повышенное внимание уделяется термохимическим процессам сжигания, а именно пиролизу, как наиболее совершенному технически и безопасномуэкологически. Этот способ (по сравнению с другими) имеет ряд преимуществ: скорость реакций возрастает экспоненциально с увеличением температуры, в то время как тепловые потери растут линейно, поэтому происходит более интенсивное преобразование исходных составляющих ОМ; наблюдается более полный выход летучих продуктов; количество остатка после окончания процесса уменьшается. Однако есть много недостатков: разрушение высокотоксичных соединений внутри котла не препятствует повторному их синтезу за его пределами, необходима дополнительная очистка газов с помощью сорбционных установок.

По методу пиролиза Torrax (пиролиз со шлакованием) топливо подают сверху в котел, и под влиянием силы тяжести оно последовательно проходит зоны сушки, пиролиза, первичного горения и плавления.

Разложение органической части сырья в зоне пиролиза происходит практически без доступа свободного кислорода благодаря теплу восходящего потока горячих газов из зоны первичного горения и плавления. В нижней части котла происходит горение твердых углеродсодержащих продуктов, именно сюда подается подогретый до температуры 1100 °С воздух. Температура, необходимая для плавления неорганических компонентов, в этой зоне достигает 1650 °С. Образующийся расплав непрерывно выводится из реактора в шлаковую ванну, а газообразные продукты при температуре 430 - 480 °С выводятся из реактора и направляются в камеру сгорания.

В описанном способе введения тепла в котел исключить попадание свободного кислорода в зону пиролиза можно только при сжигании топлива с недостатком кислорода, поэтому получить стабильно высокие температуры, которые обеспечивали бы расплавление всех неорганических компонентов, в таких условиях трудно. В связи с этим не все минеральные компоненты отходов расплавляются. За счет этого дестабилизируется процесс в целом.

Газообразные продукты пиролиза, которые выводятся из котла при температуре 430-480 °С непригодны для непосредственного использования из-за большого количество масел, влаги, других окислителей. Для получения товарного энергетического газа проводят его многоуровневое очистку и, в результате, получают газ, содержащий: водорода - 11,2%; метана - 1,9; других углеводородов - 0,8; оксида углерода - 10,3, диоксида углерода - 10,5; кислорода - 3 и азота - 62,3%. Такой химический состав газа свидетельствует о низком его качестве, что обусловлено высоким содержанием балластных примесей (N 2 , СО 2) и сложных углеводородов, в состав которых входит бензапирен (С 20 Н 12). Поэтому улучшить качество газа и очистить его от вредных химических примесей по данному методу невозможно.

По методу Purox (с подачей кислорода) отходы также подаются в верхнюю часть котла, а в нижнюю его часть вдувается кислород, а не воздух. При взаимодействии кислорода с твердым углеродсодержащим остатком пиролиза получают рабочую температуру в нижней зоне реактора равную 1650 °С. Это обеспечивает плавление неорганических компонентов отходов, а горячие газы, которые получаются в результате горения углеродистого остатка, поднимаясь вверх по высоте реактора, обеспечивают пиролиз отходов и их подсушивание. Из зоны пиролиза газ отсасывается при температуре около 100 °С, с высоким содержанием влаги, масел и других балластных компонентов, то есть газ непригоден для непосредственного использования. После многоуровневой очистки газ содержит: водорода - 24%; оксида углерода - 40; метана - 5,6; других углеводородов - 5,4; диоксида углерода - 24 и азота - 1%.

Рис. 2. Котел, работающий на отработанном масле

Наличие большого количества примесей в газе при выходе из зоны пиролиза обусловлено образованием при температурах 200-300 °С токсичных соединений в смеси с другими летучими веществами. Потому что, поднимаясь вверх навстречу топливу, которое подается сверху, и частично остыв, они выводятся из реактора, без химических превращений, а температурные условия для дальнейшего их разложения отсутствуют. При этом невозможно: обеспечить стабильное плавление неорганических компонентов произвольного химического состава без нарушения технологических основ процесса пиролиза; предотвратить разведение производимого газа маслами, влагой и окислителями; обеспечить обезвреживание образованных в процессе пиролиза токсичных соединений, улучшить качество производимого энергетического газа, а также повысить стабильность протекания процесса и его экологическую безопасность.

Метод «Пироксел» базируется на таких процессах: сушка, пиролиз, сжигание, электрошлаковая обработка, химико-термическое обезвреживание газов. Данная технология имеет ряд преимуществ: высокотемпературная обработка топлива без предварительного фильтрования, практически не остается отходов после переработки, которые необходимо отдельно захоронить. Также есть в этой технологии и недостатки: переработка небольших объемов отходов и большой расход электроэнергии.

Возможно также проводить сжигание распыленной водомасляной эмульсии в закрученном двухфазном потоке пиролизного газа. При этом ОМ вводят в топку в зону пиролиза для разложения органической составляющей. Оптимальная концентрация водной фазы составляет 12-15%. Управляющие параметры процесса горения следующие:

  • отношение объема избыточного воздуха к объему водяного пара, который испаряется из эмульсии (коэффициент а);
  • внутренние источники тепловой энергии, которые влияют на рабочую температуру реакций, происходящих на границе окислительно-восстановительной зоны.

Для оценки эффективности данного метода проведено математическое моделирование по заданным значениям управляющих параметров и известному элементному составу отработанного масла. Математическая модель строится на основе баланса составляющих ОМ, заданного коэффициента а и уравнений Гиббса для термодинамического равновесия реакций, происходящих в окислительно-восстановительной зоне при фиксированной температуре. Полученные модели позволили выбрать рациональные режимы протекания процессов горения эмульсий с ОМ и определить состав пиролизного газа при заданной температуре процесса.

Для предприятий, на которых в результате их деятельности скапливаются большие объемы отработанного масла, внедрение отопительного оборудования, использующего «отработку» в качестве топлива, представляет выгодное решение целого ряда проблем.

Идея использования отработанных масел (ОМ) в качестве топлива для отопления в ряде зарубежных стран эксплуатируется уже достаточно давно и весьма эффективно и регулируется четкой законодательной базой. В США это целая индустрия: около 60 % собранной «отработки» отправляется на вторичную переработку, остальное утилизируется, в том числе сжигается в теплогенераторах малых и средних отопительных систем. Во многих странах ЕС существует полный запрет на сжигание ОМ. В целом в западно-европейских странах собирается около 75 % «отработки» - при этом 25 % регенерируется, а 50 % используется в качестве топлива.

В России же процесс использования топлива из отработанного масла пока не имеет под собой четкой законодательной базы. Соответствующее оборудование сертифицируется как отопительное, работающее на жидком топливе. Для организации системы теплоснабжения на ОМ необходимо составить проект, учитывающий воздействие на окружающую среду всего объекта в целом.

В России также не существует налаженной системы сбора, восстановления и утилизации ОМ, а действующие перерабатывающие предприятия из собранных масел восстанавливают солидол и низкосортные масла, которые в технике на сегодняшний день малоприменимы. Однако использование «отработки» для отопления в нашей стране весьма перспективно, потенциал топливной базы на основе отработанных технических масел от автотранспорта и иных видов техники в России составляет до 500 млн т/год и более. Повторно используется меньше половины (40-48 %): 14-15 % из них идет на регенерацию, остальное используется как топливо.

Одно из самых перспективных направлений утилизации ОМ подразумевает использование его в качестве топлива для обогрева промышленных объектов. Такой подход позволяет предприятию сократить расходы на теплоснабжение за счет отказа: от услуг энергоснабжающих организаций, потребления традиционного газового или жидкого топлива, затрат на утилизацию отработанного масла как опасного промышленного отхода. При этом снижается и нагрузка на окружающую среду - сжигание «отработки» с помощью высокотехнологичного оборудования экологически безопаснее ее неконтролируемой «утилизации». Содержание вредных соединений в продуктах сгорания горелок на ОМ должно соответствовать нормативам, установленным для горелочных устройств на обычном дизтопливе.

Очевидно, что для таких предприятий, как автотехцентры, судоремонтные верфи, автопарки, насосные станции, где постоянно идет сбор ОМ, его использование для обогрева собственных производственных помещений особенно выгодно. В то же время, по оценкам специалистов, средняя цена на отработанное масло в два-три раза ниже, чем на дизельное топливо, при почти одинаковой калорийности. Поэтому использование этого топлива оказывается рентабельным даже независимо от объемов собственного «производства» масла. Конечно, при проведении технико-экономического обоснования применения отопительного оборудования на ОМ необходимо учитывать затраты на проведение регулярных регламентных работ по очистке нагревателей и теплообменных поверхностей.

Наибольшее распространение в качестве теплоагрегатов, работающих на отработанном масле, получили печи и воздушные теплогенераторы.

Печи на отработанном топливе

Печи, работающие на ОМ, обычно не отличаются большой мощностью и используются для обогрева отдельных помещений автомастерских, складов запчастей и др. В этих теплогенераторах сжигание топлива производится в камере сгорания в особой чаше, обычно чугунной, топливо на которую подается капельным способом. Под действием высокой температуры масло выпаривается, а образовавшиеся пары смешиваются с воздухом и сгорают. Воздух в камеру сгорания подается принудительно под небольшим давлением, что обеспечивает стабильный режим горения.

В частности, нагнетательным вентилятором оснащены теплогенераторы на отработанном масле ЖАР-25 и ЖАР-100. В этих устройствах вентилятор управляется электронным контролером, и благодаря этому появляется возможность изменения мощности, что приводит к более экономному расходованию топлива. К тому же блок управления таких теплогенераторов снабжен функцией автоматического поддержания температуры.

Продукты сгорания топлива нагревают теплообменник и отводятся на улицу по дымоходу, который должен иметь протяженность не менее 4 м. Тепло отдается с теплообменника печи излучением или отводится с помощью вентилятора.

Розжиг в таких печах часто производится вручную, предварительно чаша прогревается сжиганием в ней небольшого количества топлива. Во время работы топливо подается из топливного бака (закрепленного на печи или находящегося в удалении) автоматически с помощью насоса.

Безопасность работы теплогенератора обычно обеспечивается с помощью датчика температуры, защищающего печь от перегрева, и датчика перелива топлива.

Датчик температуры размещается на внутренней стенке корпуса и включается в цепь привода насоса подачи топлива. В случае срабатывания датчика насос отключается, топливо перестает подаваться в камеру сгорания, горение прекращается.

При нарушении режима горения возможен перелив топлива через края тарелки. В этом случае срабатывает датчик перелива и также отключает насос подачи топлива.

При освоении топливной ниши ОМ в России изначально распространение получили печи зарубежных производителей, такие как Kroll W401, W401L (США), Thermobile AT 306, 307, 400, 500 (Нидерланды). Появились и аналоги отечественного производства - например , отопители нa отработанном масле «Tеплон Т 603» (ЗАО «Беламос»), «Тайфун ТГМ 300» (ООО «Фирма Биляр»), «Жар 25» (ООО «Лепта») и др.

Более эффективного сжигания топлива в печах на «отработке» удается добиться с помощью распыления его тонким слоем. В этом случае ОМ подается из встроенного или внешнего бака дозирующим насосом в камеру сгорания, где и происходит распыление. Насосом создается давление в 4-5 атм, за счет подключения к магистрали сжатого воздуха, что и вызывает сверхтонкое распыление.

Но даже распыление ОМ сжатым воздухом позволяет сжечь только около 70 % топлива. Остальная часть осаждается на теплообменнике и значительно снижает теплоотдачу, поэтому чаши в печах на отработанном топливе, как и стенки теплообменника, нуждаются в периодической очистке. Для разных агрегатов время между очистками колеблется от 6 до 800 ч работы и более, в зависимости от применяемой в них технологии сжигания и чистоты используемого топлива.

Для еще большего повышения эффективности работы печей на ОМ американской компанией Clean Burn была разработана технология вторичного дожига отработанного масла на мишени. Она размещается в камере сгорания на небольшом расстоянии от задней стенки, и на ней оседают капельки ОМ. В печах с применением мишени дожига чистка теплообменников стала необходима лишь через каждые 800 ч работы.

Площадь теплопередачи в таких печах определяется площадью камеры сгорания. Для увеличения теплопередачи ряд компаний-производителей стали использовать трубчатый теплообменник, а эффективность теплоотдачи повышается с помощью принудительной вентиляции.

Компанией «Техно-Климат» на базе отопителя Kroll W401 разработана модель теплогенератора на ОМ Euronord EcoHeat, в которой испарительная (капельная) схема сгорания топлива сочетается с высокоэффективным радиальным вентилятором обдува (рис. 1). Теплогенератор обеспечивает подачу в помещение большого объема нагретого воздуха при полном отсутствии побочного теплового излучения, за счет этого увеличивается КПД прибора и появляется возможность более гибко регулировать обогрев помещения.

Рис. 1. Теплогенератор, работающий на отработанном масле

При установке особого устройства подачи топлива такой теплогенератор способен работать в полностью автоматическом режиме (без ручной дозаправки). Данное устройство имеет в своем составе поплавок, контролирующий уровень топлива в баке отопителя, и схему управления, которая включает насос стандартного агрегата подачи топлива Kroll или Euronord при снижении уровня топлива в баке ниже заданного.

Воздушное отопление на «отработке»

Наибольшая эффективность сжигания отработанного топлива достигается в камерах сгорания воздушных теплогенераторов с помощью дутьевых горелок. КПД таких стационарных агрегатов достигает 93 %. Камеры сгорания теплогенераторов выполняются из высокотемпературной нержавеющей стали и могут работать с любыми типами горелок. В качестве топлива может быть использовано дизтопливо, газ, животные жиры, отработанное или растительное масло. Таким образом, п реимущества воздушного отопления, не требующего промежуточного теплоносителя, сочетаются в таких системах с экономическими преимуществами топлива из ОМ.

В воздушных теплогенераторах (рис. 2) раскаленные продукты сгорания, проходя внутри теплообменника, нагревают его и отводятся за пределы помещения. Нагнетаемый вентилятором воздух обдувает теплообменник, нагревается и поступает в помещение через регулируемые жалюзи или систему воздуховодов. Теплоотдача начинается сразу после включения установки.

Мощность таких теплоагрегатов достигает 1,5 МВт, благодаря чему с их помощью можно создавать автономные системы отопления помещений большого объема и любого назначения: складов, ангаров, цехов, торгово-выставочных комплексов, сельскохозяйственных объектов, спортивных сооружений, помещений автосервисов и др. Их можно использовать в технологических процессах, на специфических производствах - для подготовки горячего воздуха, сушки и нагрева материалов и изделий.


Рис. 2. Теплогенераторы воздушного отопления на отработанном масле

На российский рынок такие воздушные теплогенераторы часто поставляют те же компании, которые производят и печи, работающие на ОМ, например, Kroll (Германия) - установки серий S и SKE, EnergyLogic (США) и др.

Для предотвращения отрыва пламени от горелки и возникновения эффекта обратной тяги в воздухонагревателях EnergyLogic предусмотрена автоматическая система регулирования по разряжению в дымоходе.

Для удобства размещения производители предусматривают вертикальные и горизонтальные модули теплогенераторов. Воздухонагреватели EnergyLogic могут быть установлены под потолком обогреваемого помещения, прикреплены к стене, размещены на платформе из негорючего материала либо расположены на стойках на топливном баке. Конструкция аппаратов позволяет подавать нагретый воздух в разных направлениях, разделять воздушные потоки и направлять их в систему вентиляции. Для обогрева больших помещений возможно проектирование коллекторной системы подачи топлива к нескольким горелкам, установленным на работающих в каскаде воздушных теплогенераторах.

Очистка теплообменных поверхностей воздушных теплогенераторов производится при помощи промышленного пылесоса каждые 2-6 мес.

Водяное отопление на ОМ

Отопление на отработанном масле может быть не только воздушным, но и водяным. Примером такого котельного оборудования могут служить водогрейные котлыEL-200B и EL-500B (максимальная мощность - 58,3 и 146 кВт) фирмы EnergyLogic. Они оснащены двумя топливными баками, в первом из которых происходит отстаивание нерастворимых примесей и твердых частиц. Масло после отстаивания подается через фильтр, задерживающий частицы размером более 100 мкм, в основной питающий бак. Перед подачей на форсунку горелки топливо еще раз очищается на фильтре тонкой очистки, разогревается до температуры 50-75 °С, в зависимости от состава масла, и смешивается в форсуночном блоке с первичным воздухом, нагнетаемым встроенным компрессором. В зону горения от вентилятора горелки поступает также вторичный воздух. Качество сжигания ОМ по такой технологии сопоставимо со сжиганием обычного печного топлива. Блок подогрева топлива изготовлен из особого сплава. Его очистку следует проводить примерно раз в два месяца.

Система подачи топлива EnergyLogyc включает и запатентованный дозирующий насос, регулирующий подачу горючего в зависимости от его характеристик, - для обеспечения оптимальных условий горения. Насос может подавать топливо на расстояние до 45 м.

Котел EL имеет двухходовую конструкцию с полностью водоохлаждаемой топкой. В дымогарные трубки встроены турбулизаторы из нержавеющей стали. Корпус котла имеет теплоизоляцию из плотного слоя стекловолокна. Крышка дымосборной камеры - съемная, что облегчает осмотр, техническое обслуживание и очистку внутренних поверхностей котла. При этом не требуется демонтировать горелку. Котел оснащен змеевиком для подготовки горячей воды, а при необходимости подключается также к отдельному бойлеру.

Горелки на «отработке»

Принцип работы большинства горелок на ОМ европейского производства схож с описанным выше. Встроенный топливный насос закачивает горючее в герметичную промежуточную камеру с электронагревателем. После нагрева масла до температуры, на которую настроен регулировочный термостат, включается роторно-компрессорная группа горелки. Вращающийся в гильзе ротор с лопатками осуществляет забор первичного воздуха из помещения и смешивает с ним топливо из промежуточной камеры. Затем готовая топливно-воздушная эмульсия через форсунку подается под давлением в камеру сгорания. Вентилятор горелки нагнетает вторичный воздух.

Euronord EcoLogiс мощностью от 20 до 240 кВт.

Горелки с ротационными форсунками выпускает и немецкая компания Saacke. Высокая эффективность сжигания топлива (в том числе битумов, гудронов и остатков тяжелых минеральных масел) при их использовании обеспечивается за счет качественной регулировки различных потоков топлива. Подаваемый в горелку воздух разделяется на первичный (25 %), распыляющий топливную пленку после кромок вращающегося стакана, вторичный (70 %), обеспечивающий сгорание основной массы топлива, и третичный (5 %), защищающий вращающиеся лопатки от перегрева и препятствующий отложению продуктов сгорания.

Снижение образования оксидов азота в ротационных горелках Saacke обеспечивается подачей газов рециркуляции в область зоны первичного сжигания.

Ротационные горелки обладают широким диапазоном регулирования (1:10), причем избыток воздуха остается практически неизменным при снижении нагрузки до 20 % номинальной.

Модели горелок Euronord EcoLogiс, которые поставляет на российский рынок ООО «Техно-Климат», оснащены двухступенчатым нагревателем топлива в камере подогрева. Это позволяет быстро нагреть первую порцию топлива до рабочей температуры и обеспечить быстрый запуск горелки, а также поддерживать температуру в камере подогрева самым экономичным способом. На мощных моделях горелок Euronord EcoLogic используется сдвоенная схема подключения сжатого воздуха для стабильной работы горелки в режиме максимальной мощности.

«Рекордсменами» по мощности можно назвать универсальные горелки итальянской фирмы Ar-Co. Их типоразмерный ряд включает модели мощностью от 23 до 1395 кВт. Самая мощная горелка этого ряда расходует 120 кг топлива в час, а ее габариты составляют 1520х920х600 мм.

Появились и отечественные разработки в этой области. Так, ООО «Общемаш» производит автоматическую горелку ОМС-600 мощностью 11,8-117,7 кВт (расход топлива - 1,2-11,3 кг/ч; габаритные размеры - 275х300х475 мм; потребляемая электрическая мощность - 0,35 кВт).

Все упомянутые выше горелки являются универсальными, т. е. могут работать как на ОМ, так и на дизельном и печном топливе, мазуте, а также на рапсовом и растительном масле. Форма факела - правильный овал, близкий к сфере. При переходе с одного вида топлива на другое не требуется демонтаж горелки, необходимо лишь произвести регулировку подачи первичного и вторичного воздуха, а также температуры предварительного разогрева топлива. Температура нагрева должна обеспечивать вязкость, необходимую для оптимального сгорания конкретного горючего. Например, отработанное масло требует подогрева до 70 °С при вязкости 7 °Е, а дизельное топливо - до 20 °С (вязкость - 1,6 °Е). От вида топлива зависит содержание СО 2 и сажи в дымовых газах. Содержание углекислого газа должно составлять 8-14 %, а сажи - 1-2,5 (по шкале Бахараха). Корректировка этих значений возможна изменением количества воздуха в смеси. Температура отходящих газов - примерно 260 °С.

Утилизация отработанного масла путем его сжигания с целью выработки тепловой энергии значительно снижает затраты на отопление. При определенных использовании традиционных энергоресурсов предприятиям и организациям при новом строительстве или реконструкции следует обращать внимание на использование отработанных масел.

В распоряжении многих станций технического обслуживания и других сервисных организаций постоянно в достатке отработанное масло. Отработанное масло собирают при замене масел в двигателях и узлах трения автомобилей, тепловозов, электровозов, швейных, метало и деревообрабатывающих станков, танков, тракторов, кораблей, самоходных барж и катеров, подводных лодок, строительной техники, бензо- и дизель- генераторов, турбин электростанций, буровых установок и т.д. Утилизация топливных отходов для большинства предприятий - это проблема, дорогая в финансировании содержания пунктов сбора, хранения, транспортировании, переработки и отжига. Владельцы этих предприятий, установившие воздухонагреватели или котлы на отработке, решают проблему не только утилизации отработанного масла, но и значительно экономят на отоплении технических и офисных помещений. Если у предприятия нет отработанного масла, то оно может рассмотреть возможность его закупки и транспортировки, в сравнении с затратами на традиционное топливо.

Оборудование на отработанных маслах хоть и имеет высокую стоимость, но отопление на нем значительно дешевле в эксплуатации из-за дешевизны топлива. К концу первого года эксплуатации стоимость котла и израсходованного топлива на отработке сравняется со стоимостью котла на дизельном топливе, а в дальнейшей эксплуатации Вы получите существенную экономию. Кроме того, горелки на отработке,в большинстве случаев являются универсальными, работая и на отработанном масле и на дизеле. Тем самым решается проблема резервного топлива, в случае экстренных ситуаций.

Также отработанные масла можно использовать в специальных печах. Печь соответствует классу простейших приборов, не требующих особого ухода и обслуживания. Профилактическое обслуживание производится владельцем печи. Конструкция печи позволяет:
- регулировать расход топлива;
- регулировать степень нагрева воздуха в помещении;
- использовать для отопления доступные типы топлива (масло отработанное нефтяное и т.п.);
- утилизировать, не подлежащие регенерации нефтепродукты тяжелых углеводородных фракций.
Конструкция печи позволяет использовать верхнюю часть изделия в качестве нагревательного элемента для приготовления пищи, нагрева воды и т.п. Процесс горения проходит в оптимальном режиме с наименьшими выбросами загрязняющих веществ в атмосферу.

Анализ ситуации

Анализ, подтверждённый энергоаудиторскими обследованиями, современного технического состояния источников тепловой энергии энергетических и промышленных предприятий, аграрного сектора и транспорта, систем теплоснабжения городов и населенных пунктов России, выполненными специалистами Московского энергетического института (технический университет) и ОАО «ВНИПИэнергопром», позволяет сделать следующие выводы.

1) В предприятиях ЖКХ доля жидко-топливных котельных мощностей в десятки раз ниже по сравнению с предприятиями ТЭК и промышленности. Следует отметить, что котельные установки, предназначенные для отжига дизельного и мазутного топлива, отличны технологически от установок отжига ОтМ. Этот факт игнорируется: эффективность отжига ОтМ в котлах, предназначенных для дизельного и мазутного топлива, крайне низкая. По установившейся традиции многие промышленные и транспортные предприятия свозят топливные отходы для переработки на нефтехимические предприятия или на отжиг ТЭЦ, концентрация выбросов которых отягощает экологию. Причем, подавляющее большинство предприятий платит деньги за утилизацию ОтМ, сдавая при этом ценный топливный ресурс, либо едва окупает только транспортные расходы, что крайне невыгодно им самим и приводит к сокрытию фактического объема жидко-топливных отходов.

2) Тепловая мощность источников АО-Энерго обычно существенно выше присоединённой нагрузки. Очевидно, что перевод нагрузки муниципальных и ведомственных котельных на теплоснабжение от предприятий АО-Энерго мог бы способствовать снижению расхода топлива в системе и снижению тарифа на тепловую энергию. К схожему результату привёл бы перевод менее экономичных источников в режим пиковых, а более экономичных источников - в режим базовых. Однако, в настоящее время неэкономичные муниципальные и ведомственные котельные, как правило, являются основными источниками в изолированных 9

системах теплоснабжения. Их тепловые сети обычно не связаны с тепловыми сетями предприятий АО-Энерго. В тоже время, источники на утилизации ОтМ несут в себе автономный характер, не требующие подключения к сетям систем теплоснабжения и предназначены в основном для производственных потребителей, сокращают тем самым потери в централизованных сетях. Что вполне вписывается в генеральные стратегии развития систем теплоснабжения секторов ЖКХ и ТЭК, посредством отсечки концевых потребителей или ограничения в передаче тепла и горячей воды в зачёт собственной генерации (перевод на децентрализованное теплоснабжение), особенно в промзонах.

3) Анализ методов формирования тарифов предприятий ЖКХ и ТЭК в большинстве своем позволяет сказать, что в структуре тарифов практически не рассматриваются базовые потенциалы тарифных моделей на потребляемые ресурсы, т.к. построены на обобщенных показателях удельного топливопотребления. Это касается электроэнергии и топлива, что в свою очередь перекладывается на тепловые тарифы. В тоже время, их структуры позволяют выделять средства в форме льготных или индивидуальных тарифов при внедрении энергосберегающих мероприятий, снижающих потребление топлива на источниках генерации энергоресурсов из доли выпадающих доходов (прибыли) и доли участия города (бюджетные дотации). В последних, в свою очередь, упущено наличие собственных топливных ресурсов, в т.ч. ОтМ, хотя часто вложенный в содержание централизованных систем теплоснабжения 1 рубль окупается только на 7÷8 копеек.

Есть и другие составляющие, что позволяет развивать налоговые и акцизные преференции, моделировать схемы консолидированного финансирования, в чем потребители чаще не имеют четкого представления. Например, бизнес-планы промышленных предприятий или ТЭО проектов внедрения теплогенераторов на ОтМ содержат оценку эффективности, построенную на разнице тарифов за потребленные энергоресурсы в виде покупного тепла, электроэнергии или газа. При этом упускаются из виду расходы на утилизацию ОтМ, платы за выбросы и стоки, расходы на содержание очистных систем и прочистку канализации, затраты на 10

содержание персонала, амортизационные начисления в собственных бухгалтерских балансах, расходы на содержание, резервирование и реконструкцию тепловых сетей, насосных станций, тепловых пунктов и источников, расходы на содержание транспорта и перевозку отходов, и много иных статей, из которых формируются источники финансирования, и, как следствие, сами финансовые схемы и механизмы зачета средств, позволяющие сократить сроки окупаемости внедрения теплогенераторов от 2 лет (или более) до 1 года (или менее).

Помимо собственных источников финансирования, следовало бы прорабатывать аспекты, способные повысить эффективность внедрения оборудования, включающие энергосберегающие меры, повышение качества эксплуатации оборудования и используемого топлива, оптимизацию теплообмена в помещении (или тепломассообмена в технологическом процессе) или схемы подключения, экологическую оценку пунктов сбора и хранения ОтМ, и пр. В зависимости от формы собственности и структуры предприятия, назначения оборудования и места расположения потребителя, могут быть применимы и административные методы, повышающие рентабельность внедрения теплогенераторов на ОтМ и схемы децентрализации теплоснабжения (аналогична децентрализация теплоснабжения, частичная или полная, для промышленных и транспортных предприятий). Существуют и действуют профессиональные схемы привлечения финансирования в виде экологических фондов, тарифных регуляторов, киотских механизмов, лизинговых, др. энергосервисных и локальных схем.

Большинство описанных выше приёмов, конечно, могут быть реализованы с участием квалифицированных энергоаудиторов, но это не исключает административно-правового урегулирования проблем на местах. Например, при разработке схем развития систем теплоснабжения силами специализированных организаций. Однако, это мероприятие, проводившееся ещё 15-20 лет назад, наравне с комплексным энергоаудитом систем теплоснабжения, сейчас не практикуется за отсутствием государственного заказчика и средств на их осуществление.

4) Модернизация парка энергетических котлов АО-Энерго для утилизации ОтМ практически не производится из-за незначительной доли производительности в общем объёме генерируемой тепловой энергии ТЭЦ (ТЭС), сам парк морально и технически устарел, его КПД составляет 50÷60%. Причем, коэффициент полезного использования топлива в централизованных системах теплоснабжения, в схеме источник-потребитель, в среднем по стране не выше КПД паровоза.

На сегодняшний день в России осваивается в год специального отопительного оборудования для отжига ОтМ не более 140 Гкал/час тепловой мощности, из которых производится у нас и ввозится в страну не более тысячи единиц специальной техники мощностью до 0,3 Гкал/час. Единичные поставщики и производители могут предоставить оборудование тепловой мощностью порядка 1,0 Гкал/час и выше. С такими темпами освоения передовых технологий утилизации ОтМ мы будем ещё лет 100 загрязнять окружающую среду, губить здоровье поколений и всё живое вокруг, при этом, закапывая в землю (загрязняя атмосферу, сливая в водоёмы и в канализацию) десятки миллиардов рублей ежегодно. Учитывая тот факт, что оборудование имеет ограниченный срок эксплуатации, то и 100 лет нам не хватит, если уже сейчас не будут приняты правовые регламенты.

5) В тоже время, в процессе утилизации ОтМ выявлены следующие недостатки, часто имеющие место в централизованных системах отжига:

Большинство предприятий смешивают ОтМ, что в последствии при отжиге приводит к снижению эффективности процессов горения и работы оборудования.

Ситуация усугубляется тем, что в состав примесей при смешивании попадают воды, неочищенные отходы гальванических производств и взрывоопасные компоненты;

Поступающие для централизованного отжига ОтМ редко контролируются качественно-химическим анализом и сопровождаются формальным документом качества (топливный паспорт). Фактически, утрачен качественный контроль топлива, как на стадии его приемки (и не только ОтМ), так и на стадии выработки;

На стадии пуско-наладочных работ и при эксплуатации недостаточно выполняются режимно-наладочные испытания, влекущие к потере тепла в газоходах из-за высоких температур уходящих газов (до 300ºС и выше), что приводит к снижению коэффициента полезного использования топлива на 15-20% и выше, и противоречит принципам энергосбережения и экологической безопасности;

ОтМ сжигаются в морально, физически и технологически устаревших котлах и печах, не оборудованных специальной автоматикой горения, или в не предусмотренных для этих целей, существенно уступающих по экономическим и экологическим показателям современным образцам;

При эксплуатации оборудования отжига ОтМ не соблюдаются режимы эксплуатации и инструкции производителей. Оборудование, на которое распространяются действующие правила котлонадзора, практически не имеет режимных карт;

При отжиге ОтМ чаще используется схема подмеса топливных отходов в состав мазута или дизтоплива, что не всегда приводит к выбросам, допускаемых нормами ПДК;

Тепло сожженных ОтМ не всегда используется на нужды генерации, технологий и отопления, и уходит на сброс, что противоречит принципам энергосбережения.

Также, следует отметить, что ГОСТ 21046-86 «Нефтепродукты отработанные» не всегда корректно применяется на местах. Например, для того чтобы поднять эффективность использования топлива, снизить ПДК выбросов и повысить КПД оборудования отжига целесообразно произвести режимно-наладочные испытания 13

или выполнить настройки оборудования на определенную группу (тип или партию) топлива. Однако, указанный ГОСТ, принятый в рамках Международного стандарта, допускает смешивание, что сводит экологически чистые и энергосберегающие намерения к нулю. Эта формулировка с определением «допускается» перекочевала в инструкции по эксплуатации предприятий и паспорта оборудования производителей, что при нашей бесхозяйственности превратилось в норму, позволяющую смешивать топливные отходы. В итоге, потери ресурса при отжиге превышают нормы в 1,5 раза и выше, а превышение вредных выбросов - в 2-3 раза.

Поделиться: