Соотношение в треугольнике теорема синусов и косинусов. Теорема синусов

Выпускники, которые готовятся сдавать ЕГЭ по математике и хотят получить достаточно высокие баллы, обязательно должны освоить принцип решения задач на применение теоремы синусов и косинусов. Многолетняя практика показывает, что подобные задания из раздела «Геометрия на плоскости» являются обязательной частью программы аттестационного испытания. Поэтому, если одним из ваших слабых мест являются задачи на теорему косинусов и синусов, рекомендуем обязательно повторить базовую теорию по данной теме.

Готовьтесь к экзамену вместе с образовательным порталом «Школково»

Занимаясь перед сдачей ЕГЭ, многие выпускники сталкиваются с проблемой поиска базовой теории, необходимой для решения практических задач на применение теоремы синусов и косинусов.

Учебник далеко не всегда оказывается под рукой в нужный момент. А найти необходимые формулы иногда бывает достаточно проблематично даже в Интернете.

Подготовка к аттестационному испытанию вместе с образовательным порталом «Школково» будет максимально качественной и эффективной. Чтобы задачи на теорему синусов и косинусов давались легко, рекомендуем освежить в памяти всю теорию по данной теме. Этот материал наши специалисты подготовили на основе богатого опыта и представили в понятной форме. Найти его вы можете в разделе «Теоретическая справка».

Знание базовых теорем и определений - это половина успеха при прохождении аттестационного испытания. Отточить навык решения примеров позволяют соответствующие упражнения. Чтобы их найти, достаточно перейти в раздел «Каталог» на образовательном сайте «Школково». Там представлен большой перечень заданий различного уровня сложности, который постоянно дополняется и обновляется.

Задачи на теоремы синусов и косинусов, подобные тем, что встречаются в ЕГЭ по математике, учащиеся могут выполнять в онлайн-режиме, находясь в Москве или любом другом российском городе.

В случае необходимости любое упражнение, например, можно сохранить в разделе «Избранное». Это позволит в дальнейшем вернуться к нему, чтобы еще раз проанализировать алгоритм нахождения правильного ответа и обсудить его с преподавателем в школе или репетитором.

При изучении треугольников невольно встаёт вопрос о вычислении зависимости между их сторонами и углами. В геометрии и синусов дает наиболее полный ответ для решения этой проблемы. В изобилии различных математических выражений и формул, законов, теорем и правил встречаются такие, что отличаются необычайной гармоничностью, лаконичностью и простотой подачи заключённого в них смысла. Теорема синусов является ярким примером подобной математической формулировки. Если в словесной трактовке ещё и возникает определённое препятствие в осмыслении данного математического правила, то при взгляде на математическую формулу всё сразу становится на свои места.

Первые сведения о данной теореме были обнаружены в виде доказательства её в рамках математического труда Насир ад-Дин Ат-Туси, датированного тринадцатым веком.

Приближаясь ближе к рассмотрению соотношения сторон и углов в любом треугольнике, стоит отметить, что теорема синусов позволяет решать массу математических задач, при этом данный закон геометрии находит себе применение в различных видах практической деятельности человека.

Сама теорема синусов гласит, что для любого треугольника характерна пропорциональность сторон к синусам противоположных углов. Также имеется и вторая часть этой теоремы, согласно которой отношение любой стороны треугольника к синусу противоположного угла равно описанной около рассматриваемого треугольника.

В виде формулы это выражение выглядит, как

a/sinA = b/sinB = c/sinC = 2R

Имеет теорема синусов доказательство, которое в различных вариантах учебников предлагается в богатом разнообразии версий.

Для примера рассмотрим одно из доказательств, дающих объяснение первой части теоремы. Для этого зададимся целью доказать верность выражения a sinC = c sinA.

В произвольном треугольнике ABC построим высоту BH. В одном из вариантов построения H будет лежать на отрезке AC, а в другом за его пределами, в зависимости от величины углов при вершинах треугольников. В первом случае высоту можно выразить через углы и стороны треугольника, как BH = a sinC и BH = c sinA, что и является требуемым доказательством.

В случае, когда точка H окажется за пределами отрезка AC, можем получить следующие варианты решений:

ВН = a sinC и ВН = c sin(180-A)= c sinA;

либо ВН = a sin(180-C) = а sinC и ВН = c sinA.

Как видим, в независимости от вариантов построения, мы приходим к желаемому результату.

Доказательство второй части теоремы потребует от нас описать вокруг треугольника окружность. Через одну из высот треугольника, к примеру B, построим диаметр круга. Полученную точку на окружности D соединим с одной из высотой треугольника, пусть это будет точка A треугольника.

Если рассмотреть полученные треугольники ABD и ABC, то можно заметить равенство углов C и D (они опираются на одну дугу). А учитывая, что угол А равен девяносто градусов то sin D = c/2R, или же sin C = c/2R, что и требовалось доказать.

Теорема синусов является отправной точкой для решения широкого спектра различных задач. Особая привлекательность заключается в практическом её применении, как следствие из теоремы мы получаем возможность связать между собой величины сторон треугольника, противолежащих углов и радиуса (диаметра) описанной вокруг треугольника окружности. Простота и доступность формулы, описывающей данное математическое выражение, позволяли широко использовать эту теорему для решения задач при помощи различных механических счётных приспособлений таблицы и пр.), но даже приход на службу человека мощных вычислительных устройств не снизил актуальность данной теоремы.

Эта теорема не только входит в обязательный курс геометрии средней школы, но и в дальнейшем применяется в некоторых отраслях практической деятельности.

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол - меньший 90 градусов.

Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.

Первая часть теоремы : стороны произвольного треугольника пропорциональный синусам противоположных углов, то есть:

Вторая часть теоремы : каждая дробь равна диаметру окружности, описанной около данного треугольника, то есть: .

Комментарий репетитора по математике : использование второй части теоремы синусов закладывается чуть ли не в каждой второй конкурсной задаче на окружность. Почему? Дело в том, что равенство позволяет находить радиус окружности имея в наличие только два элемента треугольника. Это очень часто используют составители сильных задач, которые специально так подбирают условие, чтобы никакие другие элементы треугольника (и всего рисунка) не находились бы вообше! «Картинка» при этом будет плавующей. Это обстоятельство сильно усложняет работу на экзамене, ибо не дает возможность действовать в обход заложенному свойству.

Доказательство теоремы синусов:

по учебнику Атанасяна
Докажем, что для любого треугольника со сторонами a, b, c и противолежащими углами A, B и С выполняется равенство: .
Проведем высоту BH из вершины В. Возможны два случая:
1) Точка H лежит на стороне AC (это возможно когда и — острые).
По определению синуса острого угла в прямоугольном треугольнике ABH запишем

Аналогично в треугольнике CBH имеем . Приравнивая выражения для BH друг к другу получим:
2) Пусть H лежит на продолжении стороны AC (например слева от А). Это произойдет, если – тупой. Аналогично по определению синуса острого угла А в треугольнике ABH запишем равенство , но так как синусы смежных углов равны, то заменив в этом равенстве на , получим как и в первом случае. Поэтому независимо от величин углов А и С равенство верное.
После деления обеих его частей на получим . Аналогично доказывается равенство второй пары дробей

Доказательство теоремы синусов по учебнику Погорелова:

Применим формулу площади треугольника для двух углов A и C:


После приравнивания правых частей и сокращения на получим тоже самое равенство , как и в доказательстве первым способом. Из него тем же путем получаем равенство дробей.

Доказательство второй части теоремы синусов:

Опишем около данного треугольника окружность и через В проведем ее диаметр BD. Так как углы D и C опираются на одну дугу, то они равны (следствие из теоремы о вписанных углах). Тогда . Применим в треугольнике ABD определение синуса угла D: Что и требовалось доказать.

Задачи на вторую часть теоремы синусов:
1) В окружность радиуса 15 вписана трапеция. Длины диагонали и высоты трапеции соответственно равны 20 и 6. Найти боковую сторону.
2) Радиус окружность, описанной около трапеции, равен 25, а косинус ее тупого угла равен -0,28 (минус!!!). Диагональ трапеции образует с основанием угол . Найти высоту трапеции.
3) В окружность радиуса 10 вписана трапеция. Длины диагонали и средней линии трапеции соответственно равны 15 и 12. Найти длину боковой стороны трапеции.
4) Олимпиада в Финансовой академии 2009г. Хорды окружности пересекаются в точке Q. Известно, что а радиус окружности равен 4см. Найдите длину хорды PN. Олимпиада в Финансовой академии 2009г.
5) В треугольнике PST . Вокруг точки пересечения его биссектрис и вершин P и T описана окружность с радиусом 8см. Найдите радиус окружности, описанной около треугольника PST (авторская задача).

Детально разобрать теорему синусов и получить необходимую практику ее использования в задачах вам всегда поможет репетитор по математике . Ее плановое школьное изучение происходит в курсе геометрии 9 класса в теме решение треугольников (по всем программам). Если вам нужна подготовка к ЕГЭ по математике для сдачи экзамена не менее чем на 70 баллов — придется тренироваться в решении крепких планиметрических задач с номеров С4. В них теорему синусов часто применяют к вписанным треугольникам учитывая соотношение . Помните об этом!

С уважением, Колпаков Александр Николаевич,
репетитор по математике

Поделиться: