Понятие системы, ее свойства и признаки. Понятие системы и ее свойства

Понятие «система» широко используется в науке, технике и повседневной жизни, когда говорят о некоторой упорядоченной совокупности любого содержания. Система является фундаментальным понятием как системотехники, так и базовых теоретических дисциплин (теории систем, исследования операций, системного анализа и кибернетики). Система - это объективное единство закономерно связанных друг с другом предметов, явленна, сведении, а также знаний о природе, обществе u m.п. . Каждый объект, чтобы его можно было считать системой, должен обладать четырьмя основными свойствами или признаками (целостностью и делимостью, наличием устойчивых связей, организацией и эмерджентностью).

Основные признаки систем

Целостность и делимость. Система - это прежде всего целостная совокупность элементов. Это означает, что, с одной стороны, система - целостное образование и, с другой - в ее составе отчетливо могут быть выделены целостные объекты (элементы). При этом следует иметь в виду, что элементы существуют лишь в системе. Вне системы это в лучшем случае объекты, обладающие системнозначимыми свойствами. При вхождении в систему элемент приобретает системнооп-ределенное свойство взамен системнозначимого. Для системы первичным является признак целостности, т. е. она рассматривается как единое целое, состоящее из взаимодействующих частей, часто разнокачественных, но одновременно совместимых.

Наличие устойчивых связей. Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами, не входящими в данную систему, является следующим атрибутом системы. Система существует как некоторое целостное образование, когда мощность (сила) существенных связей между элементами системы на интервале времени, не равном нулю, больше, чем мощность связей этих же элементов с внешней средой. Для информационных связей оценкой потенциальной мощности может служить пропускная способность данной информационной системы, а реальной мощности - действительная величина потока информации. Однако в общем случае при оценке мощности информационных связей необходимо учитывать качественные характеристики передаваемой информации (ценность, полезность, достоверность и т. п.).

Организация . Это свойство характеризуется наличием определенной организации, что проявляется в снижении энтропии (степени неопределенности) системы H(S) по сравнению с энтропией систе-моформирующих факторов H(F), определяющих возможность создания системы.

Эмерджентность . Эмерджентность предполагает наличие таких качеств (свойств), которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности.

Наличие интегрированных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью. Отсюда можно сделать выводы:

1) система не сводится к простой совокупности элементов;

2) расчленяя систему на отдельные части, изучая каждую из них в отдельности, нельзя познать все свойства системы в целом.

Любой объект, который обладает всеми рассматриваемыми свойствами можно называть системой. Одни и те же элементы (в зависимости от принципа, используемого для их объединения в систему) могут образовывать различные по свойствам системы. Поэтому характеристики системы в целом определяются не только и не столько характеристиками составляющих ее элементов, сколько характеристиками связей между ними. Наличие взаимосвязей (взаимодействия) между элементами определяет особое свойство сложных систем -организованную сложность. Добавление элементов в систему не только вводит новые связи, но и изменяет характеристики многих или всех прежних взаимосвязей, приводит к исключению некоторых из них или появлению новых.

Понятие «черного ящика»

Одним из главных средств преодоления организованной сложности системы - это декомпозиция, т. е. деление системы на части (так называемые «черные ящики») и организация этих частей в иерархическую систему. Расчленение системы на соподчиненные части производится так, чтобы каждая часть содержала объекты, наиболее тесно связанные друг с другом. Следовательно, расчленение системы производится по слабым связям.

Декомпозиция является условным приемом, позволяющим в конечном итоге оценить степень сложности объекта и привести его к некоторым конечным элементам, анализ которых может быть выполнен известными методами. Будем считать, что элемент - это часть системы, дальнейшее разделение которого приводит к нарушению функциональных связей элемента и получению свойств выделенной совокупности, не адекватных свойствам элемента как целого.

Выгода в использовании «черных ящиков» заключается в том, что пользователю необходимо знать лишь вход и выход «черного ящика» и его назначение, т. е. выполняемую функцию, не вдаваясь в принципы работы и используемые алгоритмы. В обыденной жизни мы достаточно часто сталкиваемся с «черными ящиками» и охотно пользуемся ими. Например, мы используем принтер для подготовки документов, не зная, каким образом он производит перекодирование и печать информации. Мы можем заменить принтер на другой при поломке или на более современный, не будучи специалистами по техническому обеспечению. Идея организации «черных ящиков» в иерархические структуры взята человеком у природы. Все сложные системы Вселенной организованы в иерархии. И сама Вселенная включает галактики, звездные системы, планеты и т. д.

Иерархическая система

Если множество элементов объединено в систему по определенному признаку, то всегда можно ввести некоторые дополнительные признаки для разделения этого множества на подмножества, выделяя тем самым из системы ее составные части - подсистемы. Возможность многократного деления системы на подсистемы приводит к тому, что любая система содержит ряд подсистем, полученных выделением из исходной системы. В свою очередь, эти подсистемы состоят из более мелких подсистем и т. д.

Подсистемы, полученные выделением из одной исходной системы, относят к подсистемам одного уровня или ранга. При дальнейшем делении получаем подсистемы более низкого уровня. Такое деление называют иерархией (деление должностей на высшие и низшие, порядок подчинения низших по должности лиц высшим и т. п.). Одну и ту же систему можно делить на подсистемы по-разному - это зависит от выбранных правил объединения элементов в подсистемы. Наилучшим, очевидно, будет набор правил, который обеспечивает системе в целом наиболее эффективное достижение цели.

При делении системы на подсистемы следует помнить о правилах такого разбиения:

· каждая подсистема должна реализовывать единственную функцию системы;

· выделенная в подсистему функция должна быть легко понимаема независимо от сложности ее реализации;

· связь между подсистемами должна вводиться только при наличии связи между соответствующими функциями системы;

· связи между подсистемами должны быть простыми (насколько это возможно).

Число уровней, число подсистем каждого уровня может быть различным. Однако всегда необходимо соблюдать одно важное правило: подсистемы, непосредственно входящие в одну систему более высокого уровня, действуя совместно, должны выполнять все функции той системы, в которую они входят.

Управление любой организацией, производящей товары или оказывающей услуги, строится по иерархическому принципу. Деятельность по созданию товаров и услуг имеет место во всех организациях. Производство - это создание товаров и оказание услуг путем преобразования входа системы (необходимых ресурсов всех видов) в ее выход (готовые товары и услуги). На производственных фирмах деятельность по созданию товаров обычно очевидна. Ее результатом являются конкретные товары (например, станки или самолеты). В других организациях. которые не создают физические товары, производственные функции могут быть менее очевидны, скрыты от публики и каждого из покупателей. Например, это деятельность, которая осуществляется в банке, офисе аэролинии или колледже. Деятельность таких компаний называют сервисом. Управляющие производственной деятельностью принимают решения, которые необходимы для преобразования ресурсов в товары и услуги.

В иерархической системе, управления любая подсистема некоторого уровня подчинена подсистеме более высокого уровня, в состав которой она входит и управляется ею. Для систем управления деление системы возможно до тех пор, пока полученная при очередном делении подсистема не перестает выполнять функции управления. С этой точки зрения системой управления низшего иерархического уровня являются такие подсистемы, которые осуществляют непосредственное управление конкретными орудиями труда, механизмами, устройствами или технологическими процессами. Система управления любого другого уровня, кроме низшего, всегда осуществляет управление технологическими процессами не непосредственно, а через подсистемы промежуточных, более низких уровней.

Важным принципом построения системы управления предприятием является рассмотрение предприятия как системы с многоуровневой (иерархической) структурой (рис. 1.2). От звеньев, расположенных на более высоком уровне, идет поток управляющих воздействий, а информация о текущем состоянии объекта управления более низкого уровня поступает звеньям более высокого уровня. Рассматривая своеобразное «дерево» управления, можно отметить, что преимущество иерархической структуры управления состоит в том, что решение задач управления возможно на базе локальных решений, принимаемых на соответствующих уровнях иерархии управления.

Рис. 1.2. Иерархические системы управления предприятия

Нижний уровень управления является источником информации для принятия управленческих решений на более высоком уровне. Если рассматривать поток информации от уровня к уровню, то количество информации, выраженное в числе символов, уменьшается с повышением уровня, но при этом увеличивается ее смысловое (семантическое) содержание.

На современном уровне развития общества научно-технический прогресс в области материального производства и систем управления обеспечивает возможность концентрации и централизации значительных финансовых, материальных и других ресурсов. Эти возможности реализуются в индустриально развитых странах в виде создания межнациональных объединений (например, Европейский союз, объединяющий ряд европейских стран; дочерние фирмы, филиалы и предприятия крупных концернов во многих странах мира и т. д.). Преимуществом централизации является возможность направлять на реализацию решений крупные ресурсы, что позволяет решать сложные проблемы, требующие больших капиталовложений. В централизованной системе сравнительно легко обеспечить скоординированную, согласованную деятельность подсистем, направленную на достижение единых целей. Потери в отдельных частях системы компенсируются результатами работы других ее частей. Многоуровневая централизованная система обладает большой живучестью за счет оперативного перераспределения функций и ресурсов. Не случайно в армиях всех времен и народов строго соблюдается принцип централизации.

Вместе с тем централизация в системах большой размерности имеет свои недостатки. Многоуровневость и связанная с этим многократная передача информации с уровня на уровень вызывает задержки, снижающие оперативность оценки обстановки и реализации управленческих решений, приводит к искажениям как в процессе передачи информации, так и при ее обработке на промежуточных уровнях. В ряде случаев стремление подсистем к самостоятельности входит в противоречие с принципом централизации. В многоуровневых централизованных организационно-административных системах управления, как правило, присутствуют элементы децентрализации.

При рациональном сочетании элементов централизации и децентрализации информационные потоки в системе должны быть организованы таким образом, чтобы информация использовалась в основном на том уровне, где она возникает, т. е. надо стремиться к минимальной передаче данных между уровнями системы. В децентрализованных одноуровневых системах всегда выше уровень оперативности как при сборе информации о состоянии управляемой системы, оценке ситуации, так и при реализации принятых решений. Благодаря оперативному контролю за реакцией на управляющие воздействия снижаются отклонения от выбранной траектории движения к цели.

Степень централизации системы, которая определяется на основе установления соотношения взвешенных объемов задач, решаемых на смежных уровнях, служит в известном смысле мерой разделения полномочий между уровнями. Смещение основной массы решений в сторону вышестоящего уровня, т. е. повышение степени централизации, отождествляют обычно с повышением управляемости подсистем. Оно требует, как правило, улучшения переработки информации на верхних уровнях иерархии управления. Повышение степени децентрализации соответствует увеличению самостоятельности подсистем и уменьшению объема информации, перерабатываемой верхними уровнями.

Обычно высшие менеджеры многоуровневых систем разрабатывают стратегические решения, например, сколько моделей автомобилей должен производить каждый из заводов компании. Они не должны решать вопроса о типоразмерах и количестве каждой выпускаемой модели на каждом из заводов. Это относится к уровню тактических решении, которые принимаются заводскими менеджерами среднего звена управления. Заводской менеджер должен решить вопрос, сколько произвести и продать, сколько сохранить на складе готовой продукции (сезонный спрос) и сколько рабочих нанять или уволить. Операционное принятие решений осуществляется на производственном уровне начальниками цехов, которые определяют детальное планирование и производство. Этот иерархический подход, который должен включать и обратную связь, может и не обеспечить оптимальное решение, но он позволяет лучше и более своевременно управлять производственным процессом.

Структура систем управления в народном хозяйстве строится по отраслевому или территориальному принципу. Отраслевой принцип применяется в тех случаях, когда речь идет о сложных, специфических видах производства, проектирования и строительства, о развитии и внедрении научных исследований в производство определенного типа. По территориальному принципу построены органы государственного административного управления.

Управляющие системы

Любой процесс в природе (физический, химический, социальный, мыслительный и т. п.) развивается и протекает по некоторым присущим ему закономерностям, Однако в силу всеобщей связи между явлениями в природе на него воздействуют другие процессы и он сам воздействует на эти процессы. В результате таких воздействий происходят различные отклонения от первоначального развития процесса, т. е. он протекает по более сложным закономерностям. Внешние воздействия на процесс можно разделить на случайные и управляющие. Случайные воздействия не преднамерены. Управляющие воздействия специально предназначены для изменения хода того процесса, на который они направлены.

Совокупность управляющих воздействий, направленных на то, чтобы действительный ход процесса соответствовал желаемому, называют управлением . Таким образом, управление предполагает, что существует некоторый орган, систематически или по мере необходимости вырабатывающий управляющие воздействия. Такой управляющий орган принято называть системой управления. Управление обычно осуществляется через исполнительные органы, которые и изменяют действительный ход процесса. Управление должно быть целенаправленным. Управляющие воздействия должны быть скоординированы между собой, а не носить случайного характера, при котором не исключена возможность воздействий, прямо противоположных друг другу.

Управление предполагает наличие управляемого объекта или группы объектов (живой организм или его часть, отдельный механизм или технологическая установка, предприятие или отрасль народного хозяйства и т. д.). Кроме управляемого объекта должен существовать некоторый управляющий орган, вырабатывающий управляющие воздействия, направленные на поддержание или улучшение функционирования управляемого объекта в соответствии с имеющейся программой или целью управления. Процесс управления - это целенаправленное воздействие управляющей системы на управляемую, ориентированное на достижение определенной цели и использующее главным образом информационный поток. Оптимальное управление заключается в выборе наилучших управляющих воздействий из множества возможных с учетом ограничений и на основе информации о состоянии управляемого объекта и внешней среды.

В системах административного или организационного управления управляющее воздействие заключается в принятии решений в процессах планирования и оперативного управления, реализуемых на более низших уровнях управления, а также в контроле за реализацией принятых решений. Людей, выполняющих эти функции, называют администраторами или руководителями. (За рубежом применяют термины manager - руководитель, управляющий и management - административное управление в отличие от control -управление в производственных системах.)

В производственных системах человек с помощью технических средств, которыми он манипулирует, непосредственно управляет технологическим или производственным процессом. Человека, осуществляющего такое управление, называют оператором, а систему, составным элементом которой является оператор, называют эргатической (эргатив - действующее лицо, деятель).

Администратор получает и передает информацию в виде различных документов, в ходе переговоров с другими людьми, через системы ЭВМ и т. д. Оператор, как правило, получает сведения о состоянии управляемой системы в форме, представленной различными техническими средствами отображения информации - цифровыми и графическими табло, пультами со стрелочными, цифровыми и индикаторными приборами, средствами звуковой сигнализации. Принятые решения оператор реализует, воздействуя на производственный процесс, используя технические средства управления. Процесс принятия решений оператором гораздо легче формализуем, чем для администратора. Наборы возможных ситуаций и применяемых решений для оператора обычно четко очерчены; во всяком случае, они значительно же, чем у администратора.

При синтезе эргатических систем в единую систему управления используют сочетания аналитических и неформальных методов. Аналитическими методами определяют функциональную структуру синтезируемой системы, постановку задач и методы их решения. Неформальные методы используют при распределении функций между человеком и техническими средствами, определении роли и функциональных обязанностей человека. Задачи эти взаимосвязаны, поэтому их решают параллельно или путем последовательных приближений.

В деятельности крупных фирм (в особенности транснациональных корпораций, представляющих собой комплексы большого числа взаимосвязанных и взаимодействующих предприятий, расположенных в разных странах) передача информации является непременным и первостепенным фактором нормального функционирования фирмы. При этом особое значение приобретает обеспечение оперативности и достоверности сведений. Для многих компаний внутрифирменная система информации решает задачи организации технологического процесса и носит производственный характер. Это касается, прежде всего, процессов обеспечения предприятий продукцией, поступающей по кооперации со специализированных предприятий по внутрифирменным каналам. Здесь информация играет важную роль в предоставлении сведений для принятия управленческих решений и является одним из факторов, обеспечивающих снижение издержек производства и повышение его эффективности. Особое значение имеет прогнозирование рыночных процессов.

Потребность в управлении возникает в том случае, когда необходима координация действий членов некоторого коллектива, объединенных для достижения общих целей: обеспечение устойчивости функционирования или выживания объекта управления в конкурентной борьбе, получение максимальной прибыли, выход на международный рынок и т. п. Цели сначала носят обобщенный характер, а затем в процессе уточнения они формализуются управленческим аппаратом в виде целевых функций.


Похожая информация.


Страница 23 из 35

Признаки системности и системные концепции.

Применение теории систем к управлению помогает руководителям увидеть организацию в единстве составляющих ее частей, которые неразрывно переплетаются с внешним миром. Эта теория также способствует интеграции положений всех школ, которые в разное время доминировали в теории и практике управления.

Теория систем впервые была применена в точных науках и в технике, а в конце 50-х годов стала использоваться в управлении, что явилось важнейшим вкладом в науку управления. Системный подход – это не набор каких-то руководств или принципов для управляющих, а способ мышления применительно к организации и управлению. Чтобы осознать, как системный подход помогает руководителю лучше понять организацию и более эффективно достичь целей, следует определить, что такое система.

Система – это некоторая целостность, состоящая из взаимозависимых частей, каждая из которых вносит свой вклад в характеристики целого. Примеры систем – машины, компьютеры, телевизоры, состоящие из множества взаимозависимых частей, каждая из которых работает во взаимодействии с другими для создания целого, имеющего свои конкретные свойства. Если одна из частей будет отсутствовать или неправильно функционировать, то и вся система будет функционировать неправильно. Все биологические организмы также представляют собой системы. Жизнь человека зависит от правильного функционирования многих взаимозависимых органов, которые все вместе представляют уникальный организм человека.

Все организации – это системы, поскольку люди являются наряду с техникой социальными компонентами организаций. Таким образом, социотехнические системы – это люди и техника, используемые совместно в процессе производства. Точно так же, как и в биологическом организме, все части организации взаимозависимы.

Открытые и закрытые системы. Существует два основных типа систем: закрытые и открытые. Закрытая система, имеющая жесткие фиксированные границы, ее действия относительно независимы от окружающей систему среды. Часы – пример закрытой системы. Взаимозависимые части часов двигаются непрерывно и очень точно, как только часы заведены или поставлена батарейка. И пока в часах имеется источник накопленной энергии, их система независима от окружающей среды.

Открытая система – это система, взаимодействующая с внешней средой, приспосабливающаяся к изменениям в ней. Энергия, информация, материалы – это объекты обмена с внешней средой через проницаемые границы системы. Такая система не является самообеспечивающейся, она зависит от энергии, информации и материалов, поступающих извне.

Руководители, в основном, занимаются открытыми системами, потому что все организации являются открытыми системами. Выживание любой организации зависит от внешнего мира.

Подсистемы. Крупные составляющие сложных систем, таких, как организация, человек или машина, зачастую сами являются системами. Части, т.е. крупные функциональные составляющие сложной системы, называются подсистемами. Основное различие подсистем одной системы – в функциональности, т.е. каждая подсистема выполняет особую функцию. Понятие подсистемы – это важное понятие в управлении. Путем подразделения организации на отделы руководство намеренно создает внутри организации подсистемы – управленческие, кадров, маркетинга, финансов, и т.д. Отделы, управления и различные его уровни – каждый из этих элементов играет важную роль в организации в целом. Социальные и технические составляющие организации считаются подсистемами.

Подсистемы, в свою очередь, могут состоять из более мелких подсистем. Поскольку все они взаимозависимы, неправильное функционирование даже самой маленькой подсистемы может повлиять на систему в целом. Проржавевший проводок от аккумулятора не подает ток в электросистему автомобиля, вследствие чего не может работать вся машина. Точно так же работа каждого отдела и каждого работника в организации очень важна для успеха организации в целом.

Понимание того, что организации представляют собой сложные открытые системы, состоящие из нескольких взаимозависимых подсистем, помогает объяснить, почему каждая из школ в управлении оказалась практически приемлемой лишь в ограниченных пределах. Каждая школа стремилась сосредоточить внимание на какой-то одной подсистеме организации. Бихейвиористская школа в основном занималась социальной подсистемой. Школы научного управления и науки управления, главным образом, – техническими подсистемами. В результате они часто не могли правильно определить все основные компоненты организации. Ни одна из школ серьезно не задумывалась над воздействием среды на организацию. Более поздние исследования показывают, что это очень важный аспект работы организации. Сейчас широко распространена точка зрения, что внешние силы могут быть основными детерминантами успеха организации, которые предопределяют, какое средство из арсенала управления может оказаться подходящим и, вероятнее всего, успешным.

Модель организации как открытой системы (рис. 6) представляет собой упрощенное изображение организации как открытой системы, есть входы и выходы. Входы – это компоненты, которые организация получает от окружающей среды: информация, капитал, человеческие ресурсы и материалы. В процессе преобразования организация обрабатывает эти входы, преобразуя их в продукцию или услуги. Эта готовая продукция и услуги, выносимые организацией во внешнюю среду, являются выходами. Если организация управления эффективна, то в ходе процесса преобразования образуется добавленная стоимость входов, включающая сумму затрат на заработную плату, процент на капитал, ренту и прибыль.

В результате появляются многие возможные дополнительные выходы, такие, как: прибыль, увеличение доли рынка, увеличение объема продаж (в бизнесе), реализация социальной ответствен-ности, удовлетворение работников, рост организации и т.п.

Рис. 6. Модель организации как открытой системы

Основными признаками системы, отвечающими дескриптивному определению «система», могут быть: совокупность, связь, объект, подсистема, элемент,структура, организация, управление, цель, функция,функционирование, поведение, эффективность,оптимальность. Дадим их краткое определение.

Под совокупностью можно понимать сочетание, соединение, объединение объектов.

Связь - обязательное свойство элементов системы. Она рассматривается как способ воздействия, взаимодействия или отношение элементов между собой, обусловливающий структуру системы и ее размещение в пространстве и вo времени. Обычно рассматриваются следующие типы связей: материальные

энергетические, информационные. Это понятие характеризует одновременно и строение (статику), и функционирование (динамику) системы. Связь характеризуется направлением (направленные и ненаправленные), силой (сильные и слабые), характером (связи подчинения, равноправные связи), а также местом приложения (внутренние и внешние) и направленностью

процессов в системе и ее частях (прямые и обратные).

Постулируется, что связи существуют между всеми системными элементами, между системами и подсистемами и между двумя и более подсистемами.

Связями первого порядка называются связи, функционально необходимые друг другу. Связи второго порядка -это такие связи, которые являются дополнительными. Как правило, такие связи не являются функционально необходимыми, но они в значительной степени улучшают действие системы. Примером могут служить синергические связи, которые при кооперативных

действиях независимых организаций обеспечивают увеличение их общего эффекта до величины большей, чем сумма эффектов этих же независимо действующих организаций. В том случае, если связи являются излишними или противоречивыми, то они определяются как связи третьего порядка. Избыточность описывает такое состояние системы, когда она содержит

ненужные элементы. Противоречие существует тогда, когда система содержит два объекта, таких что, если один истинен то другой ложен по

определению.

Под объектом понимается то, что существует вне нас, и не зависит от нашего сознания, выступает предметом познания и воздействия.

Подсистема - часть системы, представляющая собой совокупность некоторых ее элементов, и отличающаяся подчиненностью, с точки зрения выполняемых функций. Подсистемы выделяются по функциональным и (или) технологическим признакам. Названием "подсистема" подчеркивается, что такая часть должна обладать свойствами системы (в частности, свойством целостности).

Элемент - часть системы, обладающий некоторой самостоятельностью и имеющий связи с другими частями. Элемент системы при данном рассмотрении объекта не подлежит дальнейшему расчленению, т. е. - это предел разделения системы с точки зрения решения конкретной задачи и



поставленной цели. При исследовании элемента нас должны интересовать только те свойства, которые определяют его взаимодействие с другими элементами. Обычно рассматривают элементы однородного, разнородного и смешанного характера.

Структура - совокупность элементов системы и связи между ними. Это понятие происходит от латинского слова structure, означающее строение, расположение, порядок. Выявление структуры позволяет зафиксировать объект как нечто целое. Структура под воздействием функции во многом определяет свойства системы, в том числе и общесистемные свойства

целостности, иерархичности и интегративности. Она также играет важную роль в функционировании системы, обеспечивая относительную ее устойчивость и способствуя сохранению качественной определенности системы. Со структурой системы тесно связана ее организация, нередко эти понятия отождествляются. Существуют также попытки определить организацию как сложность системы (такой взгляд был характерен для Н. Винера и JI. фон Неймана), хотя понятие организации давно определено каквзаимодействие частей целого, обусловленное его строением .

Это определение ясно показывает отличие и взаимосвязь организации и структуры. Если структура системы отражает ее устойчивые компоненты и связи, то организация – как устойчивые, так и неустойчивые объекты и связи, т.е.организация выражает и структурные, и составные аспекты системы.

На практике часто используют два понятия структуры системы: организационная структура и функциональная структура. Организационная структура понимается как взаимосвязь объектов системы, находящихся на разных уровнях управления.

При этом связь между объектами представляет собой совместное выполнение ими операций по обработке потоковой информации, идущих с верхних уровне управления вниз и на оборот.

Функциональная структура понимается как взаимосвязь объектов системы находящихся, как правило, на одном уровне управления осуществляющаяся путем совместной обработки потоков информации, материальных или энергетических потоков в интересах функционального взаимодействия для выполнения своих задач.

Управление - совокупность информационных воздействий, для достижения поставленных целей.

Цель - область состояний среды и системы, которую необходимо достичь при функционировании системы. По другому, цель - это "желаемое" состояние ее выходов, т.е. некоторое значение или подмножество значений функций системы. Цель может быть заданной как из вне и поставлена системой самой себе; в последнем случае цель будет выражать внутренние потребности системы. Поэтому, вопреки сложившемуся в экономической литературе, так и в исследованиях по теории систем мнению, цели подсистемы, если она, в свою очередь, является целенаправленной

самоуправляемой системой, не могут (и не должны) быть подчинены целям системы, в которую она входит, в силу изначального различия потребностей. Их цели должны быть непротиворечивыми, взаимно не исключающими друг друга, для чего в теории систем разработано немало эффективных процедур,

подробно описанных в соответствующей литературе. Вопреки достаточно распространенному, в частности среди тех, кто разрабатывает и осуществляет социальные реформы, волюнтаристскому взгляду, система может достичь цели не из любого состояния, не при любом начальном условии и тем более не в любой промежуток времени. Чтобы достичь цели, система должна находиться в "области достижимости ".

Основным системообразующим признаком является функция системы. Единого мнения по поводу того, что представляетсобой функция, не сложилось. Анализ научной литературыпозволяет выделить четыре основных группы взглядов на природу ипроисхождение функции системы.

Исследователи первой группы полагают, что функция системы состоит в переработке входов в выходы. Несуразность подобного подхода очевидна: если, например, рассмотреть такую систему, как фирма, выпускающая компьютеры, то ее функцией нужно назвать переработку пластмассы, интегральных схем, идей, энергии и др. в компьютеры. А зачем? Для чего это, в свою очередь, нужно? Практика СССР показала, что подобное понимание функции истощает ресурсы и приводит систему к разрушению.

Вторая точка зрения близка первой и видит функцию в сохранении системы, поддержании ее структуры, т.е. получается, что система должна существовать для того, чтобы существовать.

Третья группа исследователей отождествляет функцию и функционирование системы, определяя вторую как способ или средства достижения цели, как действия, предпринимаемые для этого, однако возможно существование нецелевых систем, осуществляющих функционирование, а значит, и имеющих функцию.

И, наконец, четвертой группой функция рассматривается как смысл существования, назначение, необходимость системы. Именно эту точку зрения и следует признать наиболее близкой к истине, ибо, по определению, функция отражает назначение системы, что исключает и споры по вопросу, каково ее происхождение.

Функция задается системе извне и показывает, какую роль данная система выполняет по отношению к более общей системе, в которую она включена составной частью наряду с другими системами, выступающими для нее средой. Это положение имеет очень важные следствия: импульс к изменению, в том числе и развитию системы, может как генерироваться внутри системы, так и вызываться внешними факторами. Если первое достаточно обосновано еще в рамках материалистической диалектики, то

второе нуждается в логическом обосновании. Во-первых, любое изменение функции, производимое средой, вызывает смену механизма функционирования системы (по определению понятий "функция" и "функционирование"), а это приводит к изменению структуры системы, которое может происходить как в направлении прогресса, так и в направлении регресса. Во-вторых, с усложнением функции в пределах старого строения происходит дифференциация, которая в будущем может вызвать обособление новой части, т.е. развитие системы. Именно то, что функцияопределяет структуру, функционирование и развитиесистемы, дает основание говорить о ней как о главномсистемообразующем факторе.

Немаловажное значение имеет вопрос о соотношении функции и цели системы, особенно для целенаправленных социальных систем, тем более что нередко цель и функция либо отождествляются, либо функцию считают подчиненной цели. По определению, функция отражает назначение системы, ее роль в среде и является объективно обусловленной средой; цель, наоборот,

выражает внутренние потребности системы, имеющей внутренний блок управления, следовательно, об отождествлении цели и функции или подчинении одного другому речь идти не может.

Может утверждаться лишь, что каждая из них в состоянии препятствовать осуществлению другой, или не препятствовать. При этом главенствующая роль принадлежит функции, поскольку именно от нее зависит возможность самого существования системы: если функция не выполняется, влияние среды может быть для системы разрушительным, в то время как обратное

верно не всегда - если система выполняет свою функцию, то недостижение (или достижение) цели, как правило, не несет непосредственной угрозы разрушения. Например, если какая-либо фирма не удовлетворяет потребностей потребителей своей, продукцией (функция), то рано или поздно она разорится. Если же, вполне удовлетворяя потребности, фирма не получает прибыль (одна из возможных целей), она вполне может существовать значительное время.

Конечно, цель оказывает огромное влияние как на структуру, так и на поведение системы и наряду с функцией должна быть признана системообразующим фактором, но при решающей роли функции.

Функционирование - осуществление различных процессов в системе при взаимодействии со средой. Функционирование системы во времени называют ее поведением . Все еще встречающуюся в литературе по теории трактовку поведения как суммы или последовательного набора состояний следует признать неверной, поскольку никакая "сумма" (если вообще можно применять это понятие к качественным категориям) дискретных статических срезов системы не в состоянии показать ее динамические характеристики, одной из которых является поведение (хотя изучение поведения системы

человеком в силу особенностей его мышления происходит так, как подмечено выше, но является отражением законов познающего субъекта, а не познаваемого объекта).

В процессе функционирования система достигает определенного результата - эффекта. Вопрос об эффективности системы, а тем более формализованном ее выражении можно считать до сих пор не разрешенным, хотя определенные высказывания на этот счет имеются.

Поскольку какой бы то ни было эффект (результат), включая, возможно, и достижение какой-либо цели, является продуктом функционирования системы, то эффективность или результативность следует понимать как степень достижения результата, заданного ее функцией, как степень соответствия действительного результата тому, который должен иметь место

при всей полноте выполнения системой своей функции. Иногда оптимум системы отождествляется с эффективностью. В литературе определение оптимума – как экстремума целевой функции системы, - страдает неопределенностью, поскольку неясно, какой экстремум функции - максимум или минимум - имеется в виду. Понятие оптимума системы можно в общем определить следующим образом.

Оптимум системы представляет собой максимально (минимально) достижимое при имеющихся ресурсах значение целевой функции системы.

Таким образом, система может быть эффективной, но не оптимальной; оптимальной, но неэффективной и как эффективной, так и оптимальной.

Как эффективность, так и оптимальность системы сильно зависят от того, насколько эффективны и оптимальны ее подсистемы, и наоборот, однако зависимость здесь не прямая: эффективность функционирования объектов способствует эффективности системы в целом, но не всегда приводит к ней в

силу системного свойства интегративности. Что касается оптимума, то здесь еще более сложная и противоречивая зависимость, которая может быть даже обратной: достижение системой глобального оптимума нарушило бы нормальное функционирование подсистем; а подсистемы не могут одновременно достичь оптимума, ибо это может вывести за допустимые пределы переменные других подсистем.

Дескриптивный подход к определению системы требует также описание основных ее свойств. В качестве общесистемных свойств могут выступать: целостность, иерархичность,интегративность, переходный процесс, устойчивость,управляемость, достижимость, обратная связь,адаптивность, открытость (закрытость).

Дадим краткое описание основным свойствам системы.

Целостность - это общесистемное свойство, заключающееся в том, что изменение любого объекта системы оказывает воздействие на все другие ее объекты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех объектах системы; она означает также

преобразование компонентов, входящих в систему, соответственно ее природе.

Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой. И, наконец, интегративность представляет собой обладание системой свойствами, отсутствующими у ее элементов (верно и обратное - элементы обладают свойствами, не присущими системе).

Реакция системы на какой-либо входной сигнал называется переходным процессом. Переходные процессы систем изображены на рис. 1.2. Эти процессы характеризуются временем переходного процесса Т, величиной

перерегулирования σ (максимальное отклонение Y1 от Y0 за время переходного процесса).

Переходный процесс - это показатель функционирования системы во времени, указывающий как быстро и в какое новое состояние перейдет система в результате появления входного сигнала. Система находится в равновесии, если ее состояние может оставаться неизменным неограниченное время. В системе может быть несколько состояний равновесия.

Под устойчивостью системы понимается ее способность под действием входного сигнала переходить из одного состояния равновесия в другое. На рис. 1.2. переходные процессы I и II соответствуют устойчивой системе, а III - неустойчивой.

Понятие устойчивости связано с величиной воздействия, вызвавшего изменения состояния системы. Надо учитывать предельное значение входного сигнала.

Принцип управляемости выражает необходимость зависимости показателя эффективности, целевой функции от параметров управления системой (входных сигналов).

Достижимость означает что параметры, как самой системы, так и ее среды должны достичь определенных значений.

Обратная связь означает получение информации о результате управления. Обратная связь может быть отрицательной и положительной.

Отрицательная обратная связь характеризуется тем, что выходной сигнал, воздействующий на вход системы, имеет противоположный знак по отношению к входному, вызывающему изменение состояния системы. Системы с отрицательной обратной связью обычно предназначены для

поддержания ее в устойчивом состоянии.

Положительная обратная связь характеризуется тем, что выходной сигнал, подаваемый на вход в качестве обратной связи, имеет одинаковый знак с входным сигналом. Системы с положительной обратной связью неустойчивы.

Свойством адаптивности обладает система, имеющая управление с обратной связью, которая отличается наличием специального адаптивного механизма накапливающего и анализирующего информацию о прошлых управленческих ситуациях, вырабатывающего новое поведение. Адаптивное управление присуще сложным системам, которым в процессе управления приходится изменять программы и стратегии поведения путем обучения.

Теория адаптивного управления пока не получила большого развития, в следствие чрезвычайной сложности формирования процессов обучения.

Открытость - означает, что система имеет связь со средой.

Закрытость – система не имеет связи со средой.

Классификация систем

Системы могут быть разделены на классы по различным признакам. На рисунке 1.3 представлена классификация систем по наиболее общим признакам:

− по природе элементов;

− по происхождению;

− по степени сложности;

− по характеру поведения;

− по степени автоматизации управления;

− по приспособленности к среде;

− по отношению к среде;

− по длительности существования;

− по изменению свойств;

− по характеру реакции на воздействие среды.

Физические системы состоят из изделий, оборудования и машин и, вообще, из естественных или искусственных объектов. Этим системам могут быть противопоставлены абстрактныесистемы, которые не имеют прямого аналога. В абстрактных системах свойства объектов, которые могут существовать только в уме исследователя, представляют символы. Это могут быть: языки (естественные и искусственные), системы исчислений и т.п. Идеи, планы гипотезы и понятия, находящиеся в процессе исследования, могут также быть представлены как абстрактные системы.

Естественные системы - это системы, которые существуют реально, например: механические, биологические, эргодические (человеко-машинные). В свою очередь, искусственные системы являются продуктом человеческого труда и ума.

Разделение систем на простые и сложные является условным.

Мы будем относить к разряду сложных систем те, для которых характерны следующие признаки:

Наличие большого количества взаимодействующих между

собой элементов;

Возможность разбиения системы на подсистемы;

Сложность функционирования системы;

Наличие управления (обработки потоков информации);

Наличие взаимодействия с внешней средой и

функционирование в условиях воздействия случайных факторов.

Рисунок 1.3 Классификация систем управления

Любую сложную систему в соответствии с кибернетическим подходом к исследованию систем можно рассматривать как систему управления , состоящую из двух или более систем. При этом одна из них является управляющей системой , а другая управляемой системой . Адаптивная система - это система, которая способна

приспосабливаться к внешнему воздействию, или, другими словами, в которой происходит непрерывный процесс обучения или самоорганизации.

Системы существуют в определенной окружающей среде и обусловливаются ею. Открытые системы обмениваются с окружающей средой веществом или энергией регулярным и понятным образом. Деловая деятельность в основном происходит в обстановке открытой системы.

Противоположностью открытым системам являются закрытые системы, у которых отсутствует взаимодействие с внешнейсредой, или которые действуют с относительно небольшимобменом энергией или веществом с окружающей средой. Лучшийпример частично закрытой системы в деловом мире - монополия,процессы и продукты которой защищены патентами или другимисредствами. Отсутствие конкуренции может позволить монополии

действовать менее открытым способом. Сделанные человеком системы являются закрытыми, если они характеризуются как полностью структурированные. Конструирование деловых систем имеет целью переход к открытым системам. Эта цель достигается с помощью обратной связи. Системы, сделанные человеком, могут быть также адаптивными.

Постоянная система - это естественная система, но на практике довольно часто некоторые искусственные системы относят к постоянным системам.

Стабильная система - это система, свойства которой не меняются во времени. В том случае, если изменения все-таки имеют место, то они носят циклический характер.

Пассивные системы не оказывают ответного воздействия на среду. В случае, если ответная реакция имеет место, то такая система является активной.

Как видно из рисунка 1.4, каждая управляемая система в свою очередь может быть представлена системой управления состоящей из управляющей и управляемой систем. Таким образом, любую сложную систему можно рассматривать каккомплекс вложенных друг в друга систем управления . Образно говоря, сложная система - это «матрешка», число, вложений в

которую зависит от целей исследования системы. Они конкретно определяют, какую по счету управляемую систему не следует далее

представлять системой управления с двумя составляющими - управляющей и управляемой.

Функционирование сложной системы как системы управления, состав которой показан на рисунке 1.4, можно представить в виде процесса управления, состоящего из последовательности следующих четырех системных операций:

− операции прогноза;

− операции принятия решения;

− операции планирования;

− операции регулирования или оперативного управления,

состоящей в свою очередь из операций контроля (учет и анализ

выполнения мероприятий плана) и управляющего воздействия в

интересах выполнения плана.

Рисунок 1.4 – Состав системы управления

В общем случае процесс управления является циклическим процессом (рисунок 1.5). Это значит, что каждая из четырех операций может выполняться в цикле в зависимости от возможностей состава системы – количества элементов и их свойств, и воздействия окружающей среды.

Первый цикл - повторение операции контроля до тех пор, пока не обнаружено отклонение мероприятий от плана.

Второй цикл - в случае обнаружения отклонений от плана повторяется операция управляющего воздействия, затем снова выполняется операция контроля.

Третий цикл - повторение операции планирования - корректировки старого плана так, чтобы операция оперативного управления в целом оставалась эффективной. При этом вначале выполняется операция принятия решения.

Четвертый цикл - повторяется операция принятия решения на разработку нового плана, если корректировка старого плана не принесла успеха. При этом, как правило, выполняется и операция прогнозирования.

Рисунок 1.5 – Циклический процесс управления

Такое циклическое повторение характерно для всех сложных систем, нас окружающих. Отличия могут заключаться лишь в той или иной конкретной детализации состава циклов. Теперь несколько слов о простых системах. Главной отличительной чертой простой системы является, как правило,

небольшое количество элементов в составе системы и отсутствие управления.

При большом количестве элементов простые системы называются большими системами .

Состояние простой системы не может меняться (структура, элементы) поскольку отсутствует управление, то есть, нет управляющей части. Состояние простой системы изменяется только под воздействием внешней управляющей системы, когда простая система превращается в управляемую, но не в систему управления.

В отличие от управляющей системы, обрабатывающей информационные потоки, простая система, превращенная в управляемую, обрабатывает материальные или энергетические потоки. На практикетакими системами является различное оборудование,управляемое людьми или автоматами. Подобные системы могутвходить в качестве элементов в состав систем управления,примером которых являются такие сложные системы какпредприятия текстильной или легкой промышленности. Этипредприятия полностью соответствуют определению сложнойсистемы, а значит, системы управления, структура которойопределяется информационными, материальными иэнергетическими связями.

1. Целостность и делимость . Система - это прежде всœего целостная совокупность элементов. Это означает, что, с одной стороны, система - целостное образование и, с другой - в ее составе отчетливо бывают выделœены целостные объекты (элементы). При этом следует иметь в виду, что элементы существуют лишь в системе. Вне системы это в лучшем случае объекты, обладающие системнозначимыми свойствами. При вхождении и систему элемент приобретает системноопределœенное свойство взамен системнозначимого. Важно заметить, что для системы первичным является признак целостности, т. е. она воспринимается как единое целое, состоящее из взаимодействующих частей, часто разнокачественных, но одновременно совместимых.

2. Наличие устойчивых связей . Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами, не входящими в данную систему, является следующим атрибутом системы. Система существует как неĸᴏᴛᴏᴩᴏᴇ целостное образование, когда мощность (сила) существенных связей между элементами системы на интервале времени, не равном нулю, больше, чем мощность связей этих же элементов с внешней средой. Для информационных связей оценкой потенциальной мощности может служить пропускная способность данной информационной системы, а реальной мощности - действительная величина потока информации. При этом в общем случае при оценке мощности информационных связей крайне важно учитывать качественные характеристики передаваемой информации (ценность, полезность, достоверность и т. п.).

3. Организация . Это свойство характеризуется наличием определœенной организации, что проявляется в снижении энтропии (степени неопределœенности) системы H{S} по сравнению с энтропией системоформирующих факторов H{F), определяющих возможность создания системы.

4 .Эмерджентность . Эмерджентность предполагает наличие таких качеств (свойств), которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности.

Наличие интегрированных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью. Отсюда можно сделать выводы:

1) система не сводится к простой совокупности элементов;

2) расчленяя систему на отдельные части, изучая каждую из них отдельности, нельзя познать всœе свойства системы в целом.

Любой объект, который обладает всœеми рассматриваемыми свойствами можно называть системой. Одни и те же элементы (в зависимости от принципа, используемого для их объединœения в систему) могут образовывать различные по свойствам системы. По этой причине характеристики системы в целом определяются не только и не столько характеристиками составляющих ее элементов, сколько характеристиками связей между ними. Наличие взаимосвязей (взаимодействия) между элементами определяет особое свойство сложных систем - организованную сложность. Добавление элементов в систему не только вводит новые связи, но и изменяет характеристики многих или всœех прежних взаимосвязей, приводит к исключению некоторых из них или появлению новых.

Любая система обладает рядом основных признаков.

Во-первых, она представляет собой набор элементов (отдельных частей), выделенных по тому или иному принципу и играющих роль подсистем. Последние относительно самостоятельны, но различным образом взаимодействуют в рамках системы (находятся рядом и граничат друг с другом; порождают друг друга; оказывают друг на друга влияние). Для сохранения целостности системы любое взаимодействие должно быть гармоничным.

Во-вторых, каждая система имеет структуру, то есть определенное строение, взаимное расположение элементов (в рамках одного и того же состава элементов возможны те или иные модификации структуры). Структурой называется также совокупность связей между элементами системы. Она может в той или иной степени зависеть не только от их расположения, но и от особенностей (например, взаимоотношения в чисто женском, мужском и смешанном коллективах, занятых одним и тем же делом, будут различны). Иногда в обиходе понятие структура используется как синоним понятия организация. Структура является основой системы, придает ей целостность и внутреннюю организованность, в рамках которой взаимодействие элементов подчиняется определенным законам. Системы, где организованность минимальна, называются неупорядоченными, например, толпа на улице.

В-третьих, система имеет границы, отделяющие ее от окружающей среды. Эти границы могут быть прозрачными, допускающими проникновение внешних влияний, и непрозрачными, наглухо отделяющими ее от остального мира. Системы, осуществляющие свободный двусторонний обмен энергией, веществом, информацией со средой, получили название открытых; в противном случае говорится о закрытых системах, функционирующих относительно независимо от среды. Если в систему вообще не поступают ресурсы извне, ее жизнь имеет тенденцию к затуханию и прекращению (например, часы, если их не завести, останавливаются). Открытые системы, самостоятельно черпающие необходимые для своего функционирования ресурсы из внешней среды и преобразующие их соответствующим образом, в принципе, неиссякаемы. Недостаточно или, наоборот, чрезмерно активный обмен со средой может систему разрушить (по причине нехватки ресурсов или неспособности их ассимилировать ввиду избыточного количества и разнообразия). Поэтому система должна находиться в состоянии внутреннего и внешнего равновесия, что обеспечивает оптимальное приспособление к окружению и успешное развитие.

Основные признаки системы:

  • · целостность, связность или относительная независимость от среды и систем (наиболее существенная количественная характеристика системы). С исчезновением связности исчезает и система, хотя элементы системы и даже некоторые отношения между ними могут быть сохранены;
  • · наличие подсистем и связей между ними или наличие структуры системы (наиболее существенная качественная характеристика системы). С исчезновением подсистем или связей между ними может исчезнуть и сама система;
  • · возможность обособления или абстрагирования от окружающей среды, т.е. относительная обособленность от тех факторов среды, которые в достаточной мере не влияют на достижение цели;
  • · связи с окружающей средой по обмену ресурсами;
  • · подчиненность всей организации системы некоторой цели (как это, впрочем, следует из определения системы);
  • · эмерджентность или несводимость свойств системы к свойствам элементов.
Поделиться: